The Role of Oxidative Stress and the Potential Therapeutic Benefits of Aronia melanocarpa Supplementation in Obstructive Sleep Apnea Syndrome: A Comprehensive Literature Review
Abstract
:1. Introduction
2. Pathophysiology of OSA Biomolecular Mechanisms
3. Underlying Mechanisms of Aronia melanocarpa Antioxidant Properties and Their Role in Oxidative Stress
4. Importance of Oxidative Stress Biomarkers and Aronia melanocarpa in OSAS Pathophysiology
5. The Effects of OSA Treatment on Oxidative Stress Levels
Oxidative Stress in OSA and CPAP Therapy: Aronia melanocarpa, a Missed Opportunity?
6. Potential Therapeutic Effects of Aronia melanocarpa in Other Conditions
6.1. Metabolic Effects of Aronia melanocarpa
6.2. Cardiovascular Benefits of Aronia melanocarpa
6.3. The Role of Aronia melanocarpa Polyphenols in Gut Health and Prebiotic Potential
6.4. Immunomodulating Effects of Aronia melanocarpa
7. Discussion
8. Conclusions and Future Directions
9. Limitations
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Benjafield, A.V.; Ayas, N.T.; Eastwood, P.R.; Heinzer, R.; Ip, M.S.M.; Morrell, M.J.; Nunez, C.M.; Patel, S.R.; Penzel, T.; Pépin, J.-L.D.; et al. Estimation of the Global Prevalence and Burden of Obstructive Sleep Apnoea: A Literature-Based Analysis HHS Public Access. Lancet Respir. Med. 2019, 7, 687–698. [Google Scholar] [CrossRef] [PubMed]
- Mihaicuta, S.; Udrescu, M.; Topirceanu, A.; Udrescu, L. Network Science Meets Respiratory Medicine for OSAS Phenotyping and Severity Prediction. PeerJ 2017, 2017, e3289. [Google Scholar] [CrossRef] [PubMed]
- Topîrceanu, A.; Udrescu, L.; Udrescu, M.; Mihaicuta, S. Gender Phenotyping of Patients with Obstructive Sleep Apnea Syndrome Using a Network Science Approach. J. Clin. Med. 2020, 9, 4025. [Google Scholar] [CrossRef] [PubMed]
- Bouloukaki, I.; Grote, L.; McNicholas, W.T.; Hedner, J.; Verbraecken, J.; Parati, G.; Lombardi, C.; Basoglu, O.K.; Pataka, A.; Marrone, O.; et al. Mild Obstructive Sleep Apnea Increases Hypertension Risk, Challenging Traditional Severity Classification. J. Clin. Sleep Med. 2020, 16, 889–898. [Google Scholar] [CrossRef] [PubMed]
- Yeghiazarians, Y.; Jneid, H.; Tietjens, J.R.; Redline, S.; Brown, D.L.; El-Sherif, N.; Mehra, R.; Bozkurt, B.; Ndumele, C.E.; Somers, V.K. Obstructive Sleep Apnea and Cardiovascular Disease: A Scientific Statement from the American Heart Association. Circulation 2021, 144, E56–E67. [Google Scholar] [CrossRef]
- Kim, D.H.; Kim, B.; Han, K.; Kim, S.W. The Relationship between Metabolic Syndrome and Obstructive Sleep Apnea Syndrome: A Nationwide Population-Based Study. Sci. Rep. 2021, 11, 8751. [Google Scholar] [CrossRef]
- Dunietz, G.L.; Chervin, R.D.; Burke, J.F.; Conceicao, A.S.; Braley, T.J. Obstructive Sleep Apnea Treatment and Dementia Risk in Older Adults. Sleep 2021, 44, zsab076. [Google Scholar] [CrossRef]
- Redline, S.; Azarbarzin, A.; Peker, Y. Obstructive Sleep Apnoea Heterogeneity and Cardiovascular Disease. Nat. Rev. Cardiol. 2023, 20, 560–573. [Google Scholar] [CrossRef]
- Besedovsky, L.; Lange, T.; Haack, M. The Sleep-Immune Crosstalk in Health and Disease. Physiol. Rev. 2019, 99, 1325–1380. [Google Scholar] [CrossRef]
- Kendzerska, T.; Povitz, M.; Leung, R.S.; Boulos, M.I.; McIsaac, D.I.; Murray, B.J.; Bryson, G.L.; Talarico, R.; Hilton, J.F.; Malhotra, A.; et al. Obstructive Sleep Apnea and Incident Cancer: A Large Retrospective Multicenter Clinical Cohort Study. Cancer Epidemiol. Biomark. Prev. 2021, 30, 295–304. [Google Scholar] [CrossRef]
