Functional Breads with Encapsulated Vitamin C and Fish Oil: Nutritional, Technological, and Sensory Attributes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Fish Oil Emulsions and Vitamin C Gels
2.3. Bread-Making Procedure
2.4. Retention of Vitamins and Polyunsaturated Fatty Acids
2.5. Specific Volume
2.6. Textural Profile Analysis
2.7. Moisture Content
2.8. Water Distribution and Mobility Quantified by Low-Field Nuclear Magnetic Resonance (LF-NMR)
2.9. Electronic Nose Analysis and Consumer Evaluation
2.9.1. Electronic Nose Analysis
2.9.2. Sensory Evaluation of Bread
2.10. Oxidative Stability and Antioxidant Activity
2.10.1. Peroxide Value
2.10.2. Antioxidant Activity
2.11. Statistical Analysis
3. Results and Discussion
3.1. Retention of Ascorbic Acid, EPA, and DHA in Bread
3.2. Antioxidant Activity
3.3. Quality Characteristics of Breads
3.3.1. Specific Volume and Textural Properties
3.3.2. Moisture Content and Water Distribution
3.3.3. Aroma Evaluation of Breads Based on E-Nose and PCA Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fuhrman, J. The Hidden Dangers of Fast and Processed Food. Am. J. Lifestyle Med. 2018, 12, 375–381. [Google Scholar] [CrossRef] [PubMed]
- Barclay, A.W.; Petocz, P.; McMillan-Price, J.; Flood, V.M.; Prvan, T.; Mitchell, P.; Brand-Miller, J.C. Glycemic index, glycemic load, and chronic disease risk--a meta-analysis of observational studies. Am. J. Clin. Nutr. 2008, 87, 627–637. [Google Scholar] [CrossRef] [PubMed]
- Hoque, M.; Biswas, R.; Alam, M.; Sarkar, A.; Haque, M.I.; Hasan, M.M. Pulse fortified whole wheat bread: A review on dough rheology, bread quality, and sensory properties. F1000Research 2022, 11, 536. [Google Scholar] [CrossRef]
- Tolve, R.; Bianchi, F.; Lomuscio, E.; Sportiello, L.; Simonato, B. Current Advantages in the Application of Microencapsulation in Functional Bread Development. Foods 2022, 12, 96. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Zhou, W. Oral processing of bread: Implications of designing healthier bread products. Trends Food Sci. Technol. 2021, 112, 720–734. [Google Scholar] [CrossRef]
- Allaire, J.; Couture, P.; Leclerc, M.; Charest, A.; Marin, J.; Lepine, M.C.; Talbot, D.; Tchernof, A.; Lamarche, B. A randomized, crossover, head-to-head comparison of eicosapentaenoic acid and docosahexaenoic acid supplementation to reduce inflammation markers in men and women: The Comparing EPA to DHA (ComparED) Study. Am. J. Clin. Nutr. 2016, 104, 280–287. [Google Scholar] [CrossRef]
- Li, X.; Bi, X.; Wang, S.; Zhang, Z.; Li, F.; Zhao, A.Z. Therapeutic Potential of omega-3 Polyunsaturated Fatty Acids in Human Autoimmune Diseases. Front. Immunol. 2019, 10, 2241. [Google Scholar] [CrossRef]
- Witte, A.V.; Kerti, L.; Hermannstadter, H.M.; Fiebach, J.B.; Schreiber, S.J.; Schuchardt, J.P.; Hahn, A.; Floel, A. Long-chain omega-3 fatty acids improve brain function and structure in older adults. Cereb. Cortex 2014, 24, 3059–3068. [Google Scholar] [CrossRef]
