Studying the Changes in Physical Functioning and Oxidative Stress-Related Molecules in People Living with HIV after Switching from Triple to Dual Therapy
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Patient Characteristics
3.2. Cytoplasmic and Mitochondrial Factors of the Redox State Evaluation
3.3. Physical Functioning Evaluation and Differences between Physically Active and Inactive
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Palella, F.J., Jr.; Baker, R.K.; Moorman, A.C.; Chmiel, J.S.; Wood, K.C.; Brooks, J.T.; Holmberg, S.D. Mortality in the highly active antiretroviral therapy era: Changing causes of death and disease in the HIV outpatient study. J. Acquir. Immune Defic. Syndr. 2006, 43, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Alonso, A.; Barnes, A.E.; Guest, J.L.; Shah, A.; Shao, I.Y.; Marconi, V. HIV Infection and Incidence of Cardiovascular Diseases: An Analysis of a Large Healthcare Database. J. Am. Heart Assoc. 2019, 8, e012241. [Google Scholar] [CrossRef] [PubMed]
- Knobel, H.; Domingo, P.; Suarez-Lozano, I.; Gutierrez, F.; Estrada, V.; Palacios, R.; Antela, A.; Blanco, J.R.; Fulladosa, X.; Refollo, E. Rate of cardiovascular, renal and bone disease and their major risks factors in HIV-infected individuals on antiretroviral therapy in Spain. Enfermedades Infecc. Microbiol. Clin. 2018, 37, 373–379. [Google Scholar] [CrossRef] [PubMed]
- Weber, R.; Ruppik, M.; Rickenbach, M.; Spoerri, A.; Furrer, H.; Battegay, M.; Cavassini, M.; Calmy, A.; Bernasconi, E.; Schmid, P.; et al. Decreasing mortality and changing patterns of causes of death in the Swiss HIV Cohort Study. HIV Med. 2012, 14, 195–207. [Google Scholar] [CrossRef] [PubMed]
- Gervasoni, C.; Formenti, T.; Cattaneo, D. Management of Polypharmacy and Drug-Drug Interactions in HIV Patients: A 2-year Experience of a Multidisciplinary Outpatient Clinic. AIDS Rev. 2019, 21, 40–49. [Google Scholar] [CrossRef] [PubMed]
- Vella, S.; Schwartlander, B.; Sow, S.P.; Eholie, S.P.; Murphy, R.L. The history of antiretroviral therapy and of its implementation in resource-limited areas of the world. AIDS 2012, 26, 1231–1241. [Google Scholar] [CrossRef] [PubMed]
- Society, E.A.C. European AIDS Clinical Society Guidelines. Available online: www.eacsociety.org/files/guidelines_8.2-english.pdf (accessed on 5 February 2024).
- World Health Organization. World Health Organization Consolidated Guidelines on the Use of Antiretroviral Drugs for Treating and Preventing of HIV Infection. Available online: http://apps.who.int/iris/bitstream/10665/208825/1/9789241549684_eng (accessed on 5 February 2024).
