Selenium Deficiency Exacerbates Hyperoxia-Induced Lung Injury in Newborn C3H/HeN Mice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animal Model
2.2. Morphometrics
2.3. Western Blots
2.4. GPX Activity
2.5. RNA Sequencing
3. Results
3.1. Se Deficiency Impact Survival in Hyperoxia
3.2. Morphometric Analysis Reveals Lung-Growth Deficit
3.3. Gpx Protein Levels and Activity
3.4. Selenoprotein Expression
3.5. Nrf2 Activation
3.6. Lung RNA-Seq Analyses
3.7. GSEA Hallmark Analyses Revealed Differences within the Context of Se Deficiency and Hyperoxia Exposure
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Asikainen, T.M.; White, C.W. Pulmonary antioxidant defenses in the preterm newborn with respiratory distress and bronchopulmonary dysplasia in evolution: Implications for antioxidant therapy. Antioxid. Redox Signal. 2004, 6, 155–167. [Google Scholar] [CrossRef]
- Duntas, L.H. Selenium and at-risk pregnancy: Challenges and controversies. Thyroid. Res. 2020, 13, 16. [Google Scholar] [CrossRef]
- Robbins, M.E.; Cho, H.Y.; Hansen, J.M.; Luchsinger, J.R.; Locy, M.L.; Velten, M.; Kleeberger, S.R.; Rogers, L.K.; Tipple, T.E. Glutathione reductase deficiency alters lung development and hyperoxic responses in neonatal mice. Redox Biol. 2021, 38, 101797. [Google Scholar] [CrossRef]
- Tindell, R.; Tipple, T. Selenium: Implications for outcomes in extremely preterm infants. J. Perinatol. 2018, 38, 197–202. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Guo, D.; Gu, H.; Zhang, L.; Lv, S. Selenium and Preeclampsia: A Systematic Review and Meta-analysis. Biol. Trace Elem. Res. 2016, 171, 283–292. [Google Scholar] [CrossRef]
- Kong, F.J.; Ma, L.L.; Chen, S.P.; Li, G.; Zhou, J.Q. Serum selenium level and gestational diabetes mellitus: A systematic review and meta-analysis. Nutr. J. 2016, 15, 94. [Google Scholar] [CrossRef] [PubMed]
- Mistry, H.D.; Kurlak, L.O.; Young, S.D.; Briley, A.L.; Pipkin, F.B.; Baker, P.N.; Poston, L. Maternal selenium, copper and zinc concentrations in pregnancy associated with small-for-gestational-age infants. Matern. Child. Nutr. 2014, 10, 327–334. [Google Scholar] [CrossRef] [PubMed]
- Peirovifar, A.; Gharehbaghi, M.M.; Abdulmohammad-Zadeh, H.; Sadegi, G.H.; Jouyban, A. Serum selenium levels of the very low birth weight premature newborn infants with bronchopulmonary dysplasia. J. Trace Elem. Med. Biol. 2013, 27, 317–321. [Google Scholar] [CrossRef] [PubMed]
- Rao, A.; Jericho, H.; Patton, T.; Sriram, S.; Hebert, T.; Weinstein, D.; Pompeii-Wolfe, C.; Wroblewski, K.; Sentongo, T. Factors Affecting Selenium Status in Infants on Parenteral Nutrition Therapy. J. Pediatr. Gastroenterol. Nutr. 2021, 73, e73–e78. [Google Scholar] [CrossRef]
- Mentro, A.M.; Smith, A.M.; Moyer-Mileur, L. Plasma and erythrocyte selenium and glutathione peroxidase activity in preterm infants at risk for bronchopulmonary dysplasia. Biol. Trace Elem. Res. 2005, 106, 97–106. [Google Scholar] [CrossRef]
- Tindell, R.; Wall, S.B.; Li, Q.; Li, R.; Dunigan, K.; Wood, R.; Tipple, T.E. Selenium supplementation of lung epithelial cells enhances nuclear factor E2-related factor 2 (Nrf2) activation following thioredoxin reductase inhibition. Redox Biol. 2018, 19, 331–338. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.H.; Lee, S.J.; Lee, M.K.; Lee, W.Y.; Yong, S.J.; Kim, S.H. Serum selenium levels in patients with respiratory diseases: A prospective observational study. J. Thorac. Dis. 2016, 8, 2068–2078. [Google Scholar] [CrossRef] [PubMed]
