Antioxidant Agriculture for Stress-Resilient Crop Production: Field Practice
Abstract
:1. Introduction
2. Oxidative stress in plants
3. The Impact of Oxidative Stress on Plants
4. Antioxidant Agriculture
4.1. Genetic Engineering
4.2. Chemical Application
4.2.1. Antioxidants
4.2.2. Phytohormones
4.2.3. Plant Biostimulants
4.3. Microbial Application
4.4. Agronomic Practice
Strategies | Crop Species | Stress Conditions | Antioxidant Agents | Field Location Years of Trial | Oxidative Stress Status and Plant Performance | References |
---|---|---|---|---|---|---|
Genetic engineering | Alfalfa | Drought | Transgenic OX of Mn-SOD | Elora, Ontario, Canada; 3 years (1992–1994) | ↑ Resistance to acifluorfen-induced oxidative stress and freezing tolerance ↑ Plant biomass | [18,19] |
Rice | High salinity | Transgenic OX of—BrECS | Daegu, South Korea | ↑ Resistance to paraquat-induced oxidative stress and GSH/GSSG ratio ↑ Plant biomass and grain yield | [20] | |
Rice | High salinity | Transgenic OX of OsGS | Gunwi, South Korea; 2 years (2014–2015) | ↑ GSH/GSSG ratio | [21] | |
Maize | Drought | Transgenic OX of AT-DTP6 | Woodland, California; 3 years | ↓ DAB staining and H2O2 content ↑ Grain yield | [23] | |
Rice | Oxidative and salt stresses | Knockout of OsPQT3 | Greenhouse | ↑ Tolerance to oxidative and salt stresses | [25] | |
Sorghum, millet, maize, and rice | Alkalinity | Knockout of AT1 homologs | Ningxia and Jilin, China; Sorghum, millet and maize, 1 year (2021); rice, 2 years (2021–2022) | ↓ DAB staining and H2O2 content ↑ Biomass and grain yield | [26] | |
Antioxidants | Wheat | Drought | Ascorbic acid, FA at stem elongation and booting stages | Kafr Elsheikh, Egypt; 2 years (2012–2014) | ↑ CAT and POX activities, RWC, and chlorophyll content ↑ Grain yield | [28] |
Common bean | Drought | Ascorbic acid, FA | Nubaria, Egypt; 1 year (2017) | ↑ Vegetable plant growth and green pod yield | [29] | |
Common bean | Drought | Glutathione, FA | Fayoum Governorate, Egypt; 2 years (2017–2018) | ↑ SOD, CAT, APX, and GSH-Px activities ↑ Vegetable plant growth and green pod yield | [30] | |
Mung bean | Drought | α-tocopherol, FA | Jhang, Punjab, Pakistan | ↑ SOD, POD, and CAT activities ↓ H2O2 and MDA levels | [32] | |
Wheat | Drought | α-tocopherol, FA at heading stage | Faisalabad, Pakistan | ↑Activity enzymatic and nonenzymatic antioxidant defense mechanisms ↑ Plant growth and grain yield | [33] | |
Sugar beet | Drought | Proline, FA at seeding stage | Gharbia Governorate, Saudi Arabia; 2 years (2018–2020) | ↑SOD and CAT activities ↓ ROS and MDA levels | [36] | |
Sugar beet | Drought | Proline, FA at seeding stage | Chaha-rmahal-Bakhtiari province, Iran; 2 years (2014–2015) | ↑ SOD and CAT activities ↓ROS and MDA levels | [35] | |
Barley | Drought | Proline, FA | Kafr el-Sheikh Governorate, Egypt; 2 years (2017–2018) | ↑ CAT, POX, and PPO activities, chlorophyll content, RWC, O2•−, and H2O2 levels ↓ Plant dry mass and grain yield | [37] | |
Black cumin | Drought | γ-aminobutyric acid, FA | Naqadeh-Urmia, West Azerbaijan, Iran; 2 years | ↓ ROS and MDA levels ↑ Plant growth and seed yields | [39] | |
