Optimization of the Extraction Conditions of Polyphenols from Red Clover (Trifolium pratense L.) Flowers and Evaluation of the Antiradical Activity of the Resulting Extracts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Extraction
2.2.2. Beverage Preparation
2.2.3. Determination of the Content of Total Polyphenols
2.2.4. Determination of Phenolic Acids by HPLC-DAD Method
2.2.5. Determination of Flavonoids by HPLC-DAD Method
2.2.6. Antioxidant Properties
DPPH Method
ABTS Method
2.2.7. Statistical Analysis
3. Results and Discussion
3.1. Analysis of Red clover Extracts
3.1.1. Total Polyphenol Content
3.1.2. DPPH Free Radical Assay
3.1.3. ABTS Radical Assay
3.2. Enriched Drinks Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chao, Y.; Yuan, J.; Li, S.; Jia, S.; Han, L.; Xu, L. Analysis of transcripts and splice isoforms in red clover (Trifolium pratense L.) by single-molecule long-read sequencing. BMC Plant Biol. 2018, 18, 300. [Google Scholar] [CrossRef] [PubMed]
- Cosentino, M.; Marino, F.; Rasini, E.; Legnaro, M.; Bombelli, R.; Luini, A.; Pacchetti, B. Improved solubility and increased biological activity of NeoSol™ RCL40, a novel Red Clover Isoflavone Aglycones extract preparation. Biomed. Pharmacother. 2021, 111, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Dall’Agnol, M.; Montard, D.P.; Weiler, R.L.; Köpp, M.M.; Ferreira, J.L.; Mills, A.; Simioni, C.; Brunes, A.P. URSBRS Mesclador–The first red clover cultivar bred in southern Brazil. N. Z. J. Crop. Hortic. Sci. 2022, 50, 373–378. [Google Scholar] [CrossRef]
- Jovanović, A.; Petrović, P.; Ðorđević, V.; Zdunić, G.; Šavikin, K.; Bugarski, B. Polyphenols extraction from plant sources. Lek. Sirovine 2017, 37, 45–49. [Google Scholar] [CrossRef]
- Jaina, V.K.; Eedara, A.; Priya, S.S.; Jadav, S.S.; Chilaka, S.; Sistla, R.; Andugulapati, S.B. Anti-cancer activity of Biochanin A against multiple myeloma by targeting the CD38 and cancer stem-like cells. Proc. Biochem. 2022, 123, 11–26. [Google Scholar] [CrossRef]
- Tay, K.-C.; Tan, L.-T.-H.; Chan, C.-K.; Hong, S.-L.; Chan, K.-G.; Yap, W.-H.; Pusparajah, P.; Lee, L.-H.; Goh, B.-H. Formononetin: A Review of Its Anticancer Potentials and Mechanisms. Front. Pharm. 2019, 10, 820. [Google Scholar] [CrossRef] [PubMed]
- Stagos, D. Antioxidant Activity of Polyphenolic Plant Extracts. Antioxidants 2020, 9, 19. [Google Scholar] [CrossRef]
- Kanadys, W.; Baranska, A.; Jedrych, M.; Religioni, U.; Janiszewska, M. Effects of red clover (Trifolium pratense) isoflavones on the lipid profile of perimenopausal and postmenopausal women—A systematic review and meta-analysis. Maturitas 2020, 132, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Sarfraz, A.; Javeed, M.; Shan, M.A.; Hussain, G.; Shafiq, N.; Sarfraz, I.; Riaz, A.; Sadiqa, A.; Zara, R.; Zafar, S.; et al. Biochanin A: A Novel Bioactive Multifunctional Compound from Nature. Sci. Total Environ. 2020, 722, 137907. [Google Scholar] [CrossRef]
