Bioactive and Biological Potential of Black Chokeberry Leaves Under the Influence of Pressurized Liquid Extraction and Microwave-Assisted Extraction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Plant Material
2.3. PLE
2.4. MAE
2.5. Determination of Total Polyphenols
2.6. Determination of Individual Polyphenols
2.7. Determination of Antioxidant Capacity
2.7.1. Ferric Reducing Antioxidant Power (FRAP) Analysis
2.7.2. 2,2-Diphenyl-1-picrylhydrazyl Radical (DPPH) Scavenging Analysis
2.7.3. Oxygen Radical Absorbance Capacity (ORAC) Analysis
2.8. Determination of Biological Activity
2.8.1. Cell Lines
2.8.2. Toxicity and Cell Survival
Neutral Red Assay
MTT Assay
Clonogenic Assay
2.8.3. Evaluation of Antioxidative and DNA Damage Protective Effect
DCFH-DA Assay
Comet Assay
Plasmid ΦX174 RF1 DNA
2.9. Determination of Antimicrobial and Antifungal Activity
2.9.1. Agar Well Diffusion Antimicrobial Assay
2.9.2. Determination of Minimum Inhibitory Concentration and the Number of Living Cells
2.10. Experimental Design and Statistical Analysis
3. Results and Discussion
3.1. Optimization of PLE and MAE
3.2. Polyphenolic Characterization of BCL Extracts Obtained Under Optimal PLE and MAE Conditions
3.3. Antioxidant Capacity of BCL Extracts Obtained Under Optimal PLE and MAE Conditions
3.4. Toxicity of BCL Extract Obtained Under Optimal PLE Conditions and Cell Survival After Treatment
3.5. Antioxidative and DNA Damage Protective Effect of BCL Extract Obtained Under Optimal PLE Conditions
3.6. Antibacterial and Antifungal Activity of BCL Extract Obtained Under Optimal PLE Conditions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hamam, M.; Chinnici, G.; Di Vita, G.; Pappalardo, G.; Pecorino, B.; Maesano, G.; D’Amico, M. Circular economy models in agro-food systems: A review. Sustainability 2021, 13, 3453. [Google Scholar] [CrossRef]
- Parliament, E. Circular Economy: Definition, Importance and Benefits; European Parliament: Strasbourg, France, 2017. [Google Scholar]
- European Union. Action plan for the Circular Economy. In Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions; European Union: Brussels, Belgium, 2015; Volume 2. [Google Scholar]
- Cvetković, D.; Stanojević, L.; Zvezdanović, J.; Savić, S.; Ilić, D.; Karabegović, I. Aronia leaves at the end of harvest season—Promising source of phenolic compounds, macro-and microelements. Sci. Hortic. 2018, 239, 17–25. [Google Scholar] [CrossRef]
- Lee, J.E.; Kim, G.-S.; Park, S.; Kim, Y.-H.; Kim, M.-B.; Lee, W.S.; Jeong, S.W.; Lee, S.J.; Jin, J.S.; Shin, S.C. Determination of chokeberry (Aronia melanocarpa) polyphenol components using liquid chromatography–tandem mass spectrometry: Overall contribution to antioxidant activity. Food Chem. 2014, 146, 1–5. [Google Scholar] [CrossRef]
- Szopa, A.; Kokotkiewicz, A.; Kubica, P.; Banaszczak, P.; Wojtanowska-Krośniak, A.; Krośniak, M.; Marzec-Wróblewska, U.; Badura, A.; Zagrodzki, P.; Bucinski, A. Comparative analysis of different groups of phenolic compounds in fruit and leaf extracts of Aronia sp.: A. melanocarpa, A. arbutifolia, and A.× prunifolia and their antioxidant activities. Eur. Food Res. Technol. 2017, 243, 1645–1657. [Google Scholar] [CrossRef]