- Ojagh, S.M.; Hasani, S. Characteristics and oxidative stability of fish oil nano-liposomes and its application in functional bread. J. Food Meas. Charact. 2018, 12, 1084–1092. [Google Scholar] [CrossRef]
- Osuna, M.B.; Romero, C.A.; Romero, A.M.; Judis, M.A.; Bertola, N.C. Proximal composition, sensorial properties and effect of ascorbic acid and α—Tocopherol on oxidative stability of bread made with whole flours and vegetable oils. LWT 2018, 98, 54–61. [Google Scholar] [CrossRef]
- Yin, X.; Chen, K.; Cheng, H.; Chen, X.; Feng, S.; Song, Y.; Liang, L. Chemical Stability of Ascorbic Acid Integrated into Commercial Products: A Review on Bioactivity and Delivery Technology. Antioxidants 2022, 11, 153. [Google Scholar] [CrossRef] [PubMed]
- Park, H.; Seib, P.A.; Chung, O.K. Stabilities of several forms of vitamin C during making and storing of pup-loaves of white pan bread. Cereal Chem. 1994, 71, 412–417. [Google Scholar]
- Niki, E. Action of ascorbic acid as a scavenger of active and stable oxygen radicals. Am. J. Clin. Nutr. 1991, 54, 19–24. [Google Scholar] [CrossRef]
- Hamilton, R.J.; Kalu, C.; McNeill, G.P.; Padley, F.B.; Pierce, J.H. Effects of Tocopherols, Ascorbyl Palmitate, and Lecithin on Autoxidation of Fish Oil. J. Am. Oil Chem. Soc. 1998, 75, 813–822. [Google Scholar] [CrossRef]
- Olsen, E.; Vogt, G.; Veberg, A.; Ekeberg, D.; Nilsson, A. Analysis of early lipid oxidation in smoked, comminuted pork or poultry sausages with spices. J. Agric. Food Chem. 2005, 53, 7448–7457. [Google Scholar] [CrossRef]
- Selyutina, O.Y.; Kononova, P.A.; Koshman, V.E.; Fedenok, L.G.; Polyakov, N.E. The Interplay of Ascorbic Acid with Quinones-Chelators-Influence on Lipid Peroxidation: Insight into Anticancer Activity. Antioxidants 2022, 11, 376. [Google Scholar] [CrossRef]
- Saini, R.K.; Prasad, P.; Sreedhar, R.V.; Akhilender Naidu, K.; Shang, X.; Keum, Y.S. Omega-3 Polyunsaturated Fatty Acids (PUFAs): Emerging Plant and Microbial Sources, Oxidative Stability, Bioavailability, and Health Benefits-A Review. Antioxidants 2021, 10, 1627. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Joseph, N.; Mirzamani, M.; Pye, S.J.; Al-Anataki, A.H.M.; Whitten, A.E.; Chen, Y.; Kumari, H.; Raston, C.L. Vortex fluidic mediated encapsulation of functional fish oil featuring in situ probed small angle neutron scattering. NPJ Sci. Food 2020, 4, 12. [Google Scholar] [CrossRef]
- Seok, Y.J.; Her, J.Y.; Kim, Y.G.; Kim, M.Y.; Jeong, S.Y.; Kim, M.K.; Lee, J.Y.; Kim, C.I.; Yoon, H.J.; Lee, K.G. Furan in Thermally Processed Foods—A Review. Toxicol. Res. 2015, 31, 241–253. [Google Scholar] [CrossRef]
- Owczarek-Fendor, A.; De Meulenaer, B.; Scholl, G.; Adams, A.; Van Lancker, F.; Yogendrarajah, P.; Uytterhoeven, V.; Eppe, G.; De Pauw, E.; Scippo, M.L.; et al. Importance of fat oxidation in starch-based emulsions in the generation of the process contaminant furan. J. Agric. Food Chem. 2010, 58, 9579–9586. [Google Scholar] [CrossRef]
- Shen, M.; Zhang, F.; Hong, T.; Xie, J.; Wang, Y.; Nie, S.; Xie, M. Comparative study of the effects of antioxidants on furan formation during thermal processing in model systems. LWT 2017, 75, 286–292. [Google Scholar] [CrossRef]