- Sordon, S.; Popłoński, J.; Tronina, T.; Huszcza, E. Microbial Glycosylation of Daidzein, Genistein and Biochanin A: Two New Glucosides of Biochanin A. Molecules 2017, 22, 81. [Google Scholar] [CrossRef]
- Burdyn, G.; Gałązka-Czarnecka, I.; Brzozowska, E.; Grzelczyk, J.; Mostowski, R.; Żyżelewicz, D.; Cerón-Carrasco, J.P.; Pérez-Sánchez, H. Evaluation of estrogenic activity of red clover (Trifolium pratense L.) sprouts cultivated under different conditions by content of isoflavones, calorimetric study and molecular modelling. Food Chem. 2018, 245, 324–336. [Google Scholar] [CrossRef]
- Lamber, M.N.T.; Thorup, A.C.; Hansen, E.S.S.; Jeppesen, P.B. Combined Red Clover isoflavones and probiotics potently reduce menopausal vasomotor symptoms. PLoS ONE 2017, 12, e0176590. [Google Scholar]
- Gałązka-Czarnecka, I.; Korzeniewska, E.; Czarnecki, A.; Kiełbasa, P.; Dróżdż, T. Modelling of Carotenoids Content in Red Clover Sprouts Using Light of Different Wavelength and Pulsed Electric Field. Appl. Sci. 2020, 10, 4143. [Google Scholar] [CrossRef]
- Gałązka-Czarnecka, I.; Korzeniewska, E.; Czarnecki, A.; Stańdo, J. Modification of pigments content in red clover sprouts with the use of pulsed electric field. J. Phys. Conf. Ser. 2021, 1782, 01200. [Google Scholar] [CrossRef]
- Amer, B.; Juul, L.; Møller, A.H.; Møller, H.S.; Dalsgaard, T.K. Improved solubility of proteins from white and red clover–Inhibition of redox enzymes. Int. J. Food Sci. Technol. 2021, 56, 302–311. [Google Scholar] [CrossRef]
- Gościniak, A.; Szulc, P.; Zielewicz, W.; Walkowiak, J.; Cielecka-Piontek, J. Multidirectional effects of red clover (Trifolium pratense L.) in support of menopause therapy. Molecules 2023, 28, 5178. [Google Scholar] [CrossRef]
- Guo, Z.; Liu, Y.; Xiang, J.; Liang, X. Mechanochemical preparation of red clover extract/β-cyclodextrin dispersion: Enhanced water solubility and activities in alleviating high-fat diet-induced lipid accumulation and gut microbiota dysbiosis in mice. Food Chem. 2023, 420, 136084. [Google Scholar] [CrossRef]
- Gadeyne, F.; Van Ranst, G.; Vlaeminck, B.; Vossen, E.; Van der Meeren, P.; Fievez, V. Protection of polyunsaturated oils against ruminal biohydrogenation and oxidation during storage using a polyphenol oxidase containing extract from red clover. Food Chem. 2015, 171, 241–250. [Google Scholar] [CrossRef] [PubMed]
- Slinkard, K.; Singleton, V.L. Total phenol analysis: Automation and comparison with manual methods. Am. J. Enol. Viticul. 1977, 28, 49–55. [Google Scholar] [CrossRef]
- Martinez-Cruz, O.; Paredes-Lopez, O. Phytochemical profile and nutraceutical potential of chia seeds (Salvia hispanica L.) by ultra high performance liquid chromatography. J. Chromat. A 2014, 1346, 43–48. [Google Scholar] [CrossRef]