- Chauhan, P.; Guleria, T.C.; Sharma, S.; Minhas, R.S.; Dadwal, M.; Mohindroo, N.K. Obstructive Sleep Apnea and Hearing Loss: Is There Any Correlation? Int. Arch. Otorhinolaryngol. 2023, 27, e435. [Google Scholar] [CrossRef] [PubMed]
- Knížek, Z.; Kotulek, M.; Brothánková, P.; Pecháčková, E.; Klail, P.; Kostlivý, T.; Vodička, J. Outcome of Continuous Positive Airway Pressure Adherence Based on Nasal Endoscopy and the Measurement of Nasal Patency—A Prospective Study. Life 2023, 13, 219. [Google Scholar] [CrossRef] [PubMed]
- Aalaei, S.; Rezaeitalab, F.; Tabesh, H.; Amini, M.; Afsharisaleh, L.; Mostafavi, S.M.; Asadpour, H.; Eslami, S. Factors Affecting Patients’ Adherence to Continuous Positive Airway Pressure Therapy for Obstructive Sleep Apnea Disorder: A Multi-Method Approach. Iran J. Med. Sci. 2020, 45, 170. [Google Scholar] [CrossRef] [PubMed]
- Batty, M.; Bennett, M.R.; Yu, E. The Role of Oxidative Stress in Atherosclerosis. Cells 2022, 11, 3843. [Google Scholar] [CrossRef]
- Tasinov, O.; Dincheva, I.; Badjakov, I.; Grupcheva, C.; Galunska, B. Comparative Phytochemical Analysis of Aronia melanocarpa L. Fruit Juices on Bulgarian Market. Plants 2022, 11, 1655. [Google Scholar] [CrossRef]
- Olas, B.; Wachowicz, B.; Nowak, P.; Kedzierska, M.; Tomczak, A.; Stochmal, A.; Oleszek, W.; Jeziorski, A.; Piekarski, J. Studies on Antioxidant Properties of Polyphenol-Rich Extract from Berries of Aronia melanocarpa in Blood Platelets. Acta Physiol. Pol. 2008, 59, 823. [Google Scholar]
- Tarko, T.; Duda-Chodak, A.; Sroka, P.; Satora, P.; Michalik, J. Transformations of Phenolic Compounds in an in Vitro Model Simulating the Human Alimentary Tract. Food Technol. Biotechnol. 2009, 47, 456–463. [Google Scholar]
- Rodríguez-Werner, M.; Winterhalter, P.; Esatbeyoglu, T. Phenolic Composition, Radical Scavenging Activity and an Approach for Authentication of Aronia melanocarpa Berries, Juice, and Pomace. J. Food Sci. 2019, 84, 1791–1798. [Google Scholar] [CrossRef]
- Dudonné, S.; Dubé, P.; Anhê, F.F.; Pilon, G.; Marette, A.; Lemire, M.; Harris, C.; Dewailly, E.; Desjardins, Y. Comprehensive Analysis of Phenolic Compounds and Abscisic Acid Profiles of Twelve Native Canadian Berries. J. Food Compos. Anal. 2015, 44, 214–224. [Google Scholar] [CrossRef]
- Jurikova, T.; Mlcek, J.; Skrovankova, S.; Sumczynski, D.; Sochor, J.; Hlavacova, I.; Snopek, L.; Orsavova, J. Fruits of Black Chokeberry Aronia melanocarpa in the Prevention of Chronic Diseases. Molecules 2017, 22, 944. [Google Scholar] [CrossRef]
- Jakobek, L.; Šeruga, M.; Novak, I.; Medvidovic-Kosanović, M. Flavonols, Phenolic Acids and Antioxidant Activity of Some Red Fruits. Dtsch. Lebensm.-Rundsch. 2007, 103, 369–377. [Google Scholar]
- Leyva-Soto, A.; Alejandra Chavez-Santoscoy, R.; Porras, O.; Hidalgo-Ledesma, M.; Serrano-Medina, A.; Alejandra Ramírez-Rodríguez, A.; Alejandra Castillo-Martinez, N. Epicatechin and Quercetin Exhibit in Vitro Antioxidant Effect, Improve Biochemical Parameters Related to Metabolic Syndrome, and Decrease Cellular Genotoxicity in Humans. Food Res. Int. 2021, 142, 110101. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhang, X.; Hou, X.; Bing, X.; Zhu, F.; Wu, X.; Guo, N.; Zhao, H.; Xu, F.; Xia, M. Obstructive Sleep Apnea-Increased DEC1 Regulates Systemic Inflammation and Oxidative Stress That Promotes Development of Pulmonary Arterial Hypertension. Apoptosis 2023, 28, 432–446. [Google Scholar] [CrossRef] [PubMed]
- Marjot, T.; Moolla, A.; Cobbold, J.F.; Hodson, L.; Tomlinson, J.W. Nonalcoholic Fatty Liver Disease in Adults: Current Concepts in Etiology, Outcomes, and Management. Endocr Rev. 2020, 41, 66–117. [Google Scholar] [CrossRef] [PubMed]