- Saracila, M.; Untea, A.E.; Oancea, A.G.; Varzaru, I.; Vlaicu, P.A. Comparative Analysis of Black Chokeberry (Aronia melanocarpa L.) Fruit, Leaves, and Pomace for Their Phytochemical Composition, Antioxidant Potential, and Polyphenol Bioaccessibility. Foods 2024, 13, 1856. [Google Scholar] [CrossRef] [PubMed]
- Zdunić, G.; Aradski, A.A.; Gođevac, D.; Živković, J.; Laušević, S.D.; Milošević, D.K.; Šavikin, K. In vitro hypoglycemic, antioxidant and antineurodegenerative activity of chokeberry (Aronia melanocarpa) leaves. Ind. Crops Prod. 2020, 148, 112328. [Google Scholar] [CrossRef]
- Skupień, K.; Kostrzewa-Nowak, D.; Oszmiański, J.; Tarasiuk, J. In vitro antileukaemic activity of extracts from chokeberry (Aronia melanocarpa [Michx] Elliott) and mulberry (Morus alba L.) leaves against sensitive and multidrug resistant HL60 cells. Phyther. Res. An Int. J. Devoted to Pharmacol. Toxicol. Eval. Nat. Prod. Deriv. 2008, 22, 689–694. [Google Scholar] [CrossRef]
- Ohgami, K.; Ilieva, I.; Shiratori, K.; Koyama, Y.; Jin, X.-H.; Yoshida, K.; Kase, S.; Kitaichi, N.; Suzuki, Y.; Tanaka, T. Anti-inflammatory effects of aronia extract on rat endotoxin-induced uveitis. Invest. Ophthalmol. Vis. Sci. 2005, 46, 275–281. [Google Scholar] [CrossRef] [PubMed]
- Do Thi, N.; Hwang, E.-S. Anti-cancer and anti-inflammatory activities of aronia (Aronia melanocarpa) leaves. Asian Pac. J. Trop. Biomed. 2018, 8, 586–592. [Google Scholar]
- Cvetanović, A.; Zengin, G.; Zeković, Z.; Švarc-Gajić, J.; Ražić, S.; Damjanović, A.; Mašković, P.; Mitić, M. Comparative in vitro studies of the biological potential and chemical composition of stems, leaves and berries Aronia melanocarpa’s extracts obtained by subcritical water extraction. Food Chem. Toxicol. 2018, 121, 458–466. [Google Scholar] [CrossRef] [PubMed]
- Efenberger-Szmechtyk, M.; Nowak, A.; Czyżowska, A.; Śniadowska, M.; Otlewska, A.; Żyżelewicz, D. Antibacterial mechanisms of Aronia melanocarpa (Michx.), Chaenomeles superba Lindl. and Cornus mas L. leaf extracts. Food Chem. 2021, 350, 129218. [Google Scholar] [CrossRef] [PubMed]
- Cegledi, E.; Repajić, M.; Balbino, S.; Peričić, M.; Dragović-Uzelac, V. Sterols and pentacyclic triterpenoids from nettle root: Content and composition as affected by pressurized liquid extraction. J. Sci. Food Agric. 2023, 103, 4058–4067. [Google Scholar] [CrossRef]
- Elez Garofulić, I.; Repajić, M.; Cegledi, E.; Dobroslavić, E.; Dobrinčić, A.; Zorić, Z.; Pedisić, S.; Franković, T.; Breški, M.; Dragović-Uzelac, V. Green Approach to Enhance the Recovery of Polyphenols from Blackcurrant and Bilberry Leaves: Evaluation of Microwave-Assisted and Pressurized Liquid Extraction. Molecules 2024, 29, 1351. [Google Scholar] [CrossRef]
- Elez Garofulić, I.; Repajić, M.; Zorić, Z.; Jurendić, T.; Dragović-Uzelac, V. Evaluation of microwave-and ultrasound-assisted extraction techniques for revalorization of black chokeberry (Aronia melanocarpa) fruit pomace anthocyanins. Sustainability 2023, 15, 7047. [Google Scholar] [CrossRef]