- Song, T.T.; Hendrich, S.; Murphy, P.A. Estrogenic activity of glycitein, a soy isoflavone. J. Agric. Food Chem. 1999, 47, 1607–1610. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Rad. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Akbaribazm, M.; Khazaei, M.R.; Khazaei, M. Phytochemicals and antioxidant activity of alcoholic/hydroalcoholic extract of Trifolium pratense. Chin. Herb. Med. 2020, 12, 326–335. [Google Scholar] [CrossRef] [PubMed]
- Esmaeili, A.K.; Mat Taha, R.; Mohajer, S.; Banisalam, B. Antioxidant Activity and Total Phenolic and Flavonoid Content of Various Solvent Extracts from In Vivo and In Vitro Grown Trifolium pratense L. (Red Clover). BioMed. Res. Int. 2015, 2015, 643285. [Google Scholar] [CrossRef]
- Tava, A.; Pecio, Ł.; Lo Scalzo, R.; Stochmal, A.; Pecetti, L. Phenolic Content and Antioxidant Activity in Trifolium Germplasm from Different Environments. Molecules 2019, 24, 298. [Google Scholar] [CrossRef]
- Kazlauskaite, J.A.; Ivanauskas, L.; Marksa, M.; Bernatoniere, J. The Effect of Traditional and Cyclodextrin-Assisted Extraction Methods on Trifolium pratense L. (Red Clover) Extracts Antioxidant Potential. Antioxidants 2022, 11, 435. [Google Scholar] [CrossRef]
- Chiriac, E.R.; Chiţescu, C.L.; Sandru, C.; Geană, E.-I.; Lupoae, M.; Dobre, M.; Borda, D.; Gird, C.E.; Boscencu, R. Comparative Study of the Bioactive Properties and Elemental Composition of Red Clover (Trifolium pratense) and Alfalfa (Medicago sativa) Sprouts during Germination. Appl. Sci. 2020, 10, 7249. [Google Scholar] [CrossRef]
- Kaurinovic, B.; Popovic, M.; Vlaisavljevic, S.; Schwartsova, H.; Vojinovic-Miloradov, M. Antioxidant Profile of Trifolium pratense L. Molecules 2012, 17, 11156–11172. [Google Scholar] [CrossRef] [PubMed]
- Çölgeçen, H.; Koca, U.; Büyükkartal, H.N. Use of red clover (Trifolium pratense L.) seeds in human therapeutics. In Nuts and Seeds in Health and Disease Prevention; Academic Press: Cambridge, MA, USA, 2020; pp. 421–427. [Google Scholar] [CrossRef]
- Mikulić, M.; Atanacković, A.; Krstonošić, M.; Kladar, N.; Vasiljević, S.; Katanski, S.; Mamlić, Z.; Rakić, D.; Cvejić, J. Phytochemical Composition of Different Red Clover Genotypes Based on Plant Part and Genetic Traits. Foods 2024, 13, 103. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Li, L.; Chen, S.; Wang, L.; Lin, X. Deep eutectic solvent-based ultrasonic-assisted extraction of phenolic compounds from Moringa oleifera L. leaves: Optimization, comparison and antioxidant activity. Sep. Purif. Technol. 2020, 247, 117014. [Google Scholar] [CrossRef]
- Zheng, B.; Yuan, Y.; Xiang, J.; Jin, W.; Johnson, J.B.; Li, Z.; Luo, D. Green extraction of phenolic compounds from foxtail millet bran by ultrasonic-assisted deep eutectic solvent extraction: Optimization, comparison and bioactivities. LWT 2022, 154, 112740. [Google Scholar] [CrossRef]