Snap bean | Drought | γ-aminobutyric acid, FA | Wadi El-Natroun, Beheira Governorate, Egypt; 2 years (2018–2019) | ↓ ROS and MDA levels ↑ Plant growth and seed yields | [40] | |
Plant hormones | Barley | Drought | Salicylic acid, FA | Kafr el-Sheikh Governorate, Egypt; 2 years (2017–2018) | ↑ Activity of CAT, POX, and PPO, chlorophyll content, RWC, O2•−, and H2O2 levels ↑ Plant dry mass and grain yield | [37] |
Rice | High salinity | ABA, priming of seedlings for 24 h before transplanting | Da’an, Jilin, China; 3 years (2012–2014) | ↓ ROS and MDA levels ↑ Seedling survival rate, plant growth, and final grain yield | [43,44] | |
Wheat | Drought | ABA, 6-BA (cytokinin) | Tehran, Iran; 2 years (2009–2010) | ↑ Glycine betaine and proline contents, and CAT and POX activities ↓ H2O2 and MDA levels | [45] | |
Sugar beet | Drought | JA, FA | Bakhtiari province, Iran; 1 years (2015) | ↑ Activity of antioxidant enzyme activities, root yield, and white sugar content | [46]. | |
Maize | Drought | 24-epibrassinolide, FA | Moghan, Iran; 2 years (2020–2021) | ↑ SOD, CAT, and POX activities, chlorophyll content, and RWC ↓ H2O2 and MDA levels ↑ Plant growth | [47] | |
Plant biostimulants | Sugarcane | Drought | Seaweed extracts, FA | Bunge mill, Dourados, Brazil, 2018 São Martinho mill, Pradópolis, Brazil, 2019 São Martinho mill, Motuca, Brazil, 2020 | ↑ SOD, CAT, and POX activities ↑ Metabolic activity ↓MDA and H2O2 levels | [52] |
Maize | Drought Phosphorus deficiency | Sulfur-enriched leonardite | Sanliurfa, Turkey; 1 year (2011) | ↑ Antioxidant activity, chlorophyll content, Fv/Fm, and RWC ↓ Electrolyte leakage and leaf H2O2 levels ↑ Plant biomass and grain yield, | [54] | |
Wheat | Drought | β-sitosterol, FA | Nubaria region, Egypt; 2 years (2016–2017) | ↑ SOD, CAT, and POX activities ↑ Metabolic activity ↓MDA and H2O2 levels | [56] | |
Common bean | High salinity | Licorice root extract, seed soaking/FA | El-Noubaria, Egypt; 3 years (2015–2017) | ↓ O2•−, H2O2, and MDA levels ↑ Photosynthetic pigments, proline, total soluble carbohydrates, K+/Na+ ratio, and RWC | [58] | |
Sugar beet | Drought | Si, FA at seeding stage | Gharbia Governorate, Saudi Arabia; 2 years (2018–2020) | ↑ SOD and CAT activities ↓ ROS and MDA levels | [36] | |
Maize | Drought | Si, FA | Moghan, Iran; 2 years (2020–2021) | ↑ SOD, CAT, and POX activities, chlorophyll content, and RWC ↓ H2O2 and MDA levels ↑ Plant growth | [47] | |
Microbial agents | Mung bean | Drought | Pseudomonas aeruginosa GGRJ21 | Jorhat district, Assam, India; 3 years (2011–2013) | ↑ SOD, CAT, and POX activities, proline content, expression of drought stress-responsive genes, and RWC ↑ Root and shoot lengths, and biomass | [60] |
Maize | High salinity | Rhizobacterial strains (MA4 and MA11) | ↑ Phosphorous uptake ↑ Plant growth and grain yield ↓ Proline content, and APX and SOD activities | [61] | ||
Agronomic practice | Rapeseed | Low temperature | Moderate deep tillage | Wuhan, Hubei Province, China; 3 years | ↑ SOD, CAT, POD, and APX activities ↓O2•−, H2O2, and MDA levels ↑ Rapeseed seedling conditions during overwintering period and yield | [62] |
5. Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kopecká, R.; Kameniarová, M.; Černý, M.; Brzobohatý, B.; Novák, J. Abiotic stress in crop production. Int. J. Mol. Sci. 2023, 24, 6603. [Google Scholar] [CrossRef]