- Henna Lu, F.S.; Norziah, M.H. Contribution of Microencapsulated N-3 Pufa Powder toward Sensory and Oxidative Stability of Bread. J. Food Process. Preserv. 2011, 35, 596–604. [Google Scholar] [CrossRef]
- Alvim, I.D.; Stein, M.A.; Koury, I.P.; Dantas, F.B.H.; Cruz, C.L.d.C.V. Comparison between the spray drying and spray chilling microparticles contain ascorbic acid in a baked product application. LWT Food Sci. Technol. 2016, 65, 689–694. [Google Scholar] [CrossRef]
- Farias, M.D.P.; Albuquerque, P.B.S.; Soares, P.A.G.; de Sa, D.; Vicente, A.A.; Carneiro-da-Cunha, M.G. Xyloglucan from Hymenaea courbaril var. courbaril seeds as encapsulating agent of l-ascorbic acid. Int. J. Biol. Macromol. 2018, 107 Pt B, 1559–1566. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Zhou, F.; Chen, Y.; Shen, Q.; Feng, S.; Liang, L. Co-encapsulation of bioactive components using protein-based various assemblies: Necessary, assembling structure, location and partition. Food Hydrocoll. 2024, 148, 109492. [Google Scholar] [CrossRef]
- Shishir, M.R.I.; Xie, L.; Sun, C.; Zheng, X.; Chen, W. Advances in micro and nano-encapsulation of bioactive compounds using biopolymer and lipid-based transporters. Trends Food Sci. Technol. 2018, 78, 34–60. [Google Scholar] [CrossRef]
- Yin, F.; Sun, X.; Zheng, W.; Luo, X.; Zhang, Y.; Yin, L.; Jia, Q.; Fu, Y. Screening of highly effective mixed natural antioxidants to improve the oxidative stability of microalgal DHA-rich oil. RSC Adv. 2021, 11, 4991–4999. [Google Scholar] [CrossRef]
- Del Pozo-Insfran, D.; Del Follo-Martinez, A.; Talcott, S.T.; Brenes, C.H. Stability of copigmented anthocyanins and ascorbic acid in muscadine grape juice processed by high hydrostatic pressure. J. Food Sci. 2007, 72, S247–S253. [Google Scholar] [CrossRef]
- Ebrahimi, B.; Baroutian, S.; Li, J.; Zhang, B.; Ying, T.; Lu, J. Combination of marine bioactive compounds and extracts for the prevention and treatment of chronic diseases. Front. Nutr. 2022, 9, 1047026. [Google Scholar] [CrossRef]
- Alorabi, M.; Mohammed, D.S.; Mostafa-Hedeab, G.; El-Sherbeni, S.A.; Negm, W.A.; Mohammed, A.I.A.; Al-Kuraishy, H.M.; Nasreldin, N.; Alotaibi, S.S.; Lawal, B.; et al. Combination Treatment of Omega-3 Fatty Acids and Vitamin C Exhibited Promising Therapeutic Effect against Oxidative Impairment of the Liver in Methotrexate-Intoxicated Mice. Biomed. Res. Int. 2022, 2022, 4122166. [Google Scholar] [CrossRef]
- De Conto, L.C.; Porto Oliveira, R.S.; Pereira Martin, L.G.; Chang, Y.K.; Steel, C.J. Effects of the addition of microencapsulated omega-3 and rosemary extract on the technological and sensory quality of white pan bread. LWT Food Sci. Technol. 2012, 45, 103–109. [Google Scholar] [CrossRef]
- Bede, E.N.; Ihediohanma, N.C.; Ngobidi, P.C.; Onuegbu, N.C. The Effect of Ascorbic Acid on the Physical and Proximate Properties of Wheat-Acha Composite Bread. Eur. J. Nutr. Food Saf. 2021, 13, 93–100. [Google Scholar] [CrossRef]