- Serrano-Villar, S.; Perez-Elias, M.J.; Dronda, F.; Casado, J.L.; Moreno, A.; Royuela, A.; Perez-Molina, J.A.; Sainz, T.; Navas, E.; Hermida, J.M.; et al. Increased risk of serious non-AIDS-related events in HIV-infected subjects on antiretroviral therapy associated with a low CD4/CD8 ratio. PLoS ONE 2014, 9, e85798. [Google Scholar] [CrossRef] [PubMed]
- Cento, V.; Perno, C.F. Two-drug regimens with dolutegravir plus rilpivirine or lamivudine in HIV-1 treatment-naive, virologically-suppressed patients: Latest evidence from the literature on their efficacy and safety. J. Glob. Antimicrob. Resist. 2019, 20, 228–237. [Google Scholar] [CrossRef]
- Smit, M.; van Zoest, R.A.; Nichols, B.E.; Vaartjes, I.; Smit, C.; van der Valk, M.; van Sighem, A.; Wit, F.W.; Hallett, T.B.; Reiss, P. Cardiovascular Disease Prevention Policy in Human Immunodeficiency Virus: Recommendations from a Modeling Study. Clin. Infect. Dis. 2017, 66, 743–750. [Google Scholar] [CrossRef]
- Achhra, A.C.; Mocroft, A.; Reiss, P.; Sabin, C.; Ryom, L.; de Wit, S.; Smith, C.J.; d’Arminio Monforte, A.; Phillips, A.; Weber, R.; et al. Short-term weight gain after antiretroviral therapy initiation and subsequent risk of cardiovascular disease and diabetes: The D:A:D study. HIV Med. 2016, 17, 255–268. [Google Scholar] [CrossRef]
- Ruane, P.J.; DeJesus, E.; Berger, D.; Markowitz, M.; Bredeek, U.F.; Callebaut, C.; Zhong, L.; Ramanathan, S.; Rhee, M.S.; Fordyce, M.W.; et al. Antiviral activity, safety, and pharmacokinetics/pharmacodynamics of tenofovir alafenamide as 10-day monotherapy in HIV-1-positive adults. J. Acquir. Immune Defic. Syndr. 2013, 63, 449–455. [Google Scholar] [CrossRef] [PubMed]
- Schafer, J.J.; Sassa, K.N.; O’Connor, J.R.; Shimada, A.; Keith, S.W.; DeSimone, J.A. Changes in Body Mass Index and Atherosclerotic Disease Risk Score After Switching from Tenofovir Disoproxil Fumarate to Tenofovir Alafenamide. Open Forum Infect. Dis. 2019, 6, ofz414. [Google Scholar] [CrossRef]
- Sax, P.E.; Erlandson, K.M.; Lake, J.E.; McComsey, G.A.; Orkin, C.; Esser, S.; Brown, T.T.; Rockstroh, J.K.; Wei, X.; Carter, C.C.; et al. Weight Gain Following Initiation of Antiretroviral Therapy: Risk Factors in Randomized Comparative Clinical Trials. Clin. Infect. Dis. 2019, 71, 1379–1389. [Google Scholar] [CrossRef] [PubMed]
- Huhn, G.D.; Shamblaw, D.J.; Baril, J.G.; Hsue, P.Y.; Mills, B.L.; Nguyen-Cleary, T.; McCallister, S.; Das, M. Atherosclerotic Cardiovascular Disease Risk Profile of Tenofovir Alafenamide versus Tenofovir Disoproxil Fumarate. Open Forum Infect. Dis. 2020, 7, ofz472. [Google Scholar] [CrossRef] [PubMed]
- Surial, B.; Mugglin, C.; Calmy, A.; Cavassini, M.; Gunthard, H.F.; Stockle, M.; Bernasconi, E.; Schmid, P.; Tarr, P.E.; Furrer, H.; et al. Weight and Metabolic Changes after Switching from Tenofovir Disoproxil Fumarate to Tenofovir Alafenamide in People Living with HIV: A Cohort Study. Ann. Intern. Med. 2021, 174, 758–767. [Google Scholar] [CrossRef] [PubMed]