- Mottaleb, M.A.; Sarker, S.D. Accelerated solvent extraction for natural products isolation. In Natural Products Isolation; Springer: Berlin/Heidelberg, Germany, 2012; pp. 75–87. [Google Scholar]
- Chemat, F.; Cravotto, G. Microwave-Assisted Extraction for Bioactive Compounds: Theory and Practice; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; Volume 4, ISBN 1461448301. [Google Scholar]
- Chan, C.-H.; Yusoff, R.; Ngoh, G.-C.; Kung, F.W.-L. Microwave-assisted extractions of active ingredients from plants. J. Chromatogr. A 2011, 1218, 6213–6225. [Google Scholar] [CrossRef]
- Routray, W.; Orsat, V. Microwave-assisted extraction of flavonoids: A review. Food Bioprocess Technol. 2012, 5, 409–424. [Google Scholar] [CrossRef]
- Mustafa, A.; Turner, C. Pressurized liquid extraction as a green approach in food and herbal plants extraction: A review. Anal. Chim. Acta 2011, 703, 8–18. [Google Scholar] [CrossRef] [PubMed]
- Predescu, N.C.; Papuc, C.; Nicorescu, V.; Gajaila, I.; Goran, G.V.; Petcu, C.D.; Stefan, G. The influence of solid-to-solvent ratio and extraction method on total phenolic content, flavonoid content and antioxidant properties of some ethanolic plant extracts. Rev. Chim 2016, 67, 1922–1927. [Google Scholar]
- Shortle, E.; O’grady, M.N.; Gilroy, D.; Furey, A.; Quinn, N.; Kerry, J.P. Influence of extraction technique on the anti-oxidative potential of hawthorn (Crataegus monogyna) extracts in bovine muscle homogenates. Meat Sci. 2014, 98, 828–834. [Google Scholar] [CrossRef] [PubMed]
- Elez Garofulić, I.; Zorić, Z.; Pedisić, S.; Brnčić, M.; Dragović-Uzelac, V. UPLC-MS2 Profiling of Blackthorn Flower Polyphenols Isolated by Ultrasound-Assisted Extraction. J. Food Sci. 2018, 83, 2782–2789. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Braca, A.; De Tommasi, N.; Di Bari, L.; Pizza, C.; Politi, M.; Morelli, I. Antioxidant principles from bauhinia t arapotensis. J. Nat. Prod. 2001, 64, 892–895. [Google Scholar] [CrossRef]
- Elez Garofulić, I.; Kruk, V.; Martić, A.; Martić, I.; Zorić, Z.; Pedisić, S.; Dragović, S.; Dragović-Uzelac, V. Evaluation of polyphenolic profile and antioxidant activity of Pistacia lentiscus L. leaves and fruit extract obtained by optimized microwave-assisted extraction. Foods 2020, 9, 1556. [Google Scholar] [CrossRef] [PubMed]
- Babich, H.; Borenfreund, E. Applications of the neutral red cytotoxicity assay to in vitro toxicology. Altern. Lab. Anim. 1990, 18, 129–144. [Google Scholar] [CrossRef]
- Ghasemi, M.; Turnbull, T.; Sebastian, S.; Kempson, I. The MTT Assay: Utility, Limitations, Pitfalls, and Interpretation in Bulk and Single-Cell Analysis. Int. J. Mol. Sci. 2021, 22, 12827. [Google Scholar] [CrossRef]
- Franken, N.A.P.; Rodermond, H.M.; Stap, J.; Haveman, J.; van Bree, C. Clonogenic assay of cells in vitro. Nat. Protoc. 2006, 1, 2315–2319. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Joseph, J.A. Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radic. Biol. Med. 1999, 27, 612–616. [Google Scholar] [CrossRef] [PubMed]