- Makhoul, I.R.; Sammour, R.N.; Diamond, E.; Shohat, I.; Tamir, A.; Shamir, R. Selenium concentrations in maternal and umbilical cord blood at 24–42 weeks of gestation: Basis for optimization of selenium supplementation to premature infants. Clin. Nutr. 2004, 23, 373–381. [Google Scholar] [CrossRef]
- Howard, M.T.; Copeland, P.R. New Directions for Understanding the Codon Redefinition Required for Selenocysteine Incorporation. Biol. Trace Elem. Res. 2019, 192, 18–25. [Google Scholar] [CrossRef]
- Labunskyy, V.M.; Hatfield, D.L.; Gladyshev, V.N. Selenoproteins: Molecular pathways and physiological roles. Physiol. Rev. 2014, 94, 739–777. [Google Scholar] [CrossRef]
- Valentine, W.M.; Hill, K.E.; Austin, L.M.; Valentine, H.L.; Goldowitz, D.; Burk, R.F. Brainstem axonal degeneration in mice with deletion of selenoprotein p. Toxicol. Pathol. 2005, 33, 570–576. [Google Scholar] [CrossRef]
- Chen, Y.C.; Prabhu, K.S.; Das, A.; Mastro, A.M. Dietary selenium supplementation modifies breast tumor growth and metastasis. Int. J. Cancer. 2013, 133, 2054–2064. [Google Scholar] [CrossRef] [PubMed]
- Irons, R.; Tsuji, P.A.; Carlson, B.A.; Ouyang, P.; Yoo, M.H.; Xu, X.M.; Hatfield, D.L.; Gladyshev, V.N.; Davis, C.D. Deficiency in the 15-kDa selenoprotein inhibits tumorigenicity and metastasis of colon cancer cells. Cancer Prev. Res. 2010, 3, 630–639. [Google Scholar] [CrossRef]
- Costello, A.J. A randomized, controlled chemoprevention trial of selenium in familial prostate cancer: Rationale, recruitment, and design issues. Urology. 2001, 57 (Suppl. S1), 182–184. [Google Scholar] [CrossRef]
- Hadrup, N.; Ravn-Haren, G. Toxicity of repeated oral intake of organic selenium, inorganic selenium, and selenium nanoparticles: A review. J. Trace Elem. Med. Biol. 2023, 79, 127235. [Google Scholar] [CrossRef]
- Burk, R.F.; Hill, K.E. Regulation of Selenium Metabolism and Transport. Annu. Rev. Nutr. 2015, 35, 109–134. [Google Scholar] [CrossRef]
- Wall, S.B.; Wood, R.; Dunigan, K.; Li, Q.; Li, R.; Rogers, L.K.; Tipple, T.E. Thioredoxin Reductase-1 Inhibition Augments Endogenous Glutathione-Dependent Antioxidant Responses in Experimental Bronchopulmonary Dysplasia. Oxid. Med. Cell Longev. 2019, 2019, 7945983. [Google Scholar] [CrossRef]
- Staples, S.; Wall, S.B.; Li, R.; Tipple, T.E. Selenium-independent antioxidant and anti-inflammatory effects of thioredoxin reductase inhibition in alveolar macrophages. Life Sci. 2020, 259, 118285. [Google Scholar] [CrossRef]
- Li, Q.; Li, R.; Wall, S.B.; Dunigan, K.; Ren, C.; Jilling, T.; Rogers, L.K.; Tipple, T.E. Aurothioglucose does not improve alveolarization or elicit sustained Nrf2 activation in C57BL/6 models of bronchopulmonary dysplasia. Am. J. Physiol. Lung Cell Mol. Physiol. 2018, 314, L736–L742. [Google Scholar] [CrossRef]
- Sherlock, L.G.; Balasubramaniyan, D.; Zheng, L.; Zarate, M.; Sizemore, T.; Delaney, C.; Tipple, T.E.; Wright, C.J.; Nozik-Grayck, E. Neonatal Selenoenzyme Expression Is Variably Susceptible to Duration of Maternal Selenium Deficiency. Antioxidants 2021, 10, 288. [Google Scholar] [CrossRef] [PubMed]
- Jacob, R.E.; Minard, K.R.; Laicher, G.; Timchalk, C. 3D 3He diffusion MRI as a local in vivo morphometric tool to evaluate emphysematous rat lungs. J. Appl. Physiol. 2008, 105, 1291–1300. [Google Scholar] [CrossRef]