- Ray, D.K.; Mueller, N.D.; West, P.C.; Foley, J.A. Yield trends are insufficient to double global crop production by 2050. PLoS ONE 2013, 8, e66428. [Google Scholar] [CrossRef]
- Iizumi, T.; Shiogama, H.; Imada, Y.; Hanasaki, N.; Takikawa, H.; Nishimori, M. Crop production losses associated with anthropogenic climate change for 1981–2010 compared with preindustrial levels. Int. J. Climatol. 2018, 38, 5405–5417. [Google Scholar] [CrossRef]
- Oshunsanya, S.O.; Nwosu, N.J.; Li, Y. Abiotic stress in agricultural crops under climatic conditions. Sustain. Agric. For. Environ. Manag. 2019, 71–100. [Google Scholar]
- Hasanuzzaman, M.; Bhuyan, M.B.; Zulfiqar, F.; Raza, A.; Mohsin, S.M.; Mahmud, J.A.; Fujita, M.; Fotopoulos, V. Reactive oxygen species and antioxidant defense in plants under abiotic stress: Revisiting the crucial role of a universal defense regulator. Antioxidants 2020, 9, 681. [Google Scholar] [CrossRef]
- Fujita, M.; Hasanuzzaman, M. Approaches to enhancing antioxidant defense in plants. Antioxidants 2022, 11, 925. [Google Scholar] [CrossRef]
- Kerchev, P.I.; Van Breusegem, F. Improving oxidative stress resilience in plants. Plant J. 2022, 109, 359–372. [Google Scholar] [CrossRef]
- Morita, S. Engineering of Abiotic Stress Tolerance by Modulating Antioxidant Defense Systems. In Advances in Rice Research for Abiotic Stress Tolerance; Woodhead Publishing, 2019; pp. 755–765. [Google Scholar]
- Sachdev, S.; Ansari, S.A.; Ansari, M.I.; Fujita, M.; Hasanuzzaman, M. Abiotic stress and reactive oxygen species: Generation, signaling, and defense mechanisms. Antioxidants 2021, 10, 277. [Google Scholar] [CrossRef]
- Liu, M.; Yu, H.; Ouyang, B.; Shi, C.; Demidchik, V.; Hao, Z.; Yu, M.; Shabala, S. NADPH oxidases and the evolution of plant salinity tolerance. Plant Cell Environ. 2020, 43, 2957–2968. [Google Scholar] [CrossRef]
- Rajput, V.D.; Harish; Singh, R.K.; Verma, K.K.; Sharma, L.; Quiroz-Figueroa, F.R.; Meena, M.; Gour, V.S.; Minkina, T.; Sushkova, S. Recent developments in enzymatic antioxidant defence mechanism in plants with special reference to abiotic stress. Biology 2021, 10, 267. [Google Scholar] [CrossRef]
- Jiang, C.-J.; Liang, Z.-W.; Xie, X. Priming for saline-alkaline tolerance in rice: Current knowledge and future challenges. Rice Sci. 2023, 30, 417–425. [Google Scholar]
- Esmaeili, N.; Shen, G.; Zhang, H. Genetic manipulation for abiotic stress resistance traits in crops. Front. Plant Sci. 2022, 13, 1011985. [Google Scholar] [CrossRef]
- Ma, Y.; Freitas, H.; Dias, M.C. Strategies and prospects for biostimulants to alleviate abiotic stress in plants. Front. Plant Sci. 2022, 13, 1024243. [Google Scholar] [CrossRef]
- Reddy, K.S.; Wakchaure, G.; Khapte, P.; Changan, S. Plant Bio-stimulants for Mitigating Abiotic Stresses in Agriculture. Indian J. Fertil. 2023, 19, 788–800. [Google Scholar]
- Rodrigues de Queiroz, A.; Hines, C.; Brown, J.; Sahay, S.; Vijayan, J.; Stone, J.M.; Bickford, N.; Wuellner, M.; Glowacka, K.; Buan, N.R. The effects of exogenously applied antioxidants on plant growth and resilience. Phytochem. Rev. 2023, 22, 407–447. [Google Scholar] [CrossRef]