- Møller, P.; Azqueta, A.; Boutet-Robinet, E.; Koppen, G.; Bonassi, S.; Milić, M.; Gajski, G.; Costa, S.; Teixeira, J.P.; Costa Pereira, C.; et al. Minimum Information for Reporting on the Comet Assay (MIRCA): Recommendations for describing comet assay procedures and results. Nat. Protoc. 2020, 15, 3817–3826. [Google Scholar] [CrossRef]
- Olive, P.L. DNA damage and repair in individual cells: Applications of the comet assay in radiobiology. Int. J. Radiat. Biol. 1999, 75, 395–405. [Google Scholar] [CrossRef] [PubMed]
- Lovell, D.P. Statistical Analysis of Comet Assay Data. In The Comet Assay in Toxicology; Dhawan, A., Anderson, D., Eds.; The Royal Society of Chemistry: London, UK, 2009; pp. 551–580. ISBN 978-0-85404-199-2. [Google Scholar]
- Keum, Y.-S.; Park, K.-K.; Lee, J.-M.; Chun, K.-S.; Park, J.H.; Lee, S.K.; Kwon, H.; Surh, Y.-J. Antioxidant and anti-tumor promoting activities of the methanol extract of heat-processed ginseng. Cancer Lett. 2000, 150, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 2016, 6, 71–79. [Google Scholar] [CrossRef]
- Do Thi, N.; Hwang, E.-S. Bioactive compound contents and antioxidant activity in Aronia (Aronia melanocarpa) leaves collected at different growth stages. Prev. Nutr. food Sci. 2014, 19, 204. [Google Scholar] [CrossRef]
- Shang, Y.F.; Kim, S.M.; Um, B.-H. Optimisation of pressurised liquid extraction of antioxidants from black bamboo leaves. Food Chem. 2014, 154, 164–170. [Google Scholar] [CrossRef]
- Xie, J.-H.; Dong, C.; Nie, S.-P.; Li, F.; Wang, Z.-J.; Shen, M.-Y.; Xie, M.-Y. Extraction, chemical composition and antioxidant activity of flavonoids from Cyclocarya paliurus (Batal.) Iljinskaja leaves. Food Chem. 2015, 186, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Dahmoune, F.; Nayak, B.; Moussi, K.; Remini, H.; Madani, K. Optimization of microwave-assisted extraction of polyphenols from Myrtus communis L. leaves. Food Chem. 2015, 166, 585–595. [Google Scholar] [CrossRef] [PubMed]
- Eskilsson, C.S.; Björklund, E. Analytical-scale microwave-assisted extraction. J. Chromatogr. A 2000, 902, 227–250. [Google Scholar] [CrossRef] [PubMed]
- Staszowska-Karkut, M.; Materska, M. Phenolic composition, mineral content, and beneficial bioactivities of leaf extracts from black currant (Ribes nigrum L.), raspberry (Rubus idaeus), and aronia (Aronia melanocarpa). Nutrients 2020, 12, 463. [Google Scholar] [CrossRef] [PubMed]
- Owczarek, K.; Sosnowska, D.; Kajszczak, D.; Lewandowska, U. Evaluation of Phenolic Composition, Antioxidant and Cytotoxic Activity of Aronia Melanocarpa Leaf Extracts. J. Physiol. Pharmacol. 2022, 73, 233–243. [Google Scholar] [CrossRef]
- Liazid, A.; Palma, M.; Brigui, J.; Barroso, C.G. Investigation on phenolic compounds stability during microwave-assisted extraction. J. Chromatogr. A 2007, 1140, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Corazza, G.O.; Bilibio, D.; Zanella, O.; Nunes, A.L.; Bender, J.P.; Carniel, N.; dos Santos, P.P.; Priamo, W.L. Pressurized liquid extraction of polyphenols from Goldenberry: Influence on antioxidant activity and chemical composition. Food Bioprod. Process. 2018, 112, 63–68. [Google Scholar] [CrossRef]