- Lavie, L. Oxidative Stress in Obstructive Sleep Apnea and Intermittent Hypoxia—Revisited—The Bad Ugly and Good: Implications to the Heart and Brain. Sleep Med. Rev. 2015, 20, 27–45. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Liu, Y.; Xu, H.; Qian, Y.; Zou, J.; Yi, H.; Guan, J.; Yin, S. Association Between Upper-Airway Surgery and Ameliorative Risk Markers of Endothelial Function in Obstructive Sleep Apnea. Sci. Rep. 2019, 9, 20157. [Google Scholar] [CrossRef]
- Yu, L.M.; Zhang, W.H.; Han, X.X.; Li, Y.Y.; Lu, Y.; Pan, J.; Mao, J.Q.; Zhu, L.Y.; Deng, J.J.; Huang, W.; et al. Hypoxia-Induced ROS Contribute to Myoblast Pyroptosis during Obstructive Sleep Apnea via the NF-ΚB/HIF-1α Signaling Pathway. Oxid. Med. Cell Longev. 2019, 2019, 4596368. [Google Scholar] [CrossRef]
- Stanek, A.; Brożyna-Tkaczyk, K.; Myśliński, W. Oxidative Stress Markers among Obstructive Sleep Apnea Patients. Oxid. Med. Cell Longev. 2021, 2021, 9681595. [Google Scholar] [CrossRef]
- Lira, A.B.; de Sousa Rodrigues, C.F. Evaluation of Oxidative Stress Markers in Obstructive Sleep Apnea Syndrome and Additional Antioxidant Therapy: A Review Article. Sleep Breath. 2016, 20, 1155–1160. [Google Scholar] [CrossRef]
- Sies, H. Hydrogen Peroxide as a Central Redox Signaling Molecule in Physiological Oxidative Stress: Oxidative Eustress. Redox Biol. 2017, 11, 613–619. [Google Scholar] [CrossRef]
- Yu, H.; Lin, L.; Zhang, Z.; Zhang, H.; Hu, H. Targeting NF-ΚB Pathway for the Therapy of Diseases: Mechanism and Clinical Study. Signal Transduct. Target. Ther. 2020, 5, 209. [Google Scholar] [CrossRef] [PubMed]
- Deacon, N.L.; Catcheside, P.G. The Role of High Loop Gain Induced by Intermittent Hypoxia in the Pathophysiology of Obstructive Sleep Apnoea. Sleep Med. Rev. 2015, 22, 3–14. [Google Scholar] [CrossRef] [PubMed]
- Altenhöfer, S.; Radermacher, K.A.; Kleikers, P.W.M.; Wingler, K.; Schmidt, H.H.H.W. Evolution of NADPH Oxidase Inhibitors: Selectivity and Mechanisms for Target Engagement. Antioxid. Redox Signal. 2015, 23, 406–427. [Google Scholar] [CrossRef] [PubMed]
- Hopps, E.; Canino, B.; Calandrino, V.; Montana, M.; Lo Presti, R.; Caimi, G. Lipid Peroxidation and Protein Oxidation Are Related to the Severity of OSAS. Eur. Rev. Med. Pharmacol. Sci. 2014, 18, 3773–3778. [Google Scholar]
- Passali, D.; Corallo, G.; Yaremchuk, S.; Longini, M.; Proietti, F.; Passali, G.C.; Bellussi, L. Stress Ossidativo Nei Pazienti Con Diagnosi Di Sindrome Delle Apnee Ostruttive Notturne. Acta Otorhinolaryngol. Ital. 2015, 35, 420–425. [Google Scholar] [CrossRef]
- Denev, P.; Číž, M.; Kratchanova, M.; Blazheva, D. Black Chokeberry (Aronia melanocarpa) Polyphenols Reveal Different Antioxidant, Antimicrobial and Neutrophil-Modulating Activities. Food Chem. 2019, 284, 108–117. [Google Scholar] [CrossRef]
- He, J.; Xu, L.; Yang, L.; Sun, C. Anti-Oxidative Effects of Catechins and Theaflavins on Glutamate-Induced HT22 Cell Damage. RSC Adv. 2019, 9, 21418. [Google Scholar] [CrossRef]
- Bräunlich, M.; Slimestad, R.; Wangensteen, H.; Brede, C.; Malterud, K.E.; Barsett, H. Extracts, Anthocyanins and Procyanidins from Aronia melanocarpa as Radical Scavengers and Enzyme Inhibitors. Nutrients 2013, 5, 663. [Google Scholar] [CrossRef]
- Cakir-Aktas, C.; Bodur, E.; Yemisci, M.; van Leyen, K.; Karatas, H. 12/15-Lipoxygenase Inhibition Attenuates Neuroinflammation by Suppressing Inflammasomes. Front. Cell. Neurosci. 2023, 17, 1277268. [Google Scholar] [CrossRef]
- Mattioli, R.; Francioso, A.; Mosca, L.; Silva, P. Anthocyanins: A Comprehensive Review of Their Chemical Properties and Health Effects on Cardiovascular and Neurodegenerative Diseases. Molecules 2020, 25, 3809. [Google Scholar] [CrossRef]