Extract | Daidzein | Genistein | Quercetin | Rutin | Kaempferol |
---|---|---|---|---|---|
mg/g d.m. | |||||
Water | |||||
20 min | |||||
20 °C | 2.45 (±0.05) a | 2.92 (±0.23) a | 0.73 (±0.01) a | 0.24 (±0.01) a | * nd |
40 °C | 2.54 (±0.04) a | 3.13 (±0.01) ab | 0.67 (±0.03) a | 0.23 (±0.01) a | nd |
80 °C | 2.75 (±0.03) a | 3.24 (±0.03) b | 0.78 (±0.03) a | 0.25 (±0.02) a | 0.09 (±0.01) a |
40 min | |||||
20 °C | 1.78 (±0.03) b | 2.13 (±0.06) a | 0.79 (±0.00) a | 0.25 (±0.00) a | nd |
40 °C | 1.89 (±0.07) b | 2.23 (±0.04) a | 0.87 (±0.00) a | 0.27 (±0.00) a | nd |
80 °C | 1.90 (±0.02) b | 2.43 (±0.01) a | 0.84 (±0.01) a | 0.24 (±0.01) a | 0.09 (±0.03) a |
60 min | |||||
20 °C | 2.12 (±0.09) a | 2.71 (±0.02) a | 0.87 (±0.03) a | 0.23 (±0.01) a | nd |
40 °C | 2.16 (±0.06) a | 2.98 (±0.01) ab | 0.88 (±0.01) a | 0.26 (±0.00) a | nd |
80 °C | 2.45 (±0.02) a | 3.12 (±0.01) ab | 0.85 (±0.01) a | 0.24 (±0.00) a | 0.09 (±0.00) a |
Ethanol 40% | |||||
20 min | |||||
20 °C | 2.12 (±0.03) a | 2.87 (±0.00) a | 1.12 (±0.04) a | 0.27 (±0.01) a | 0.10 (±0.00) a |
40 °C | 2.42 (±0.02) a | 3.01 (±0.03) ab | 1.15 (±0.03) a | 0.26 (±0.01) a | 0.11 (±0.00) a |
80 °C | 2.67 (±0.01) a | 3.15 (±0.02) ab | 1.17 (±0.01) a | 0.28 (±0.03) a | 0.11 (±0.01) a |
40 min | |||||
20 °C | 2.69 (±0.04) a | 3.15 (±0.07) ab | 1.18 (±0.02) a | 0.25 (±0.01) a | 0.10 (±0.00) a |
40 °C | 2.70 (±0.06) a | 3.24 (±0.05) b | 1.16 (±0.01) a | 0.25 (±0.01) a | 0.11 (±0.00) a |
80 °C | 2.98 (±0.05) a | 3.26 (±0.03) b | 1.19 (±0.03) a | 0.26 (±0.02) a | 0.11 (±0.01) a |
60 min | |||||
20 °C | 2.72 (±0.05) a | 3.19 (±0.02) ab | 1.16 (±0.01) a | 0.26 (±0.01) a | 0.11 (±0.00) a |
40 °C | 2.87 (±0.03) a | 3.30 (±0.01) b | 1.25 (±0.00) a | 0.25 (±0.01) a | 0.12 (±0.00) a |
80 °C | 3.10 (±0.03) ac | 3.46 (±0.08) b | 1.27 (±0.03) a | 0.27 (±0.01) a | 0.11 (±0.01) a |
Ethanol 60% | |||||
20 min | |||||
20 °C | 2.89 (±0.09) a | 3.25 (±0.01) b | 1.18 (±0.06) a | 0.27 (±0.02) a | 0.10 (±0.01) a |
40 °C | 2.97 (±0.02) a | 3.37 (±0.01) b | 1.23 (±0.03) a | 0.27 (±0.02) a | 0.11 (±0.01) a |
80 °C | 3.17 (±0.01) ac | 3.65 (±0.04) b | 1.25 (±0.03) a | 0.28 (±0.03) a | 0.11 (±0.02) a |
40 min | |||||
20 °C | 2.90 (±0.04) a | 3.45 (±0.02) b | 1.18 (±0.01) a | 0.27 (±0.00) a | 0.11 (±0.01) a |
40 °C | 3.12 (±0.03) ac | 3.49 (±0.03) b | 1.24 (±0.01) a | 0.28 (±0.02) a | 0.12 (±0.01) a |
80 °C | 3.34 (±0.03) c | 3.87 (±0.00) bc | 1.25 (±0.01) a | 0.30 (±0.01) a | 0.12 (±0.02) a |
60 min | |||||
20 °C | 3.98 (±0.04) d | 3.76 (±0.02) bc | 1.21 (±0.02) a | 0.22 (±0.01) a | 0.09 (±0.03) a |
40 °C | 4.34 (±0.03) d | 3.54 (±0.01) b | 1.23 (±0.02) a | 0.26 (±0.01) a | 0.10 (±0.02) a |
80 °C | 4.48 (±0.01) d | 4.12 (±0.06)c | 1.23 (±0.03) a | 0.25 (±0.03) a | 0.09 (±0.02) a |