- Tarigan, S.I.; Toth, S.; Szalai, M.; Kiss, J.; Turoczi, G.; Toepfer, S. Biological control properties of microbial plant biostimulants. A review. Biocontrol Sci. Technol. 2022, 32, 1351–1371. [Google Scholar] [CrossRef]
- McKersie, B.D.; Chen, Y.; de Beus, M.; Bowley, S.R.; Bowler, C.; Inzé, D.; D’Halluin, K.; Botterman, J. Superoxide dismutase enhances tolerance of freezing stress in transgenic alfalfa (Medicago sativa L.). Plant Physiol. 1993, 103, 1155–1163. [Google Scholar] [CrossRef]
- McKersie, B.D.; Bowley, S.R.; Harjanto, E.; Leprince, O. Water-deficit tolerance and field performance of transgenic alfalfa overexpressing superoxide dismutase. Plant Physiol. 1996, 111, 1177–1181. [Google Scholar] [CrossRef]
- Bae, M.-J.; Kim, Y.-S.; Kim, I.-S.; Choe, Y.-H.; Lee, E.-J.; Kim, Y.-H.; Park, H.-M.; Yoon, H.-S. Transgenic rice overexpressing the Brassica juncea gamma-glutamylcysteine synthetase gene enhances tolerance to abiotic stress and improves grain yield under paddy field conditions. Mol. Breed. 2013, 31, 931–945. [Google Scholar] [CrossRef]
- Park, S.-I.; Kim, Y.-S.; Kim, J.-J.; Mok, J.-E.; Kim, Y.-H.; Park, H.-M.; Kim, I.-S.; Yoon, H.-S. Improved stress tolerance and productivity in transgenic rice plants constitutively expressing the Oryza sativa glutathione synthetase OsGS under paddy field conditions. J. Plant Physiol. 2017, 215, 39–47. [Google Scholar] [CrossRef]
- Allen, S.M.; Luck, S.; Mullen, J.; Sakai, H.; Sivasankar, S.; Tingey, S.V.; Williams, R.W. Drought Tolerant Plants and Related Constructs and Methods Involving Genes Encoding Ferrochelatases. United States Patent US8158859 B, 17 April 2012. [Google Scholar]
- Simmons, C.R.; Lafitte, H.R.; Reimann, K.S.; Brugière, N.; Roesler, K.; Albertsen, M.C.; Greene, T.W.; Habben, J.E. Successes and insights of an industry biotech program to enhance maize agronomic traits. Plant Sci. 2021, 307, 110899. [Google Scholar] [CrossRef]
- Kumar, M.; Prusty, M.R.; Pandey, M.K.; Singh, P.K.; Bohra, A.; Guo, B.; Varshney, R.K. Application of CRISPR/Cas9-mediated gene editing for abiotic stress management in crop plants. Front. Plant Sci. 2023, 14, 1157678. [Google Scholar] [CrossRef]
- Alfatih, A.; Wu, J.; Jan, S.U.; Zhang, Z.S.; Xia, J.Q.; Xiang, C.B. Loss of rice PARAQUAT TOLERANCE 3 confers enhanced resistance to abiotic stresses and increases grain yield in field. Plant Cell Environ. 2020, 43, 2743–2754. [Google Scholar] [CrossRef]
- Zhang, H.; Yu, F.; Xie, P.; Sun, S.; Qiao, X.; Tang, S.; Chen, C.; Yang, S.; Mei, C.; Yang, D. A Gγ protein regulates alkaline sensitivity in crops. Science 2023, 379, eade8416. [Google Scholar] [CrossRef]
- Rahman, M.-u.; Zulfiqar, S.; Raza, M.A.; Ahmad, N.; Zhang, B. Engineering abiotic stress tolerance in crop plants through CRISPR genome editing. Cells 2022, 11, 3590. [Google Scholar] [CrossRef]
- Hafez, E.; Gharib, H. Effect of exogenous application of ascorbic acid on physiological and biochemical characteristics of wheat under water stress. Int. J. Plant Prod. 2016, 10, 579–596. [Google Scholar]