- Kulling, S.E.; Rawel, H.M. Chokeberry (Aronia melanocarpa)—A Review on the Characteristic Components and Potential Health Effects. Planta Med. 2008, 74, 1625–1634. [Google Scholar] [CrossRef] [PubMed]
- Graille, M.; Wild, P.; Sauvain, J.J.; Hemmendinger, M.; Guseva Canu, I.; Hopf, N.B. Urinary 8-Isoprostane as a Biomarker for Oxidative Stress. A Systematic Review and Meta-Analysis. Toxicol. Lett. 2020, 328, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Yaman, S.O.; Ayhanci, A.; Yaman, S.O.; Ayhanci, A. Lipid Peroxidation. Eur. J. Clin. Nutr. 2021, 47, 759–764. [Google Scholar] [CrossRef]
- Villa, M.P.; Supino, M.C.; Fedeli, S.; Rabasco, J.; Vitelli, O.; Del Pozzo, M.; Gentile, G.; Lionetto, L.; Barreto, M.; Simmaco, M. Urinary Concentration of 8-Isoprostane as Marker of Severity of Pediatric OSAS. Sleep Breath. 2014, 18, 723–729. [Google Scholar] [CrossRef] [PubMed]
- Petrosyan, M.; Perraki, E.; Simoes, D.; Koutsourelakis, I.; Vagiakis, E.; Roussos, C.; Gratziou, C. Exhaled Breath Markers in Patients with Obstructive Sleep Apnoea. Sleep Breath. 2008, 12, 207–215. [Google Scholar] [CrossRef]
- Gille, T.; Didier, M.; Boubaya, M.; Moya, L.; Sutton, A.; Carton, Z.; Baran-Marszak, F.; Sadoun-Danino, D.; Israël-Biet, D.; Cottin, V.; et al. Obstructive Sleep Apnoea and Related Comorbidities in Incident Idiopathic Pulmonary Fibrosis. Eur. Respir. J. 2017, 49, 1601934. [Google Scholar] [CrossRef]
- Dufour, C.; Villa-Rodriguez, J.A.; Furger, C.; Lessard-Lord, J.; Gironde, C.; Rigal, M.; Badr, A.; Desjardins, Y.; Guyonnet, D. Cellular Antioxidant Effect of an Aronia Extract and Its Polyphenolic Fractions Enriched in Proanthocyanidins, Phenolic Acids, and Anthocyanins. Antioxidants 2022, 11, 1561. [Google Scholar] [CrossRef]
- WANG, L.; WANG, R.; DONG, J.; WANG, Y.; HUANG, X.; CHEN, C. Research on the Extraction, Purification and Determination of Chemical Components, Biological Activities, and Applications in Diet of Black Chokeberry (Aronia melanocarpa). Chin. J. Anal. Chem. 2023, 51, 100301. [Google Scholar] [CrossRef]
- Dąbrowska, Z.; Dąbrowska, E.; Onopiuk, B.; Onopiuk, P.; Orywal, K.; Mroczko, B.; Pietruska, M. The Protective Impact of Black Chokeberry Fruit Extract (Aronia melanocarpa L.) on the Oxidoreductive System of the Parotid Gland of Rats Exposed to Cadmium. Oxid. Med. Cell Longev. 2019, 2019, 3403264. [Google Scholar] [CrossRef]
- Pau, M.C.; Mangoni, A.A.; Zinellu, E.; Pintus, G.; Carru, C.; Fois, A.G.; Pirina, P.; Zinellu, A. Circulating Superoxide Dismutase Concentrations in Obstructive Sleep Apnoea (OSA): A Systematic Review and Meta-Analysis. Antioxidants 2021, 10, 1764. [Google Scholar] [CrossRef]
- Okur, H.K.; Pelin, Z.; Yuksel, M.; Yosunkaya, S. Lipid Peroxidation and Paraoxonase Activity in Nocturnal Cyclic and Sustained Intermittent Hypoxia. Sleep Breath. 2013, 17, 365–371. [Google Scholar] [CrossRef]
- Pau, M.C.; Zinellu, E.; Fois, S.S.; Piras, B.; Pintus, G.; Carru, C.; Mangoni, A.A.; Fois, A.G.; Zinellu, A.; Pirina, P. Circulating Malondialdehyde Concentrations in Obstructive Sleep Apnea (Osa): A Systematic Review and Meta-Analysis with Meta-Regression. Antioxidants 2021, 10, 1053. [Google Scholar] [CrossRef]
- Borowska, S.; Tomczyk, M.; Strawa, J.W.; Brzóska, M.M. Estimation of the Chelating Ability of an Extract from Aronia melanocarpa L. Berries and Its Main Polyphenolic Ingredients Towards Ions of Zinc and Copper. Molecules 2020, 25, 1507. [Google Scholar] [CrossRef]