- Herring, M.J.; Putney, L.F.; Wyatt, G.; Finkbeiner, W.E.; Hyde, D.M. Growth of alveoli during postnatal development in humans based on stereological estimation. Am. J. Physiol. Lung Cell Mol. Physiol. 2014, 307, L338–L344. [Google Scholar] [CrossRef] [PubMed]
- Darlow, B.A.; Austin, N.C. Selenium supplementation to prevent short-term morbidity in preterm neonates. Cochrane Database Syst. Rev. 2003, 2003, CD003312. [Google Scholar] [CrossRef] [PubMed]
- Mu, J.; Lei, L.; Zheng, Y.; Liu, J.; Li, J.; Li, D.; Wang, G.; Liu, Y. Oxidative Stress Induced by Selenium Deficiency Contributes to Inflammation, Apoptosis and Necroptosis in the Lungs of Calves. Antioxidants 2023, 12, 796. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.Y.; Picciano, M.F.; Wallig, M.A.; Milner, J.A. The role of selenium nutrition in the development of neonatal rat lung. Pediatr. Res. 1991, 29, 440–445. [Google Scholar] [CrossRef] [PubMed]
- Hawker, F.H.; Ward, H.E.; Stewart, P.M.; Wynne, L.A.; Snitch, P.J. Selenium deficiency augments the pulmonary toxic effects of oxygen exposure in the rat. Eur. Respir. J. 1993, 6, 1317–1323. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.Y.; Picciano, M.F.; Wallig, M.A. Postnatal selenium repletion protects lungs of neonatal rats from hyperoxia. J. Nutr. 1992, 122, 1760–1767. [Google Scholar] [CrossRef] [PubMed]
- Sherlock, L.G.; McCarthy, W.C.; Grayck, M.R.; Solar, M.; Hernandez, A.; Zheng, L.; Delaney, C.; Tipple, T.E.; Wright, C.J.; Nozik, E.S. Neonatal Selenium Deficiency Decreases Selenoproteins in the Lung and Impairs Pulmonary Alveolar Development. Antioxidants 2022, 11, 2417. [Google Scholar] [CrossRef] [PubMed]
- Bouch, S.; O’Reilly, M.; de Haan, J.B.; Harding, R.; Sozo, F. Does lack of glutathione peroxidase 1 gene expression exacerbate lung injury induced by neonatal hyperoxia in mice? Am. J. Physiol. Lung Cell Mol. Physiol. 2017, 313, L115–L125. [Google Scholar] [CrossRef] [PubMed]
- Locy, M.L.; Rogers, L.K.; Prigge, J.R.; Schmidt, E.E.; Arner, E.S.; Tipple, T.E. Thioredoxin Reductase Inhibition Elicits Nrf2-Mediated Responses in Clara Cells: Implications for Oxidant-Induced Lung Injury. Antioxid. Redox Signal. 2012, 17, 1407–1416. [Google Scholar] [CrossRef] [PubMed]
- Land, S.C.; Wilson, S.M. Redox regulation of lung development and perinatal lung epithelial function. Antioxid. Redox Signal. 2005, 7, 92–107. [Google Scholar] [CrossRef] [PubMed]
- Tamatam, C.M.; Reddy, N.M.; Potteti, H.R.; Ankireddy, A.; Noone, P.M.; Yamamoto, M.; Kensler, T.W.; Reddy, S.P. Preconditioning the immature lung with enhanced Nrf2 activity protects against oxidant-induced hypoalveolarization in mice. Sci. Rep. 2020, 10, 19034. [Google Scholar] [CrossRef]
- Cho, H.Y.; Van Houten, B.; Wang, X.; Miller-DeGraff, L.; Fostel, J.; Gladwell, W.; Perrow, L.; Panduri, V.; Kobzik, L.; Yamamoto, M.; et al. Targeted deletion of nrf2 impairs lung development and oxidant injury in neonatal mice. Antioxid. Redox Signal. 2012, 17, 1066–1082. [Google Scholar] [CrossRef]
- Aros, C.J.; Pantoja, C.J.; Gomperts, B.N. Wnt signaling in lung development, regeneration, and disease progression. Commun. Biol. 2021, 4, 601. [Google Scholar] [CrossRef]
- Paul, M.K.; Bisht, B.; Darmawan, D.O.; Chiou, R.; Ha, V.L.; Wallace, W.D.; Chon, A.T.; Hegab, A.E.; Grogan, T.; Elashoff, D.A.; et al. Dynamic changes in intracellular ROS levels regulate airway basal stem cell homeostasis through Nrf2-dependent Notch signaling. Cell Stem Cell 2014, 15, 199–214. [Google Scholar] [CrossRef]