- Gaafar, A.A.; Ali, S.I.; El-Shawadfy, M.A.; Salama, Z.A.; Sękara, A.; Ulrichs, C.; Abdelhamid, M.T. Ascorbic acid induces the increase of secondary metabolites, antioxidant activity, growth, and productivity of the common bean under water stress conditions. Plants 2020, 9, 627. [Google Scholar] [CrossRef]
- Abd El Mageed, T.A.; Semida, W.; Hemida, K.A.; Gyushi, M.A.; Rady, M.M.; Abdelkhalik, A.; Merah, O.; Brestic, M.; Mohamed, H.I.; El Sabagh, A. Glutathione-mediated changes in productivity, photosynthetic efficiency, osmolytes, and antioxidant capacity of common beans (Phaseolus vulgaris) grown under water deficit. PeerJ 2023, 11, e15343. [Google Scholar] [CrossRef]
- Sadiq, M.; Akram, N.A.; Ashraf, M.; Al-Qurainy, F.; Ahmad, P. Alpha-tocopherol-induced regulation of growth and metabolism in plants under non-stress and stress conditions. J. Plant Growth Regul. 2019, 38, 1325–1340. [Google Scholar] [CrossRef]
- Sadiq, M.; Akram, N.A.; Ashraf, M. Impact of exogenously applied tocopherol on some key physio-biochemical and yield attributes in mungbean [Vigna radiata (L.) Wilczek] under limited irrigation regimes. Acta Physiol. Plant. 2018, 40, 1–14. [Google Scholar] [CrossRef]
- Ali, Q.; Ali, S.; Iqbal, N.; Javed, M.T.; Rizwan, M.; Khaliq, R.; Shahid, S.; Perveen, R.; Alamri, S.A.; Alyemeni, M.N. Alpha-tocopherol fertigation confers growth physio-biochemical and qualitative yield enhancement in field grown water deficit wheat (Triticum aestivum L.). Sci. Rep. 2019, 9, 12924. [Google Scholar] [CrossRef] [PubMed]
- Zulfiqar, F.; Ashraf, M. Proline alleviates abiotic stress induced oxidative stress in plants. J. Plant Growth Regul. 2023, 42, 4629–4651. [Google Scholar] [CrossRef]
- Ghaffari, H.; Tadayon, M.R.; Nadeem, M.; Cheema, M.; Razmjoo, J. Proline-mediated changes in antioxidant enzymatic activities and the physiology of sugar beet under drought stress. Acta Physiol. Plant. 2019, 41, 1–13. [Google Scholar] [CrossRef]
- AlKahtani, M.D.; Hafez, Y.M.; Attia, K.; Rashwan, E.; Husnain, L.A.; AlGwaiz, H.I.; Abdelaal, K.A. Evaluation of silicon and proline application on the oxidative machinery in drought-stressed sugar beet. Antioxidants 2021, 10, 398. [Google Scholar] [CrossRef] [PubMed]
- Abdelaal, K.A.; Attia, K.A.; Alamery, S.F.; El-Afry, M.M.; Ghazy, A.I.; Tantawy, D.S.; Al-Doss, A.A.; El-Shawy, E.-S.E.; Abu-Elsaoud, A.M.; Hafez, Y.M. Exogenous application of proline and salicylic acid can mitigate the injurious impacts of drought stress on barley plants associated with physiological and histological characters. Sustainability 2020, 12, 1736. [Google Scholar] [CrossRef]
- Shelp, B.J.; Aghdam, M.S.; Flaherty, E.J. γ-Aminobutyrate (GABA) regulated plant defense: Mechanisms and opportunities. Plants 2021, 10, 1939. [Google Scholar] [CrossRef] [PubMed]
- Rezaei-Chiyaneh, E.; Seyyedi, S.M.; Ebrahimian, E.; Moghaddam, S.S.; Damalas, C.A. Exogenous application of gamma-aminobutyric acid (GABA) alleviates the effect of water deficit stress in black cumin (Nigella sativa L.). Ind. Crops Prod. 2018, 112, 741–748. [Google Scholar] [CrossRef]
- Abd El-Gawad, H.G.; Mukherjee, S.; Farag, R.; Abd Elbar, O.H.; Hikal, M.; Abou El-Yazied, A.; Abd Elhady, S.A.; Helal, N.; ElKelish, A.; El Nahhas, N. Exogenous γ-aminobutyric acid (GABA)-induced signaling events and field performance associated with mitigation of drought stress in Phaseolus vulgaris L. Plant Signal. Behav. 2021, 16, 1853384. [Google Scholar] [CrossRef]