- Venza, N.; Alloisio, G.; Gioia, M.; Liguori, C.; Nappi, A.; Danesi, C.; Laganà, G. Saliva Analysis of PH and Antioxidant Capacity in Adult Obstructive Sleep Apnea Patients. Int. J. Environ. Res. Public Health 2022, 19, 13219. [Google Scholar] [CrossRef]
- Szyguła-Jurkiewicz, B.; Szczurek-Wasilewicz, W.; Osadnik, T.; Frycz-Kurek, A.M.; Macioł-Skurk, K.; Małyszek-Tumidajewicz, J.; Skrzypek, M.; Romuk, E.; Gąsior, M.; Banach, M.; et al. Oxidative Stress Markers in Hypertrophic Cardiomyopathy. Medicina 2022, 58, 31. [Google Scholar] [CrossRef]
- Li, S.; Dai, W.; Wang, S.; Kang, P.; Ye, Z.; Han, P.; Zeng, K.; Li, C. Clinical Significance of Serum Oxidative Stress Markers to Assess Disease Activity and Severity in Patients with Non-Segmental Vitiligo. Front. Cell Dev. Biol. 2021, 9, 739413. [Google Scholar] [CrossRef]
- Olszewska, E.; Rogalska, J.; Brzóska, M.M. The Association of Oxidative Stress in the Uvular Mucosa with Obstructive Sleep Apnea Syndrome: A Clinical Study. J. Clin. Med. 2021, 10, 1132. [Google Scholar] [CrossRef]
- Cofta, S.; Winiarska, H.M.; Płóciniczak, A.; Bielawska, L.; Brożek, A.; Piorunek, T.; Kostrzewska, T.M.; Wysocka, E. Oxidative Stress Markers and Severity of Obstructive Sleep Apnea. Adv. Exp. Med. Biol. 2019, 1222, 27–35. [Google Scholar] [CrossRef]
- Xu, J.X.; Cai, W.; Sun, J.F.; Liao, W.J.; Liu, Y.; Xiao, J.R.; Zhu, L.Y.; Liu, J.Y.; Zhang, W. Serum Advanced Glycation End Products Are Associated with Insulin Resistance in Male Nondiabetic Patients with Obstructive Sleep Apnea. Sleep Breath. 2015, 19, 827–833. [Google Scholar] [CrossRef]
- Lam, J.C.M.; Tan, K.C.B.; Lai, A.Y.K.; Lam, D.C.L.; Ip, M.S.M. Increased Serum Levels of Advanced Glycation End-Products Is Associated with Severity of Sleep Disordered Breathing but Not Insulin Sensitivity in Non-Diabetic Men with Obstructive Sleep Apnoea. Sleep Med. 2012, 13, 15–20. [Google Scholar] [CrossRef]
- Karamanlı, H.; Özol, D.; Ugur, K.S.; Yıldırım, Z.; Armutçu, F.; Bozkurt, B.; Yigitoglu, R. Influence of CPAP Treatment on Airway and Systemic Inflammation in OSAS Patients. Sleep Breath. 2014, 18, 251–256. [Google Scholar] [CrossRef] [PubMed]
- Celec, P.; Jurkovičová, I.; Buchta, R.; Bartík, I.; Gardlík, R.; Pálffy, R.; Mucska, I.; Hodosy, J. Antioxidant Vitamins Prevent Oxidative and Carbonyl Stress in an Animal Model of Obstructive Sleep Apnea. Sleep Breath. 2013, 17, 867–871. [Google Scholar] [CrossRef] [PubMed]
- Jurado-Gámez, B.; Fernandez-Marin, M.C.; Gómez-Chaparro, J.L.; Muñoz-Cabrera, L.; Lopez-Barea, J.; Perez-Jimenez, F.; Lopez-Miranda, J. Relationship of Oxidative Stress and Endothelial Dysfunction in Sleep Apnoea. Eur. Respir. J. 2011, 37, 873–879. [Google Scholar] [CrossRef]
- Borges, Y.G.; Cipriano, L.H.C.; Aires, R.; Zovico, P.V.C.; Campos, F.V.; de Araújo, M.T.M.; Gouvea, S.A. Oxidative Stress and Inflammatory Profiles in Obstructive Sleep Apnea: Are Short-Term CPAP or Aerobic Exercise Therapies Effective? Sleep Breath. 2020, 24, 541–549. [Google Scholar] [CrossRef] [PubMed]
- Jang, B.K.; Lee, J.W.; Choi, H.; Yim, S.V. Aronia melanocarpa Fruit Bioactive Fraction Attenuates LPS-Induced Inflammatory Response in Human Bronchial Epithelial Cells. Antioxidants 2020, 9, 816. [Google Scholar] [CrossRef] [PubMed]
- Jurendić, T.; Ščetar, M. Aronia melanocarpa Products and By-Products for Health and Nutrition: A Review. Antioxidants 2021, 10, 1052. [Google Scholar] [CrossRef]
- Sidor, A.; Gramza-Michałowska, A. Black Chokeberry Aronia melanocarpa L.—A Qualitative Composition, Phenolic Profile and Antioxidant Potential. Molecules 2019, 24, 3710. [Google Scholar] [CrossRef]