- Chen, Y.; Cheng, H.; Liang, L. Effect of Oil Type on Spatial Partition of Resveratrol in the Aqueous Phase, the Protein Interface and the Oil Phase of O/W Emulsions Stabilized by Whey Protein and Caseinate. Antioxidants 2023, 12, 589. [Google Scholar] [CrossRef] [PubMed]
- Omedi, J.O.; Huang, J.; Huang, W.; Zheng, J.; Zeng, Y.; Zhang, B.; Zhou, L.; Zhao, F.; Li, N.; Gao, T. Suitability of pitaya fruit fermented by sourdough LAB strains for bread making: Its impact on dough physicochemical, rheo-fermentation properties and antioxidant, antifungal and quality performance of bread. Heliyon 2021, 7, e08290. [Google Scholar] [CrossRef]
- OAC; AOAC. Official Method 2012.21 Vitamin C in Infant Formula and Adult/Pediatric Nutritional Formula HPLC with UV Detection; AOAC International: Rockville, MD, USA, 2012. [Google Scholar]
- Cheng, H.; Chang, X.; Luo, H.; Tang, H.; Chen, L.; Liang, L. Co-encapsulation of resveratrol in fish oil microcapsules optimally stabilized by enzyme-crosslinked whey protein with gum Arabic. Colloids Surf. B Biointerfaces 2023, 223, 113172. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Xia, W.; Xu, Y.; Jang, Q.; Yu, P. Physicochemical Properties, Volatile Compounds and Phospholipid Classes of Silver Carp Brain Lipids. J. Am. Oil Chem. Soc. 2013, 90, 1301–1309. [Google Scholar] [CrossRef]
- AACC. Guidelines for Accurately Measuring Volume Using the Rapeseed Displacement Method; American Association of Cereal Chemists: St. Paul, MN, USA, 2000. [Google Scholar]
- Arora, K.; Rizzello, C.G.; Gobbetti, M. Basic Methods and Protocols on Sourdough; Methods and Protocols in Food Science; Humana: New York, NY, USA, 2024. [Google Scholar] [CrossRef]
- Liang, L.; Omedi, J.O.; Huang, W.; Zheng, J.; Zeng, Y.; Huang, J.; Zhang, B.; Zhou, L.; Li, N.; Gao, T.; et al. Antioxidant, flavor profile and quality of wheat dough bread incorporated with kiwifruit fermented by β-glucosidase producing lactic acid bacteria strains. Food Biosci. 2022, 46, 101450. [Google Scholar] [CrossRef]
- AACC. Moisture Air Oven Methods. In AACC 44-15.02 (Moisture Content) Methods; AACC: Arnold, MD, USA, 2009. [Google Scholar]
- Yu, W.; Xu, D.; Li, D.; Guo, L.; Su, X.; Zhang, Y.; Wu, F.; Xu, X. Effect of pigskin-originated gelatin on properties of wheat flour dough and bread. Food Hydrocoll. 2019, 94, 183–190. [Google Scholar] [CrossRef]
- Huang, J.; Omedi, J.O.; Huang, C.; Chen, C.; Liang, L.; Zheng, J.; Zeng, Y.; Xu, Y.; Huang, W. Effect of black bean supplemented with wheat bran sourdough fermentation by Pediococcus acidilactici or Pediococcus pentosaceus on baking quality and staling characteristics of wheat composite bread. Appl. Food Res. 2024, 4, 100425. [Google Scholar] [CrossRef]
- AOCS. Peroxide Value Acetic Acid Chloroform Method; AOCS Official Method: Champaign, IL, USA, 2003. [Google Scholar]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free. Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Lieu, D.M.; Thien, L.T.; Dang, T.T.K. Enhancing the Viability Rate of Probiotic by Co-Encapsulating with Prebiotic in Alginate Microcapsules Supplemented to Cupcake Production. Microbiol. Biotechnol. Lett. 2020, 48, 113–120. [Google Scholar] [CrossRef]