- Babu, P.R.S.; Subrahmanyam, C.V.S.; Thimmasetty, J.; Manavalan, R.; Valliappan, K.; Kedarnath, S.A. Solubility enhancement of cox-II inhibitors by cosolvency approach. Dhaka Univ. J. Pharm. Sci. 2008, 7, 119–126. [Google Scholar] [CrossRef]
- Elez Garofulić, I.; Malin, V.; Repajić, M.; Zorić, Z.; Pedisić, S.; Sterniša, M.; Smole Možina, S.; Dragović-Uzelac, V. Phenolic profile, antioxidant capacity and antimicrobial activity of nettle leaves extracts obtained by advanced extraction techniques. Molecules 2021, 26, 6153. [Google Scholar] [CrossRef]
- El-Hamidi, M.; Zaher, F.A.; El-Shami, S.M. Interaction of oilseed pigments and phospholipids in the determination of total phenolic compounds using the Folin-Ciocalteu reagent. Int. J. Pharm. Tech. Res. 2016, 9, 207–214. [Google Scholar]
- Andriopoulos, V.; Lamari, F.N.; Hatziantoniou, S.; Kornaros, M. Production of Antioxidants and High Value Biomass from Nannochloropsis oculata: Effects of pH, Temperature and Light Period in Batch Photobioreactors. Mar. Drugs 2022, 20, 552. [Google Scholar] [CrossRef] [PubMed]
- Andriopoulos, V.; Kornaros, M. Microalgal Phenolics: Systematic Review with a Focus on Methodological Assessment and Meta-Analysis. Mar. Drugs 2024, 22, 460. [Google Scholar] [CrossRef] [PubMed]
- Teleszko, M.; Wojdyło, A. Comparison of phenolic compounds and antioxidant potential between selected edible fruits and their leaves. J. Funct. Foods 2015, 14, 736–746. [Google Scholar] [CrossRef]
- Efenberger-Szmechtyk, M.; Nowak, A.; Nowak, A. Cytotoxic and DNA-Damaging Effects of Aronia melanocarpa, Cornus mas, and Chaenomeles superba Leaf Extracts on the Human Colon Adenocarcinoma Cell Line Caco-2. Antioxidants 2020, 9, 1030. [Google Scholar] [CrossRef] [PubMed]
- Hellmig, S.; Von Schöning, F.; Gadow, C.; Katsoulis, S.; Hedderich, J.; Fölsch, U.R.; Stüber, E. Gastric emptying time of fluids and solids in healthy subjects determined by 13C breath tests: Influence of age, sex and body mass index. J. Gastroenterol. Hepatol. 2006, 21, 1832–1838. [Google Scholar] [CrossRef]
- Gao, N.; Wang, Y.; Jiao, X.; Chou, S.; Li, E.; Li, B. Preparative Purification of Polyphenols from Aronia melanocarpa (Chokeberry) with Cellular Antioxidant and Antiproliferative Activity. Molecules 2018, 23, 139. [Google Scholar] [CrossRef]
- Lyngsie, G.; Krumina, L.; Tunlid, A.; Persson, P. Generation of hydroxyl radicals from reactions between a dimethoxyhydroquinone and iron oxide nanoparticles. Sci. Rep. 2018, 8, 10834. [Google Scholar] [CrossRef]
- Platonova, E.Y.; Shaposhnikov, M.V.; Lee, H.-Y.; Lee, J.-H.; Min, K.-J.; Moskalev, A. Black chokeberry (Aronia melanocarpa) extracts in terms of geroprotector criteria. Trends Food Sci. Technol. 2021, 114, 570–584. [Google Scholar] [CrossRef]
- Collins, A.R. The comet assay for DNA damage and repair: Principles, applications, and limitations. Mol. Biotechnol. 2004, 26, 249–261. [Google Scholar] [CrossRef]