- Speer, H.; D’Cunha, N.M.; Alexopoulos, N.I.; McKune, A.J.; Naumovski, N. Anthocyanins and Human Health—A Focus on Oxidative Stress, Inflammation and Disease. Antioxidants 2020, 9, 366. [Google Scholar] [CrossRef]
- Li, Y.; Xu, C.; Han, H.; Pascual-Sabater, S.; Fillat, C.; Goel, A. Aronia Berry Extract Modulates MYD88/NF-KB/P-Glycoprotein Axis to Overcome Gemcitabine Resistance in Pancreatic Cancer. Pharmaceuticals 2024, 17, 911. [Google Scholar] [CrossRef]
- Kim, J.H.; Choi, M.S.; Auger, C.; Lee, K.W.; Schini-Kerth, V.B. Polyphenol-Rich Aronia melanocarpa Juice Sustains ENOS Activation through Phosphorylation and Expression via Redox-Sensitive Pathways in Endothelial Cells. Food Sci. Biotechnol. 2024, 33, 2865–2875. [Google Scholar] [CrossRef]
- Christiansen, C.B.; Jeppesen, P.B.; Hermansen, K.; Gregersen, S. The Impact of an 8-Week Supplementation with Fermented and Non-Fermented Aronia Berry Pulp on Cardiovascular Risk Factors in Individuals with Type 2 Diabetes. Nutrients 2023, 15, 5094. [Google Scholar] [CrossRef]
- Christiansen, C.B.; Mellbye, F.B.; Hermansen, K.; Jeppesen, P.B.; Gregersen, S. Effects of Aronia melanocarpa on Cardiometabolic Diseases: A Systematic Review of Quasi-Design Studies and Randomized Controlled Trials. Rev. Diabet Stud. 2022, 18, 76. [Google Scholar] [CrossRef]
- Daskalova, E.; Delchev, S.; Vladimirova-Kitova, L.; Kitov, S.; Denev, P. Black Chokeberry (Aronia melanocarpa) Functional Beverages Increase Hdl-Cholesterol Levels in Aging Rats. Foods 2021, 10, 1641. [Google Scholar] [CrossRef]
- Tasic, N.; Jakovljevic, V.L.J.; Mitrovic, M.; Djindjic, B.; Tasic, D.; Dragisic, D.; Citakovic, Z.; Kovacevic, Z.; Radoman, K.; Zivkovic, V.; et al. Black Chokeberry Aronia melanocarpa Extract Reduces Blood Pressure, Glycemia and Lipid Profile in Patients with Metabolic Syndrome: A Prospective Controlled Trial. Mol. Cell Biochem. 2021, 476, 2663–2673. [Google Scholar] [CrossRef]
- Chen, J.; Zhu, J.; Meng, X. Aronia melanocarpa Anthocyanin Extracts Are an Effective Regulator of Suppressor of Cytokine Signaling 3-Dependent Insulin Resistance in HepG2 and C2C12 Cells. J. Funct. Foods 2020, 75, 104258. [Google Scholar] [CrossRef]
- Franco, C.; Sciatti, E.; Favero, G.; Bonomini, F.; Vizzardi, E.; Rezzani, R. Essential Hypertension and Oxidative Stress: Novel Future Perspectives. Int. J. Mol. Sci. 2022, 23, 14489. [Google Scholar] [CrossRef]
- Iqbal, I.; Wilairatana, P.; Saqib, F.; Nasir, B.; Wahid, M.; Latif, M.F.; Iqbal, A.; Naz, R.; Mubarak, M.S. Plant Polyphenols and Their Potential Benefits on Cardiovascular Health: A Review. Molecules 2023, 28, 6403. [Google Scholar] [CrossRef]
- Broncel, M.; Koziróg, M.; Duchnowicz, P.; Koter-Michalak, M.; Sikora, J.; Chojnowska-Jezierska, J. Aronia melanocarpa Extract Reduces Blood Pressure, Serum Endothelin, Lipid, and Oxidative Stress Marker Levels in Patients with Metabolic Syndrome. Med. Sci. Monit. 2010, 16, CR28–CR34. [Google Scholar]
- Varela, C.E.; Fromentin, E.; Roller, M.; Villarreal, F.; Ramirez-Sanchez, I. Effects of a Natural Extract of Aronia melanocarpa Berry on Endothelial Cell Nitric Oxide Production. J. Food Biochem. 2016, 40, 404. [Google Scholar] [CrossRef]
- Hawkins, J.; Hires, C.; Baker, C.; Keenan, L.; Bush, M. Daily Supplementation with Aronia melanocarpa (Chokeberry) Reduces Blood Pressure and Cholesterol: A Meta Analysis of Controlled Clinical Trials. J. Diet Suppl. 2021, 18, 517–530. [Google Scholar] [CrossRef]