Ethanol 80% | |||||
20 min | |||||
20 °C | 4,35 (±0.01) d | 5.23 (±0.05) d | 1.19 (±0.03) | 0.22 (±0.02) a | 0.10 (±0.00) a |
40 °C | 4.64 (±0.04) d | 5.78 (±0.01) d | 1.24 (±0.03) a | 0.23 (±0.01) a | 0.10 (±0.01) a |
80 °C | 4.73 (±0.04) d | 5.92 (±0.02) d | 1.23 (±0.03) a | 0.24 (±0.00) a | 0.11 (±0.01) a |
40 min | |||||
20 °C | 4.60 (±0.06) d | 6.15 (±0.01) d | 1.23 (±0.01) a | 0.23 (±0.00) a | 0.11 (±0.01) a |
40 °C | 4.89 (±0.03) d | 6.65 (±0.03) d | 1.23 (±0.02) a | 0.25 (±0.00) a | 0.10 (±0.01) a |
80 °C | 5.11 (±0.02) e | 7.24 (±0.03) e | 1.25 (±0.02) a | 0.26 (±0.01) a | 0.10 (±0.01) a |
60 min | |||||
20 °C | 4.68 (±0.02) d | 6.24 (±0.04) d | 1.20 (±0.05) a | 0.24 (±0.02) a | 0.11 (±0.01) a |
40 °C | 4.92 (±0.03) d | 6.76 (±0.02) d | 1.20 (±0.05) a | 0.26 (±0.02) a | 0.12 (±0.01) a |
80 °C | 5.00 (±0.03) de | 7.14 (±0.01) e | 1.20 (±0.03) a | 0.27 (±0.03) a | 0.12 (±0.01) a |
Extract | Caffeic Acid | Chlorogenic Acid | Gallic Acid |
---|---|---|---|
mg/g d. m. | |||
Water | |||
20 min | |||
20 °C | nd | nd | nd |
40 °C | nd | nd | nd |
80 °C | 0.09 (±0.01) | 0.11 (±0.01) a | 0.09 (±0.00) a |
40 min | |||
20 °C | nd | 0.09 (±0.00) a | nd |
40 °C | nd | 0.10 (±0.01) a | nd |
80 °C | 0.09 (±0.02) a | 0.10 (±0.01) a | 0.09 (±0.00) a |
60 min | |||
20 °C | 0.08 (±0.01) a | 0.11 (±0.01) a | nd |
40 °C | 0.09 (±0.00) a | 0.10 (±0.02) a | nd |
80 °C | 0.10 (±0.01) a | 0.10 (±0.00) a | 0.11 (±0.00) a |
Ethanol 40% | |||
20 min | |||
20 °C | nd | nd | 0.10 (±0.02) a |
40 °C | nd | 0.21 (±0.00) a | 0.10 (±0.01) a |
80 °C | 0.09 (±0.03) a | 0.22 (±0.01) a | 0.12 (±0.01) a |
40 min | |||
20 °C | 0.09 (±0.00) a | 0.10 (±0.01) a | 0.09 (±0.01) a |
40 °C | 0.10 (±0.00) a | 0.19 (±0.01) a | 0.09 (±0.01) a |
80 °C | 0.10 (±0.00) a | 0.22 (±0.00) a | 0.12 (±0.01) a |
60 min | |||
20 °C | 0.10 (±0.00) a | 0.17 (±0.01) a | 0.10 (±0.00) a |
40 °C | 0.10 (±0.00) a | 0.20 (±0.01) a | 0.11 (±0.00) a |
80 °C | 0.11 (±0.01) a | 0.22 (±0.02) a | 0.11 (±0.01) a |
Ethanol 60% | |||
20 min | |||
20 °C | 0.10 (±0.00) a | 0.19 (±0.01) a | 0.09 (±0.00) a |
40 °C | 0.10 (±0.00) a | 0.22 (±0.00) a | 0.10 (±0.01) a |
80 °C | 0.11 (±0.01) a | 0.22 (±0.00) a | 0.11 (±0.00) a |
40 min | |||
20 °C | 0.10 (±0.02) a | 0.20 (±0.00) a | 0.11 (±0.01) a |
40 °C | 0.11 (±0.03) a | 0.25 (±0.00) a | 0.11 (±0.01) a |
80 °C | 0.12 (±0.01) a | 0.23 (±0.01) a | 0.12 (±0.01) a |
60 min | |||
20 °C | 0.10 (±0.00) a | 0.19 (±0.00) a | 0.10 (±0.01) a |
40 °C | 0.10 (±0.00) a | 0.21 (±0.03) a | 0.10 (±0.01) a |
80 °C | 0.10 (±0.02) a | 0.22 (±0.01) a | 0.11 (±0.01) a |
Ethanol 80% | |||
20 min | |||
20 °C | 0.11 (±0.01) a | 0.20 (±0.01) a | 0.12 (±0.00) a |
40 °C | 0.10 (±0.01) a | 0.23 (±0.01) a | 0.12 (±0.00) a |
80 °C | 0.11 (±0.01) a | 0.22 (±0.01) a | 0.11 (±0.01) a |
40 min | |||