- Oznur Gurler Topcu, S.K. Degradation of Ascorbic Acid during Baking. Chem. Res. J. 2017, 2, 179–187. [Google Scholar]
- Park, H.; Seib, P.A.; Chung, O.K.; Seitz, L.M. Fortifying Bread with Each of Three Antioxidants. Cereal Chem. J. 1997, 74, 202–206. [Google Scholar] [CrossRef]
- Stešková, A.; Morochovičová, M.; Lešková, E. Vitamin C degradation during storage of fortified foods. J. Food Nutr. Res. 2006, 45, 55–61. [Google Scholar]
- Albert, B.B.; Cameron-Smith, D.; Hofman, P.L.; Cutfield, W.S. Oxidation of marine omega-3 supplements and human health. Biomed. Res. Int. 2013, 2013, 464921. [Google Scholar] [CrossRef]
- Decker, E.A.; Akoh, C.C.; Wilkes, R.S. Incorporation of (n-3) fatty acids in foods: Challenges and opportunities. J. Nutr. 2012, 142, 610S–613S. [Google Scholar] [CrossRef]
- Wanjiku, M.M.; Nyambura, M.B.; Kirwa, M.E.; Mercy, W.M. Anti-Oxidative Potential of Honey and Ascorbic Acid in Yoghurt Fortified with Omega-3 Fatty Acids. J. Microbiol. Biotechnol. Food Sci. 2016, 6, 702–706. [Google Scholar] [CrossRef]
- Dziki, D.; Różyło, R.; Gawlik-Dziki, U.; Świeca, M. Current trends in the enhancement of antioxidant activity of wheat bread by the addition of plant materials rich in phenolic compounds. Trends Food Sci. Technol. 2014, 40, 48–61. [Google Scholar] [CrossRef]
- Jensen, S.; Oestdal, H.; Clausen, M.R.; Andersen, M.L.; Skibsted, L.H. Oxidative stability of whole wheat bread during storage. LWT Food Sci. Technol. 2011, 44, 637–642. [Google Scholar] [CrossRef]
- Saenz de Viteri, M.; Hernandez, M.; Bilbao-Malave, V.; Fernandez-Robredo, P.; Gonzalez-Zamora, J.; Garcia-Garcia, L.; Ispizua, N.; Recalde, S.; Garcia-Layana, A. A Higher Proportion of Eicosapentaenoic Acid (EPA) When Combined with Docosahexaenoic Acid (DHA) in Omega-3 Dietary Supplements Provides Higher Antioxidant Effects in Human Retinal Cells. Antioxidants 2020, 9, 829. [Google Scholar] [CrossRef]
- Jakubek, P.; Suliborska, K.; Kuczynska, M.; Asaduzzaman, M.; Parchem, K.; Koss-Mikolajczyk, I.; Kusznierewicz, B.; Chrzanowski, W.; Namiesnik, J.; Bartoszek, A. The comparison of antioxidant properties and nutrigenomic redox-related activities of vitamin C, C-vitamers, and other common ascorbic acid derivatives. Free Radic. Biol. Med. 2023, 209 Pt 2, 239–251. [Google Scholar] [CrossRef] [PubMed]
- Gegotek, A.; Skrzydlewska, E. Antioxidative and Anti-Inflammatory Activity of Ascorbic Acid. Antioxidants 2022, 11, 1993. [Google Scholar] [CrossRef] [PubMed]
- Franco, M.; Belorio, M.; Gomez, M. Assessing Acerola Powder as Substitute for Ascorbic Acid as a Bread Improver. Foods 2022, 11, 1366. [Google Scholar] [CrossRef] [PubMed]
- Thannoun, A.M.; Al-Arajy, R.F.L. Effect of Addition of L-Ascorbic Acid to Wheat Bread Dough on Blood Glucose Response, Glycemic Index And Glycemic Load in Normal Subject. J. Pharm. Negat. Results 2022, 13, 570–584. [Google Scholar]