- Pavlíková, N. Caffeic acid and diseases—Mechanisms of action. Int. J. Mol. Sci. 2022, 24, 588. [Google Scholar] [CrossRef]
- Mehmood, H.; Abbasi, G.H.; Jamil, M.; Malik, Z.; Ali, M.; Iqbal, R. Assessing the potential of exogenous caffeic acid application in boosting wheat (Triticum aestivum L.) crop productivity under salt stress. PLoS ONE 2021, 16, e0259222. [Google Scholar] [CrossRef]
- Wei, L.-X.; Lv, B.-S.; Li, X.-W.; Wang, M.-M.; Ma, H.-Y.; Yang, H.-Y.; Yang, R.-F.; Piao, Z.-Z.; Wang, Z.-H.; Lou, J.-H. Priming of rice (Oryza sativa L.) seedlings with abscisic acid enhances seedling survival, plant growth, and grain yield in saline-alkaline paddy fields. Field Crops Res. 2017, 203, 86–93. [Google Scholar] [CrossRef]
- Wei, L.-X.; Lv, B.-S.; Wang, M.-M.; Ma, H.-Y.; Yang, H.-Y.; Liu, X.-L.; Jiang, C.-J.; Liang, Z.-W. Priming effect of abscisic acid on alkaline stress tolerance in rice (Oryza sativa L.) seedlings. Plant Physiol. Biochem. 2015, 90, 50–57. [Google Scholar] [CrossRef]
- SARAFRAZ-ARDAKANI, M.-R.; KHAVARI-NEJAD, R.-A.; MORADI, F.; NAJAFI, F. Abscisic acid and cytokinin-induced osmotic and antioxidant regulation in two drought-tolerant and drought-sensitive cultivars of wheat during grain filling under water deficit in field conditions. Not. Sci. Biol. 2014, 6, 354–362. [Google Scholar] [CrossRef]
- Ghaffari, H.; Tadayon, M.R.; Nadeem, M.; Razmjoo, J.; Cheema, M. Foliage applications of jasmonic acid modulate the antioxidant defense under water deficit growth in sugar beet. Span. J. Agric. Res. 2019, 17, e0805. [Google Scholar] [CrossRef]
- Ghasemi, A.; Farzaneh, S.; Moharramnejad, S.; Sharifi, R.S.; Youesf, A.F.; Telesinski, A.; Kalaji, H.M.; Mojski, J. Impact of 24-epibrassinolide, spermine, and silicon on plant growth, antioxidant defense systems, and osmolyte accumulation of maize under water stress. Sci. Rep. 2022, 12, 14648. [Google Scholar] [CrossRef] [PubMed]
- Dejonghe, W.; Okamoto, M.; Cutler, S.R. Small molecule probes of ABA biosynthesis and signaling. Plant Cell Physiol. 2018, 59, 1490–1499. [Google Scholar] [CrossRef]
- Hewage, K.A.H.; Yang, J.F.; Wang, D.; Hao, G.F.; Yang, G.F.; Zhu, J.K. Chemical manipulation of abscisic acid signaling: A new approach to abiotic and biotic stress management in agriculture. Adv. Sci. 2020, 7, 2001265. [Google Scholar] [CrossRef] [PubMed]
- Hasanuzzaman, M.; Parvin, K.; Bardhan, K.; Nahar, K.; Anee, T.I.; Masud, A.A.C.; Fotopoulos, V. Biostimulants for the regulation of reactive oxygen species metabolism in plants under abiotic stress. Cells 2021, 10, 2537. [Google Scholar] [CrossRef] [PubMed]
- Deolu-Ajayi, A.O.; van der Meer, I.M.; Van der Werf, A.; Karlova, R. The power of seaweeds as plant biostimulants to boost crop production under abiotic stress. Plant Cell Environ. 2022, 45, 2537–2553. [Google Scholar] [CrossRef]
- Jacomassi, L.M.; Viveiros, J.d.O.; Oliveira, M.P.; Momesso, L.; de Siqueira, G.F.; Crusciol, C.A.C. A seaweed extract-based biostimulant mitigates drought stress in sugarcane. Front. Plant Sci. 2022, 13, 865291. [Google Scholar] [CrossRef] [PubMed]