20 °C | 0.12 (±0.00) a | 0.23 (±0.00) a | 0.10 (±0.01) a |
40 °C | 0.11 (±0.01) a | 0.23 (±0.00) a | 0.11 (±0.01) a |
80 °C | 0.11 (±0.01) a | 0.23 (±0.01) a | 0.11 (±0.02) a |
60 min | |||
20 °C | 0.12 (±0.00) a | 0.21 (±0.00) a | 0.12 (±0.01) a |
40 °C | 0.13 (±0.02) a | 0.22 (±0.00) a | 0.12 (±0.01) a |
80 °C | 0.15 (±0.01) a | 0.23 (±0.01) a | 0.13 (±0.01) a |
Sample | Addition Level [%] | Total Polyphenol Content [mg GAE/100 cm3 Drink] | SD |
---|---|---|---|
C | - | 110.35 a | 6.60 |
EW | 2 | 95.61 a | 3.05 |
EW | 5 | 172.49 b | 5.46 |
EEtOH | 2 | 96.62 a | 1.37 |
EEtOH | 5 | 183.10 b | 1.95 |
Sample | Daidzein | Genistein | Quercetin | Rutin | Kaempferol | Caffeic Acid | Chlorogenic Acid | Gallic Acid |
---|---|---|---|---|---|---|---|---|
[mg/100 cm3] | ||||||||
C | nd * | nd | 1.07 (±0.23) a | 1.02 (±0.06) a | 0.92 (±0.05) a | 0.54 (±0.04) a | 0.92 (±0.03) a | 0.32 (±0.02) a |
EW 2% | 5.32 (±0.92) A | 7.45 (±0.95) A | 2.70 (±0.72) bA | 2.51 (±0.09) bA | 0.98 (±0.02) aA | 0.57 (±0.93) aA | 0.92 (±0.02) aA | 0.32 (±0.02) aA |
EW 5% | 6.67 (±1.02) A | 8.67 (±0.97) A | 0.89 (±0.62) bA | 2.67 (±0.68) bA | 0.95 (±0.02) aA | 0.54 (±0.2) aA | 0.96 (±0.10) aA | 0.32 (±0.01) aA |
EEtOH 2% | 12.02 (±1.12) B | 14.98 (±0.12) B | 3.08 (±0.73) bA | 2.89 (±0.57) bA | 0.99 (±0.03) aA | 0.59 (±0.04) aA | 0.95 (±0.06) aA | 0.32 (±0.03) aA |
EEtOH 5% | 21.76 (±1.23) C | 27.78 (±1.15) C | 3.10 (±0.23) bA | 2.79 (±0.16) bA | 1.07 (±0.204) aA | 0.61 (±0.03) aA | 0.97 (±0.01) aA | 0.32 (±0.201) aA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Drużyńska, B.; Łukasiewicz, J.; Majewska, E.; Wołosiak, R. Optimization of the Extraction Conditions of Polyphenols from Red Clover (Trifolium pratense L.) Flowers and Evaluation of the Antiradical Activity of the Resulting Extracts. Antioxidants 2024, 13, 414. https://doi.org/10.3390/antiox13040414
Drużyńska B, Łukasiewicz J, Majewska E, Wołosiak R. Optimization of the Extraction Conditions of Polyphenols from Red Clover (Trifolium pratense L.) Flowers and Evaluation of the Antiradical Activity of the Resulting Extracts. Antioxidants. 2024; 13(4):414. https://doi.org/10.3390/antiox13040414
Chicago/Turabian StyleDrużyńska, Beata, Jakub Łukasiewicz, Ewa Majewska, and Rafał Wołosiak. 2024. "Optimization of the Extraction Conditions of Polyphenols from Red Clover (Trifolium pratense L.) Flowers and Evaluation of the Antiradical Activity of the Resulting Extracts" Antioxidants 13, no. 4: 414. https://doi.org/10.3390/antiox13040414
APA StyleDrużyńska, B., Łukasiewicz, J., Majewska, E., & Wołosiak, R. (2024). Optimization of the Extraction Conditions of Polyphenols from Red Clover (Trifolium pratense L.) Flowers and Evaluation of the Antiradical Activity of the Resulting Extracts. Antioxidants, 13(4), 414. https://doi.org/10.3390/antiox13040414