- Battaglia, E.; Banfi, P.; Compalati, E.; Nicolini, A.; DIAZ De Teran, T.; Gonzales, M.; Solidoro, P. The Pathogenesis of OSa-Related Hypertension: What Are the Determining Factors? Minerva Med. 2024, 115, 68–82. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Grootaert, C.; Pitart, J.; Vidovic, N.K.; Kamiloglu, S.; Possemiers, S.; Glibetic, M.; Smagghe, G.; Raes, K.; Van de Wiele, T.; et al. Aronia (Aronia melanocarpa) Polyphenols Modulate the Microbial Community in a Simulator of the Human Intestinal Microbial Ecosystem (SHIME) and Decrease Secretion of Proinflammatory Markers in a Caco-2/Endothelial Cell Coculture Model. Mol. Nutr. Food Res. 2018, 62, 1800607. [Google Scholar] [CrossRef] [PubMed]
- Le Sayec, M.; Lecomte, M.; Fança-Berthon, P.; Rodriguez-Mateos, A. Reply Letter to Editor—The Effects of Aronia Berry (Poly)Phenol Supplementation on Arterial Function and the Gut Microbiome in Middle Aged Men and Women. Clin. Nutr. 2023, 42, 1061–1062. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Cai, P.J.; Dai, H.C.; Xiao, Y.H.; Jia, C.L.; Sun, A.D. Black Chokeberry (Aronia melanocarpa L.) Polyphenols Attenuate Obesity-Induced Colonic Inflammation by Regulating Gut Microbiota and the TLR4/NF-ΚB Signaling Pathway in High Fat Diet-Fed Rats. Food Funct. 2023, 14, 10014–10030. [Google Scholar] [CrossRef] [PubMed]
- Badescu, M.; Badulescu, O.; Badescu, L.; Ciocoiu, M. Effects of Sambucus Nigra and Aronia melanocarpa Extracts on Immune System Disorders within Diabetes Mellitus. Pharm. Biol. 2015, 53, 533–539. [Google Scholar] [CrossRef]
- Bushmeleva, K.; Vyshtakalyuk, A.; Terenzhev, D.; Belov, T.; Parfenov, A.; Sharonova, N.; Nikitin, E.; Zobov, V. Radical Scavenging Actions and Immunomodulatory Activity of Aronia melanocarpa Propylene Glycol Extracts. Plants 2021, 10, 2458. [Google Scholar] [CrossRef]
- Bushmeleva, K.; Vyshtakalyuk, A.; Terenzhev, D.; Belov, T.; Nikitin, E.; Zobov, V. Antioxidative and Immunomodulating Properties of Aronia melanocarpa Extract Rich in Anthocyanins. Plants 2022, 11, 3333. [Google Scholar] [CrossRef]
- Kaloudi, T.; Tsimogiannis, D.; Oreopoulou, V. Aronia melanocarpa: Identification and Exploitation of Its Phenolic Components. Molecules 2022, 27, 4375. [Google Scholar] [CrossRef]
- Navrátilová, A.; Kovár, M.; Kopčeková, J.; Mrázová, J.; Trakovická, A.; Požgajová, M. Protective Effect of Aronia melanocarpa Juice against Acrylamide-Induced Cellular Toxicity. J. Environ. Sci. Health B 2023, 58, 2172287. [Google Scholar] [CrossRef]
- Popowicz, P.; Leonard, K. Noninvasive Ventilation and Oxygenation Strategies. Surg. Clin. N. Am. 2022, 102, 149–157. [Google Scholar] [CrossRef]
- Milosavljevic, I.; Jakovljevic, V.; Petrovic, D.; Draginic, N.; Jeremic, J.; Mitrovic, M.; Zivkovic, V.; Srejovic, I.; Stojic, V.; Bolevich, S.; et al. Standardized Aronia melanocarpa Extract Regulates Redox Status in Patients Receiving Hemodialysis with Anemia. Mol. Cell Biochem. 2021, 476, 4167–4175. [Google Scholar] [CrossRef]
- Bushmeleva, K.; Vyshtakalyuk, A.; Terenzhev, D.; Belov, T.; Nikitin, E.; Zobov, V. Aronia melanocarpa Flavonol Extract—Antiradical and Immunomodulating Activities Analysis. Plants 2023, 12, 2976. [Google Scholar] [CrossRef]
- Malhotra, A.; Bednarik, J.; Chakladar, S.; Dunn, J.P.; Weaver, T.; Grunstein, R.; Fietze, I.; Redline, S.; Azarbarzin, A.; Sands, S.A.; et al. Tirzepatide for the Treatment of Obstructive Sleep Apnea: Rationale, Design, and Sample Baseline Characteristics of the SURMOUNT -OSA Phase 3 Trial. Contemp. Clin. Trials 2024, 141, 107516. [Google Scholar] [CrossRef]
- Schweitzer, P.K.; Taranto-Montemurro, L.; Ojile, J.M.; Thein, S.G.; Drake, C.L.; Rosenberg, R.; Corser, B.; Abaluck, B.; Sangal, R.B.; Maynard, J. The Combination of Aroxybutynin and Atomoxetine in the Treatment of Obstructive Sleep Apnea (MARIPOSA): A Randomized Controlled Trial. Am. J. Respir. Crit. Care Med. 2023, 208, 1316–1327. [Google Scholar] [CrossRef]