- Negreanu-Pirjol, B.-S.; Oprea, O.C.; Negreanu-Pirjol, T.; Roncea, F.N.; Prelipcean, A.-M.; Craciunescu, O.; Iosageanu, A.; Artem, V.; Ranca, A.; Motelica, L. Health benefits of antioxidant bioactive compounds in the fruits and leaves of Lonicera caerulea L. and Aronia melanocarpa (Michx.) Elliot. Antioxidants 2023, 12, 951. [Google Scholar] [CrossRef] [PubMed]
- Kuzmanović Nedeljković, S.; Radan, M.; Ćujić Nikolić, N.; Mutavski, Z.; Krgović, N.; Marković, S.; Stević, T.; Živković, J.; Šavikin, K. Microencapsulated bilberry and chokeberry leaf extracts with potential health benefits. Plants 2023, 12, 3979. [Google Scholar] [CrossRef] [PubMed]
- Denev, P.; Číž, M.; Kratchanova, M.; Blazheva, D. Black chokeberry (Aronia melanocarpa) polyphenols reveal different antioxidant, antimicrobial and neutrophil-modulating activities. Food Chem. 2019, 284, 108–117. [Google Scholar] [CrossRef] [PubMed]
- Scalbert, A. Antimicrobial properties of tannins. Phytochemistry 1991, 30, 3875–3883. [Google Scholar] [CrossRef]
- Andersone, A.; Janceva, S.; Zaharova, N.; Nikolajeva, V.; Jurkjane, V. Aronia Melanocarpa (black chokeberry) Branches Biomass as a Source of Valuable Biologically Active Compounds with Antioxidant and Antimicrobial Potential. In Environment. Technologies. Resources. Proceedings of the International Scientific and Practical Conference; Rezekne Academy of Technologie: Rezekne, Latvia, 2024; Volume 1, pp. 34–38. [Google Scholar]
- Kim, S.-S.; Shin, Y. Antibacterial and in vitro antidementia effects of aronia (Aronia melanocarpa) leaf extracts. Food Sci. Biotechnol. 2020, 29, 1295–1300. [Google Scholar] [CrossRef]
- Liepiņa, I.; Nikolajeva, V.; Ja, I. Antimicrobial activity of extracts from fruits of Aronia melanocarpa and Sorbus aucuparia. Exp. Biol. 2013, 11, 195–199. [Google Scholar]
- Fullerton, M.; Khatiwada, J.; Johnson, J.U.; Davis, S.; Williams, L.L. Determination of antimicrobial activity of sorrel (Hibiscus sabdariffa) on Esherichia coli O157: H7 isolated from food, veterinary, and clinical samples. J. Med. Food 2011, 14, 950–956. [Google Scholar] [CrossRef]
- Taguri, T.; Tanaka, T.; Kouno, I. Antibacterial spectrum of plant polyphenols and extracts depending upon hydroxyphenyl structure. Biol. Pharm. Bull. 2006, 29, 2226–2235. [Google Scholar] [CrossRef]
Extraction Technique | Temperature (°C) | Time (min) | SSR (g/mL) | TP (mg GAE/g dm) |
---|---|---|---|---|
PLE | 100 | 5 | 1:20 | 39.9 ± 1.1 |
1:30 | 35.5 ± 1.3 | |||
1:40 | 30.7 ± 1.0 | |||
10 | 1:20 | 35.0 ± 0.0 | ||
1:30 | 29.7 ± 0.3 | |||
1:40 | 36.1 ± 0.3 | |||
125 | 5 | 1:20 | 40.7 ± 0.2 | |
1:30 | 43.5 ± 0.2 | |||
1:40 | 29.0 ± 1.8 | |||
10 | 1:20 | 42.9 ± 0.8 | ||
1:30 | 48.4 ± 0.4 | |||
1:40 | 45.9 ± 0. 5 | |||
150 | 5 | 1:20 | 35.1 ± 0.2 | |
1:30 | 80.0 ± 0.1 | |||
1:40 | 64.7 ± 0.5 | |||
10 | 1:20 | 50.8 ± 0.1 | ||
1:30 | 50.8 ± 1.7 | |||
1:40 | 64.2 ± 0.4 | |||
MAE | 60 | 5 | 1:20 | 28.8 ± 0.1 |
1:30 | 28.2 ± 0.5 | |||
1:40 | 23.9 ± 0.1 | |||
10 | 1:20 | 36.5 ± 0.3 | ||
1:30 | 33.3 ± 0.8 | |||
1:40 | 31.1 ± 0.4 | |||
70 | 5 | 1:20 | 33.4 ± 0.7 | |
1:30 | 36.4 ± 0.6 | |||
1:40 | 49.9 ± 0.5 | |||
10 | 1:20 | 40.3 ± 0.0 | ||
1:30 | 36.3 ± 0.9 | |||
1:40 | 40.9 ± 0.3 | |||