- Venter, W.D.F.; Moorhouse, M.; Sokhela, S.; Fairlie, L.; Mashabane, N.; Masenya, M.; Serenata, C.; Akpomiemie, G.; Qavi, A.; Chandiwana, N.; et al. Dolutegravir plus Two Different Prodrugs of Tenofovir to Treat HIV. N. Engl. J. Med. 2019, 381, 803–815. [Google Scholar] [CrossRef] [PubMed]
- Venter, W.D.F.; Sokhela, S.; Simmons, B.; Moorhouse, M.; Fairlie, L.; Mashabane, N.; Serenata, C.; Akpomiemie, G.; Masenya, M.; Qavi, A.; et al. Dolutegravir with emtricitabine and tenofovir alafenamide or tenofovir disoproxil fumarate versus efavirenz, emtricitabine, and tenofovir disoproxil fumarate for initial treatment of HIV-1 infection (ADVANCE): Week 96 results from a randomised, phase 3, non-inferiority trial. Lancet HIV 2020, 7, e666–e676. [Google Scholar] [CrossRef]
- Ogbuagu, O.; Ruane, P.J.; Podzamczer, D.; Salazar, L.C.; Henry, K.; Asmuth, D.M.; Wohl, D.; Gilson, R.; Shao, Y.; Ebrahimi, R.; et al. Long-term safety and efficacy of emtricitabine and tenofovir alafenamide vs emtricitabine and tenofovir disoproxil fumarate for HIV-1 pre-exposure prophylaxis: Week 96 results from a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet HIV 2021, 8, e397–e407. [Google Scholar] [CrossRef] [PubMed]
- Achhra, A.C.; Boyd, M.A. Antiretroviral regimens sparing agents from the nucleoside(tide) reverse transcriptase inhibitor class: A review of the recent literature. AIDS Res. Ther. 2013, 10, 33. [Google Scholar] [CrossRef]
- Cahn, P.; Rolon, M.J.; Figueroa, M.I.; Gun, A.; Patterson, P.; Sued, O. Dolutegravir-lamivudine as initial therapy in HIV-1 infected, ARV-naive patients, 48-week results of the PADDLE (Pilot Antiretroviral Design with Dolutegravir LamivudinE) study. J. Int. AIDS Soc. 2017, 20, 21678. [Google Scholar] [CrossRef]
- Psomas, C.; Younas, M.; Reynes, C.; Cezar, R.; Portales, P.; Tuaillon, E.; Guigues, A.; Merle, C.; Atoui, N.; Fernandez, C.; et al. One of the immune activation profiles observed in HIV-1-infected adults with suppressed viremia is linked to metabolic syndrome: The ACTIVIH study. eBioMedicine 2016, 8, 265–276. [Google Scholar] [CrossRef] [PubMed]
- Vassallo, M.; Durant, J.; Fabre, R.; Ticchioni, M.; Lotte, L.; Sindt, A.; Puchois, A.; De Monte, A.; Cezar, R.; Corbeau, P.; et al. Switching to a Dual-Drug Regimen in HIV-Infected Patients Could Be Associated with Macrophage Activation? Front. Med. 2021, 8, 712880. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Cordon, A.; Assoumou, L.; Moyle, G.; Waters, L.; Johnson, M.; Domingo, P.; Fox, J.; Stellbrink, H.J.; Guaraldi, G.; Masia, M.; et al. Switching from boosted PIs to dolutegravir decreases soluble CD14 and adiponectin in high cardiovascular risk people living with HIV. J. Antimicrob. Chemother. 2021, 76, 2380–2393. [Google Scholar] [CrossRef] [PubMed]
- Charpentier, C.; Peytavin, G.; Raffi, F.; Burdet, C.; Landman, R.; Le, M.P.; Katlama, C.; Collin, G.; Benalycherif, A.; Cabie, A.; et al. Pharmacovirological analyses of blood and male genital compartment in patients receiving dolutegravir + lamivudine dual therapy as a switch strategy (ANRS 167 LAMIDOL trial). J. Antimicrob. Chemother. 2020, 75, 1611–1617. [Google Scholar] [CrossRef] [PubMed]