- Beghin, A.S.; Ooms, N.; Hooyberghs, K.; Coppens, E.; Pareyt, B.; Brijs, K.; Delcour, J.A. The influence of varying levels of molecular oxygen on the functionality of azodicarbonamide and ascorbic acid during wheat bread making. Food Res. Int. 2022, 161, 111878. [Google Scholar] [CrossRef]
- Serna-Saldivar, S.O.; Zorrilla, R.; De La Parra, C.; Stagnitti, G.; Abril, R. Effect of DHA containing oils and powders on baking performance and quality of white pan bread. Plant Foods Hum. Nutr. 2006, 61, 121–129. [Google Scholar] [CrossRef]
- Rathnayake, H.A.; Navaratne, S.B.; Navaratne, C.M. Porous Crumb Structure of Leavened Baked Products. Int. J. Food Sci. 2018, 2018, 8187318. [Google Scholar] [CrossRef]
- Wang, S.; Zhu, F. Quality attributes of bread fortified with staghorn sumac extract. J. Texture Stud. 2018, 49, 129–134. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, H.; Yu, H.; Li, J.; Brennan, M.A.; Brennan, C.S.; Qin, Y. Wheat bread fortified with Dictyophora Indusiata powder: Evaluation of quality attributes, antioxidant characteristics and bread staling. Int. J. Food Sci. Technol. 2022, 57, 5982–5992. [Google Scholar] [CrossRef]
- Gonzalez, A.; Martinez, M.L.; Leon, A.E.; Ribotta, P.D. Effects on bread and oil quality after functionalization with microencapsulated chia oil. J. Sci. Food Agric. 2018, 98, 4903–4910. [Google Scholar] [CrossRef]
- Kotoki, D.; Deka, S.C. Baking loss of bread with special emphasis on increasing water holding capacity. J. Food Sci. Technol. 2010, 47, 128–131. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Mu, T.; Ma, M.; Sun, H. Staling of potato and wheat steamed breads: Physicochemical characterisation and molecular mobility. Int. J. Food Sci. Technol. 2019, 54, 2880–2886. [Google Scholar] [CrossRef]
- Li, J.; Kang, J.; Wang, L.; Li, Z.; Wang, R.; Chen, Z.X.; Hou, G.G. Effect of Water Migration between Arabinoxylans and Gluten on Baking Quality of Whole Wheat Bread Detected by Magnetic Resonance Imaging (MRI). J. Agric. Food Chem. 2012, 60, 6507–6514. [Google Scholar] [CrossRef] [PubMed]
- Curti, E.; Bubici, S.; Carini, E.; Baroni, S.; Vittadini, E. Water molecular dynamics during bread staling by Nuclear Magnetic Resonance. LWT Food Sci. Technol. 2011, 44, 854–859. [Google Scholar] [CrossRef]
- Guo, Z.; Chen, C.; Ma, G.; Yu, Q.; Zhang, L. LF-NMR determination of water distribution and its relationship with protein- related properties of yak and cattle during postmortem aging. Food Chem. X 2023, 20, 100891. [Google Scholar] [CrossRef]
- Cho, S.; Moazzem, M.S. Recent Applications of Potentiometric Electronic Tongue and Electronic Nose in Sensory Evaluation. Prev. Nutr. Food Sci. 2022, 27, 354–364. [Google Scholar] [CrossRef]
- Lee, S.W.; Kim, B.H.; Seo, Y.H. Olfactory system-inspired electronic nose system using numerous low-cost homogenous and hetrogenous sensors. PLoS ONE 2023, 18, e0295703. [Google Scholar] [CrossRef]