- Wakabayashi, N.; Chartoumpekis, D.V.; Kensler, T.W. Crosstalk between Nrf2 and Notch signaling. Free Radic. Biol. Med. 2015, 88 Pt B, 158–167. [Google Scholar] [CrossRef]
- Wakabayashi, N.; Skoko, J.J.; Chartoumpekis, D.V.; Kimura, S.; Slocum, S.L.; Noda, K.; Palliyaguru, D.L.; Fujimuro, M.; Boley, P.A.; Tanaka, Y.; et al. Notch-Nrf2 axis: Regulation of Nrf2 gene expression and cytoprotection by notch signaling. Mol. Cell Biol. 2014, 34, 653–663. [Google Scholar] [CrossRef]
- Wu, X.; van Dijk, E.M.; Ng-Blichfeldt, J.P.; Bos, I.S.; Ciminieri, C.; Königshoff, M.; Kistemaker, L.E.; Gosens, R. Mesenchymal WNT-5A/5B Signaling Represses Lung Alveolar Epithelial Progenitors. Cells. 2019, 8, 1147. [Google Scholar] [CrossRef] [PubMed]
- Wei, M.; Zhang, C.; Tian, Y.; Du, X.; Wang, Q.; Zhao, H. Expression and Function of WNT6: From Development to Disease. Front. Cell Dev. Biol. 2020, 8, 558155. [Google Scholar] [CrossRef] [PubMed]
- Tsao, P.N.; Matsuoka, C.; Wei, S.C.; Sato, A.; Sato, S.; Hasegawa, K.; Chen, H.K.; Ling, T.Y.; Mori, M.; Cardoso, W.V.; et al. Epithelial Notch signaling regulates lung alveolar morphogenesis and airway epithelial integrity. Proc. Natl. Acad. Sci. USA 2016, 113, 8242–8247. [Google Scholar] [CrossRef] [PubMed]
- Cui, W.; Zhang, Z.; Zhang, P.; Qu, J.; Zheng, C.; Mo, X.; Zhou, W.; Xu, L.; Yao, H.; Gao, J. Nrf2 attenuates inflammatory response in COPD/emphysema: Crosstalk with Wnt3a/beta-catenin and AMPK pathways. J. Cell Mol. Med. 2018, 22, 3514–3525. [Google Scholar] [CrossRef] [PubMed]
- Rada, P.; Rojo, A.I.; Offergeld, A.; Feng, G.J.; Velasco-Martín, J.P.; González-Sancho, J.M.; Valverde, A.M.; Dale, T.; Regadera, J.; Cuadrado, A. WNT-3A regulates an Axin1/NRF2 complex that regulates antioxidant metabolism in hepatocytes. Antioxid. Redox Signal. 2015, 22, 555–571. [Google Scholar] [CrossRef]
Significant Genes in Each Comparison | |||
---|---|---|---|
O2 vs. RA in SeS | O2 vs. RA in SeD | SeS vs. SeD in RA | SeS vs. SeD in O2 |
6813 | 4239 | 2816 | 782 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bailey-Downs, L.C.; Sherlock, L.G.; Crossley, M.N.; Rivera Negron, A.; Pierce, P.T.; Wang, S.; Zhong, H.; Carter, C.; Burge, K.; Eckert, J.V.; et al. Selenium Deficiency Exacerbates Hyperoxia-Induced Lung Injury in Newborn C3H/HeN Mice. Antioxidants 2024, 13, 391. https://doi.org/10.3390/antiox13040391
Bailey-Downs LC, Sherlock LG, Crossley MN, Rivera Negron A, Pierce PT, Wang S, Zhong H, Carter C, Burge K, Eckert JV, et al. Selenium Deficiency Exacerbates Hyperoxia-Induced Lung Injury in Newborn C3H/HeN Mice. Antioxidants. 2024; 13(4):391. https://doi.org/10.3390/antiox13040391
Chicago/Turabian StyleBailey-Downs, Lora C., Laura G. Sherlock, Michaela N. Crossley, Aristides Rivera Negron, Paul T. Pierce, Shirley Wang, Hua Zhong, Cynthia Carter, Kathryn Burge, Jeffrey V. Eckert, and et al. 2024. "Selenium Deficiency Exacerbates Hyperoxia-Induced Lung Injury in Newborn C3H/HeN Mice" Antioxidants 13, no. 4: 391. https://doi.org/10.3390/antiox13040391
APA StyleBailey-Downs, L. C., Sherlock, L. G., Crossley, M. N., Rivera Negron, A., Pierce, P. T., Wang, S., Zhong, H., Carter, C., Burge, K., Eckert, J. V., Rogers, L. K., Vitiello, P. F., & Tipple, T. E. (2024). Selenium Deficiency Exacerbates Hyperoxia-Induced Lung Injury in Newborn C3H/HeN Mice. Antioxidants, 13(4), 391. https://doi.org/10.3390/antiox13040391