80 | 5 | 1:20 | 38.8 ± 1.0 | |
1:30 | 42.0 ± 2.2 | |||
1:40 | 44.0 ± 0.0 | |||
10 | 1:20 | 42.4 ± 0.5 | ||
1:30 | 45.2 ± 1.8 | |||
1:40 | 44.4 ± 1.1 |
PLE | MAE | ||
---|---|---|---|
Source of Variation | TP (mg/g dm) | Source of Variation | TP (mg GAE/g dm) |
Temperature (°C) | p < 0.001 * | Temperature (°C) | p < 0.001 * |
100 | 34.4 ± 1.1 a | 60 | 34.5 ± 1.5 a |
125 | 41.7 ± 1.9 ab | 70 | 39.4 ± 2.4 b |
150 | 57.6 ± 4.3 b | 80 | 38.4 ± 1.6 b |
Time (min) | p = 0.313 | Time (min) | p = 0.687 |
5 | 44.3 ± 3.9 a | 5 | 37.0 ± 1.9 a |
10 | 44.8 ± 2.4 a | 10 | 37.9 ± 1.3 a |
SSR (g/mL) | p = 0.675 | SSR (g/mL) | p < 0.001 * |
1:20 | 40.7 ± 1.6 a | 1:20 | 30.2 ± 1.2 a |
1:30 | 48.0 ± 4.9 a | 1:30 | 39.4 ± 1.6 b |
1:40 | 45.1 ± 4.4 a | 1:40 | 42.7 ± 0.7 b |
BCL Polyphenols | Precursor Ion (m/z) | Product Ion (m/z) | PLE (mg/g dm) | MAE (mg/g dm) |
---|---|---|---|---|
Phenolic acids | 2.11 ± 0.13 a | 3.14 ± 0.19 b | ||
Quinic acid | 191 | 127 | 0.01 ± 0.00 a | 0.01 ± 0.00 a |
3-p-caffeoylquinic acid | 343 | 191, 169 | 0.06 ± 0.00 a | 0.08 ± 0.00 b |
Rosmarinic acid * | 359.08 | 161 | 0.01 ± 0.00 a | 0.02 ± 0.00 a |
Chlorogenic acid * | 353 | 191 | 1.92 ± 0.09 a | 2.95 ± 0.14 b |
3-O-ferruloylquinic acid | 367 | 193 | 0.02 ± 0.00 a | 0.01 ± 0.00 a |
Caffeic acid * | 179 | 135 | 0.01 ± 0.00 a | 0.03 ± 0.00 b |
Protocatechuic acid * | 153 | 109 | 0.01 ± 0.00 a | 0.01 ± 0.00 a |
p-hydroxybenzoic acid | 137 | 93 | 0.03 ± 0.00 b | 0.01 ± 0.00 a |
4,5-dicaffeoylquinic acid | 515 | 353, 191 | 0.04 ± 0.00 a | 0.03 ± 0.00 a |
Flavonols | 24.25 ± 1.27 a | 27.43 ± 1.64 b | ||
Myricetin * | 319 | 273 | 0.12 ± 0.0 a | 0.11 ± 0.01 a |
Quercetin | 303 | 303 | 3.37 ± 0.20 a | 3.84 ± 0.22 b |
Kaempferol deoxyhexoside | 433 | 287 | 0.01 ± 0.00 a | 0.01 ± 0.00 a |
Kaempferol pentoside | 419 | 287 | 0.01 ± 0.00 a | 0.02 ± 0.00 a |
Kaempferol | 287 | 287 | 13.83 ± 0.97 a | 17.63 ± 1.03 b |
Quercetin dihexoside | 627 | 303 | 1.26 ± 0.06 b | 0.43 ± 0.02 a |
Quercetin rhamnoside | 449 | 303 | 0.01 ± 0.00 a | 0.01 ± 0.00 a |
Myricetin galactoside | 481 | 319 | 0.06 ± 0.00 a | 0.11 ± 0.01 b |
Myricetin arabinoside | 451 | 319 | 0.02 ± 0.00 a | 0.04 ± 0.00 b |
Ishorhamnetin glucoside | 483 | 317 | 0.02 ± 0.00 a | 0.01 ± 0.00 a |
Myricetin rhamnoside | 465 | 319 | 0.03 ± 0.00 a | 0.02 ± 0.00 a |
Quercetin vicianoside | 597 | 434 | 0.01 ± 0.00 a | 0.01 ± 0.00 a |
Quercetin pentosylhexoside | 597 | 303 | 1.08 ± 0.05 a | 1.45 ± 0.08 b |
Kaempferol pentosylhexoside | 581 | 287 | 0.09 ± 0.00 b | 0.07 ± 0.00 a |
Quercetin-3-O-rutinoside * | 611 | 303 | 2.68 ± 0.12 a | 2.27 ± 0.15 b |
Quercetin glucuronide | 479 | 303 | 0.02 ± 0.00 a | 0.02 ± 0.00 a |
Quercetin-3-O-glucoside * | 465 | 303 | 1.13 ± 0.08 b | 0.97 ± 0.06 a |
Kaempferol-3-O-rutinoside * | 595 | 287 | 0.09 ± 0.00 b | 0.07 ± 0.00 a |
Quercetin pentoside | 435 | 303 | 0.03 ± 0.00 a | 0.04 ± 0.00 a |
Ishorhamnetin pentosylhexoside | 611 | 317 | 0.10 ± 0.00 a | 0.15 ± 0.01 b |
Ishorhamnetin hexoside | 479 | 317 | 0.06 ± 0.00 b | 0.04 ± 0.00 a |
Ishorhamnetin rutinoside | 625 | 317 | 0.12 ± 0.01 a | 0.12 ± 0.01 a |