- Taranto-Montemurro, L.; Messineo, L.; Sands, S.A.; Azarbarzin, A.; Marques, M.; Edwards, B.A.; Eckert, D.J.; White, D.P.; Wellman, A. The Combination of Atomoxetine and Oxybutynin Greatly Reduces Obstructive Sleep Apnea Severity a Randomized, Placebo-Controlled, Double-Blind Crossover Trial. Am. J. Respir. Crit. Care Med. 2019, 199, 1267–1276. [Google Scholar] [CrossRef]
- Gralec, M.; Wawer, I.; Zawada, K. Aronia melanocarpa Berries: Phenolics Composition and Antioxidant Properties Changes during Fruit Development and Ripening. Emir. J. Food Agric. 2019, 31, 214–221. [Google Scholar] [CrossRef]
Biomarker | Description | Literature |
---|---|---|
8-isoprostanes | A marker of lipid peroxidation. Elevated levels correlate with AHI and the severity of OSA | Petrosyan, et al. (2007) [45] |
8-Hydroxydeoxyguanosine (8-OHdG) | A biomarker indicating DNA damage caused by oxidative stress. Elevated levels reflect the degree of oxidative damage. | Gille et al. (2017) [46] |
Superoxide Dismutase (SOD) | An enzyme that neutralizes superoxide radicals. Reduced activity indicates excessive oxidative stress. | Pau et al. (2021) [50] |
Malondialdehyde (MDA) | A marker of lipid peroxidation. Increased levels correlate with the severity of OSAS and contribute to the development of atherosclerosis. | Okur et al. (2021) [51] |
Total Oxidant Status (TOS) | Measures the overall level of oxidants in the blood. Elevated levels indicate oxidative–reductive imbalance. | Olszewska et al. (2021) [57] |
Total Antioxidant Status (TAS) | Indicates the antioxidant capacity of the body. Reduced levels suggest oxidative–reductive imbalance. | Olszewska et al. (2021) [57] |
Total Antioxidant Capacity (TAC) | Refers to the overall antioxidant capacity in the body. Low levels are associated with higher oxidative stress and severity of OSAS. | Venza, et al. (2022) [54] |
Thiobarbituric Acid Reactive Substances (TBARS) | React with thiobarbituric acid, reflecting the level of lipid peroxides. | Cofta et al. (2019) [58] |
Advanced Glycation End Products (AGEs) | Products formed by the non-enzymatic reaction of sugars with proteins or lipids indicate oxidative stress. | Xu et al. (2015) [59] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jelska, A.; Polecka, A.; Zahorodnii, A.; Olszewska, E. The Role of Oxidative Stress and the Potential Therapeutic Benefits of Aronia melanocarpa Supplementation in Obstructive Sleep Apnea Syndrome: A Comprehensive Literature Review. Antioxidants 2024, 13, 1300. https://doi.org/10.3390/antiox13111300
Jelska A, Polecka A, Zahorodnii A, Olszewska E. The Role of Oxidative Stress and the Potential Therapeutic Benefits of Aronia melanocarpa Supplementation in Obstructive Sleep Apnea Syndrome: A Comprehensive Literature Review. Antioxidants. 2024; 13(11):1300. https://doi.org/10.3390/antiox13111300
Chicago/Turabian StyleJelska, Alicja, Agnieszka Polecka, Andrii Zahorodnii, and Ewa Olszewska. 2024. "The Role of Oxidative Stress and the Potential Therapeutic Benefits of Aronia melanocarpa Supplementation in Obstructive Sleep Apnea Syndrome: A Comprehensive Literature Review" Antioxidants 13, no. 11: 1300. https://doi.org/10.3390/antiox13111300
APA StyleJelska, A., Polecka, A., Zahorodnii, A., & Olszewska, E. (2024). The Role of Oxidative Stress and the Potential Therapeutic Benefits of Aronia melanocarpa Supplementation in Obstructive Sleep Apnea Syndrome: A Comprehensive Literature Review. Antioxidants, 13(11), 1300. https://doi.org/10.3390/antiox13111300