- Miao, X.; Li, S.; Shang, S.; Sun, N.; Dong, X.; Jiang, P. Characterization of volatile flavor compounds from fish maw soaked in five different seasonings. Food Chem. X 2023, 19, 100805. [Google Scholar] [CrossRef] [PubMed]
- Rathod, G.; Kairam, N. Preparation of omega 3 rich oral supplement using dairy and non-dairy based ingredients. J. Food Sci. Technol. 2018, 55, 760–766. [Google Scholar] [CrossRef]
- Fu, X.; Li, Z.; Lin, Q.; Xu, S. Effect of Antioxidants on the Lipid Oxidation and Flavor of Microwave-assistant Dried Silver Carp (Hypophthalmichthys molitrix) Slices. J. Food Res. 2012, 1, p134. [Google Scholar] [CrossRef]
- Sireyil, G.; Alim, A. Effects of onion paste on flavor of a different kind of bread (naan)analyzed with E-Nose and GC-IMS. J. Food Process. Preserv. 2022, 46, e16457. [Google Scholar] [CrossRef]
Bread Fortification | ABTS Radical Scavenging Activity (%) |
---|---|
Control | 29.17 ± 1.49 a |
FFO | 41.70 ± 3.39 b |
EFO | 61.79 ± 0.61 cd |
EAA | 59.14 ± 0.82 cd |
ECaA | 55.65 ± 0.67 c |
ENaA | 55.23 ± 1.12 c |
EFO+EAA | 67.24 ± 0.92 d |
EFO+ECaA | 64.93 ± 3.85 d |
EFO+ENaA | 62.88 ± 0.61 d |
FFO+EAA | 61.17 ± 0.49 cd |
FFO+ECaA | 56.76 ± 0.31 cd |
FFO+ENaA | 59.38 ± 1.54 cd |
Sample | Hardness (g) | Chewiness | Cohesiveness | Springiness |
---|---|---|---|---|
Control | 829 ± 69 b | 51.30 ± 12.30 b | 0.65 ± 0.01 ab | 9.19 ± 0.05 a |
EAA | 429 ± 2 a | 31.20 ± 4.22 ab | 0.80 ± 0.02 b | 9.21 ± 0.15 a |
ECaA | 297 ± 6 a | 20.40 ± 0.10 a | 0.80 ± 0.10 b | 12.23 ± 5.10 a |
ENaA | 342 ± 10 a | 25.60 ± 0.30 a | 0.79 ± 0.03 b | 11.03 ± 2.95 a |
EFO | 742 ± 84 b | 50.46 ± 9.06 b | 0.76 ± 0.07 b | 9.10 ± 0.27 a |
EAA+EFO | 728 ± 98b | 33.10 ± 11.46 ab | 0.72 ± 0.01 b | 9.45 ± 0.38 a |
ECaA+EFO | 657 ± 31 b | 31.95 ± 7.45 ab | 0.76 ± 0.00 b | 10.02 ± 0.38 a |
ENaA+EFO | 681 ± 37 b | 47.36 ± 3.42 b | 0.62 ± 0.02 a | 10.03 ± 2.26 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uriho, A.; Chen, K.; Zhou, F.; Ma, L.; Chen, C.; Zhang, S.; Omedi, J.O.; Huang, W.; Li, N.; Liang, L. Functional Breads with Encapsulated Vitamin C and Fish Oil: Nutritional, Technological, and Sensory Attributes. Antioxidants 2024, 13, 1325. https://doi.org/10.3390/antiox13111325
Uriho A, Chen K, Zhou F, Ma L, Chen C, Zhang S, Omedi JO, Huang W, Li N, Liang L. Functional Breads with Encapsulated Vitamin C and Fish Oil: Nutritional, Technological, and Sensory Attributes. Antioxidants. 2024; 13(11):1325. https://doi.org/10.3390/antiox13111325
Chicago/Turabian StyleUriho, Angelo, Kaiwen Chen, Fanlin Zhou, Lingling Ma, Cheng Chen, Shuning Zhang, Jacob Ojobi Omedi, Weining Huang, Ning Li, and Li Liang. 2024. "Functional Breads with Encapsulated Vitamin C and Fish Oil: Nutritional, Technological, and Sensory Attributes" Antioxidants 13, no. 11: 1325. https://doi.org/10.3390/antiox13111325
APA StyleUriho, A., Chen, K., Zhou, F., Ma, L., Chen, C., Zhang, S., Omedi, J. O., Huang, W., Li, N., & Liang, L. (2024). Functional Breads with Encapsulated Vitamin C and Fish Oil: Nutritional, Technological, and Sensory Attributes. Antioxidants, 13(11), 1325. https://doi.org/10.3390/antiox13111325