Kaempferol hexoside | 449 | 287 | 0.10 ± 0.00 b | 0.07 ± 0.00 a |
Flavones | 0.10 ± 0.00 a | 0.08 ± 0.00 a | ||
Apigenin * | 271 | 153 | 0.01 ± 0.00 a | 0.01 ± 0.00 a |
Apigenin pentoside | 403 | 271 | 0.02 ± 0.00 a | 0.01 ± 0.00 a |
Luteolin rutinoside | 595 | 287 | 0.01 ± 0.00 a | 0.01 ± 0.00 a |
Luteolin * | 287 | 153 | 0.06 ± 0.00 a | 0.05 ± 0.00 a |
Procyanidins and flavan-3-ols | 1.10 ± 0.08 b | 0.55 ± 0.02 a | ||
Catechin * | 291 | 165, 139 | 0.08 ± 0.00 b | 0.05 ± 0.00 a |
Epicatechin | 291 | 139, 123 | 0.21 ± 0.01 b | 0.10 ± 0.00 a |
Procyanidin B2 * | 577 | 289 | 0.05 ± 0.00 b | 0.02 ± 0.00 a |
Procyanidin trimer | 865 | 713, 575, 453 | 0.02 ± 0.00 a | 0.13 ± 0.01 b |
Epicatechingallate * | 442.9 | 273, 139 | 0.02 ± 0.00 a | 0.02 ± 0.00 a |
Procyanidin B1 | 579 | 427, 291 | 0.71 ± 0.03 b | 0.21 ± 0.01 a |
Epigallocatechingallate * | 459 | 289, 139 | 0.01 ± 0.00 a | 0.01 ± 0.00 a |
Extraction Technique | Antioxidant Capacity (µmol TE/g dm) | ||
---|---|---|---|
FRAP | DPPH | ORAC | |
p = 0.002 * | p < 0.001 * | p < 0.001 * | |
PLE | 659.4 ± 6.4 b | 802.2 ± 0.3 b | 578.9 ± 1.0 b |
MAE | 489.6 ± 2.5 a | 531.7 ± 0.6 a | 479.1 ± 1.5 a |
Tested Microorganisms | MIC | log CFU | |||
---|---|---|---|---|---|
BCL Extract (mg/mL) | Kanamycin (µg/mL) | with BCL Extract in the MIC | with Kanamycin in the MIC | Without Antimicrobial Agent | |
S. aureus | 0.60 | 1.25 | 7.31 ± 0.03 | 7.50 ± 0.02 | 9.11 ± 0.07 |
B. subtilis | 2.39 | 5 | 6.92 ± 0.07 | 7.04 ± 0.04 | 9.04 ± 0.48 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Repajić, M.; Elez Garofulić, I.; Cegledi, E.; Dobroslavić, E.; Pedisić, S.; Durgo, K.; Huđek Turković, A.; Mrvčić, J.; Hanousek Čiča, K.; Dragović-Uzelac, V. Bioactive and Biological Potential of Black Chokeberry Leaves Under the Influence of Pressurized Liquid Extraction and Microwave-Assisted Extraction. Antioxidants 2024, 13, 1582. https://doi.org/10.3390/antiox13121582
Repajić M, Elez Garofulić I, Cegledi E, Dobroslavić E, Pedisić S, Durgo K, Huđek Turković A, Mrvčić J, Hanousek Čiča K, Dragović-Uzelac V. Bioactive and Biological Potential of Black Chokeberry Leaves Under the Influence of Pressurized Liquid Extraction and Microwave-Assisted Extraction. Antioxidants. 2024; 13(12):1582. https://doi.org/10.3390/antiox13121582
Chicago/Turabian StyleRepajić, Maja, Ivona Elez Garofulić, Ena Cegledi, Erika Dobroslavić, Sandra Pedisić, Ksenija Durgo, Ana Huđek Turković, Jasna Mrvčić, Karla Hanousek Čiča, and Verica Dragović-Uzelac. 2024. "Bioactive and Biological Potential of Black Chokeberry Leaves Under the Influence of Pressurized Liquid Extraction and Microwave-Assisted Extraction" Antioxidants 13, no. 12: 1582. https://doi.org/10.3390/antiox13121582
APA StyleRepajić, M., Elez Garofulić, I., Cegledi, E., Dobroslavić, E., Pedisić, S., Durgo, K., Huđek Turković, A., Mrvčić, J., Hanousek Čiča, K., & Dragović-Uzelac, V. (2024). Bioactive and Biological Potential of Black Chokeberry Leaves Under the Influence of Pressurized Liquid Extraction and Microwave-Assisted Extraction. Antioxidants, 13(12), 1582. https://doi.org/10.3390/antiox13121582