- de Melo, B.A.G.; Motta, F.L.; Santana, M.H.A. Humic acids: Structural properties and multiple functionalities for novel technological developments. Mater. Sci. Eng. C 2016, 62, 967–974. [Google Scholar] [CrossRef] [PubMed]
- Kaya, C.; Şenbayram, M.; Akram, N.A.; Ashraf, M.; Alyemeni, M.N.; Ahmad, P. Sulfur-enriched leonardite and humic acid soil amendments enhance tolerance to drought and phosphorus deficiency stress in maize (Zea mays L.). Sci. Rep. 2020, 10, 6432. [Google Scholar] [CrossRef] [PubMed]
- Gupta, E. β-Sitosterol: Predominant phytosterol of therapeutic potential. Innov. Food Technol. Curr. Perspect. Future Goals 2020, 465–477. [Google Scholar]
- Elkeilsh, A.; Awad, Y.M.; Soliman, M.H.; Abu-Elsaoud, A.; Abdelhamid, M.T.; El-Metwally, I.M. Exogenous application of β-sitosterol mediated growth and yield improvement in water-stressed wheat (Triticum aestivum) involves up-regulated antioxidant system. J. Plant Res. 2019, 132, 881–901. [Google Scholar] [CrossRef]
- Ding, Y.; Brand, E.; Wang, W.; Zhao, Z. Licorice: Resources, applications in ancient and modern times. J. Ethnopharmacol. 2022, 298, 115594. [Google Scholar] [CrossRef]
- Rady, M.; Desoky, E.-S.; Elrys, A.; Boghdady, M. Can licorice root extract be used as an effective natural biostimulant for salt-stressed common bean plants? S. Afr. J. Bot. 2019, 121, 294–305. [Google Scholar] [CrossRef]
- Bhardwaj, S.; Sharma, D.; Singh, S.; Ramamurthy, P.C.; Verma, T.; Pujari, M.; Singh, J.; Kapoor, D.; Prasad, R. Physiological and molecular insights into the role of silicon in improving plant performance under abiotic stresses. Plant Soil. 2023, 486, 25–43. [Google Scholar] [CrossRef]
- Sarma, R.K.; Saikia, R. Alleviation of drought stress in mung bean by strain Pseudomonas aeruginosa GGRJ21. Plant Soil. 2014, 377, 111–126. [Google Scholar] [CrossRef]
- Iqbal, M.A.; Khalid, M.; Zahir, Z.A.; Ahmad, R. Auxin producing plant growth promoting rhizobacteria improve growth, physiology and yield of maize under saline field conditions. Int. J. Agric. Biol. 2016, 18, 37–45. [Google Scholar] [CrossRef]
- Wang, C.; Wang, Z.; El-Badri, A.M.; Batool, M.; Anwar, S.; Wang, X.; Bai, M.; You, Y.; Wang, B.; Wang, J. Moderately deep tillage enhances rapeseed yield by improving frost resistance of seedling during overwintering. Field Crops Res. 2023, 304, 109173. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Xie, X.; Jiang, C.-J. Antioxidant Agriculture for Stress-Resilient Crop Production: Field Practice. Antioxidants 2024, 13, 164. https://doi.org/10.3390/antiox13020164
Sun Y, Xie X, Jiang C-J. Antioxidant Agriculture for Stress-Resilient Crop Production: Field Practice. Antioxidants. 2024; 13(2):164. https://doi.org/10.3390/antiox13020164
Chicago/Turabian StyleSun, Yao, Xianzhi Xie, and Chang-Jie Jiang. 2024. "Antioxidant Agriculture for Stress-Resilient Crop Production: Field Practice" Antioxidants 13, no. 2: 164. https://doi.org/10.3390/antiox13020164
APA StyleSun, Y., Xie, X., & Jiang, C. -J. (2024). Antioxidant Agriculture for Stress-Resilient Crop Production: Field Practice. Antioxidants, 13(2), 164. https://doi.org/10.3390/antiox13020164