- Yadav, A.; Kossenkov, A.V.; Knecht, V.R.; Showe, L.C.; Ratcliffe, S.J.; Montaner, L.J.; Tebas, P.; Collman, R.G. Evidence for Persistent Monocyte and Immune Dysregulation After Prolonged Viral Suppression Despite Normalization of Monocyte Subsets, sCD14 and sCD163 in HIV-Infected Individuals. Pathog. Immun. 2020, 4, 324–362. [Google Scholar] [CrossRef] [PubMed]
- Podzamczer, D.; Imaz, A. Dual antiretroviral therapy: Finding a place in the battle. Lancet HIV 2016, 3, e335–e336. [Google Scholar] [CrossRef] [PubMed]
- Kelly, S.G.; Nyaku, A.N.; Taiwo, B.O. Two-Drug Treatment Approaches in HIV: Finally Getting Somewhere? Drugs 2016, 76, 523–531. [Google Scholar] [CrossRef] [PubMed]
- Katlama, C.; Ghosn, J.; Murphy, R.L. Individualized antiretroviral therapeutic approaches: Less can be more. AIDS 2017, 31, 1065–1071. [Google Scholar] [CrossRef] [PubMed]
- Gutmann, C.; Cusini, A.; Gunthard, H.F.; Fux, C.; Hirschel, B.; Decosterd, L.A.; Cavassini, M.; Yerly, S.; Vernazza, P.L. Randomized controlled study demonstrating failure of LPV/r monotherapy in HIV: The role of compartment and CD4-nadir. AIDS 2010, 24, 2347–2354. [Google Scholar] [CrossRef]
- Imaz, A.; Cayuela, N.; Niubo, J.; Tiraboschi, J.M.; Izquierdo, C.; Cabellos, C.; Podzamczer, D. Short communication: Focal encephalitis related to viral escape and resistance emergence in cerebrospinal fluid in a patient on lopinavir/ritonavir monotherapy with plasma HIV-1 RNA suppression. AIDS Res. Hum. Retroviruses 2014, 30, 984–987. [Google Scholar] [CrossRef]
- Tiraboschi, J.; Hamzah, L.; Siddiqui, A.; Kulasegaram, R.; Post, F.; Fox, J. Cerebrospinal fluid viral escape and acute encephalitis in a patient on boosted protease inhibitor monotherapy. Antivir. Ther. 2016, 21, 461–464. [Google Scholar] [CrossRef]
- Lepik, K.J.; Harrigan, P.R.; Yip, B.; Wang, L.; Robbins, M.A.; Zhang, W.W.; Toy, J.; Akagi, L.; Lima, V.D.; Guillemi, S.; et al. Emergent drug resistance with integrase strand transfer inhibitor-based regimens. AIDS 2017, 31, 1425–1434. [Google Scholar] [CrossRef]
- Soriano, V.; Fernandez-Montero, J.V.; Benitez-Gutierrez, L.; Mendoza, C.; Arias, A.; Barreiro, P.; Pena, J.M.; Labarga, P. Dual antiretroviral therapy for HIV infection. Expert. Opin. Drug Saf. 2017, 16, 923–932. [Google Scholar] [CrossRef]
- Herzenberg, L.A.; De Rosa, S.C.; Dubs, J.G.; Roederer, M.; Anderson, M.T.; Ela, S.W.; Deresinski, S.C. Glutathione deficiency is associated with impaired survival in HIV disease. Proc. Natl. Acad. Sci. USA 1997, 94, 1967–1972. [Google Scholar] [CrossRef]
- Deresz, L.F.; Scholer, C.M.; de Bittencourt, P.; Karsten, M.; Ikeda, M.L.R.; Sonza, A.; Dal Lago, P. Exercise training reduces oxidative stress in people living with HIV/AIDS: A pilot study. HIV Clin. Trials 2018, 19, 152–157. [Google Scholar] [CrossRef]
- Jankowski, C.M.; Mawhinney, S.; Wilson, M.P.; Campbell, T.B.; Kohrt, W.M.; Schwartz, R.S.; Brown, T.T.; Erlandson, K.M. Body Composition Changes in Response to Moderate- or High-Intensity Exercise among Older Adults with or without HIV Infection. J. Acquir. Immune Defic. Syndr. 2020, 85, 340–345. [Google Scholar] [CrossRef]
- Jaggers, J.R.; Hand, G.A. Health Benefits of Exercise for People Living with HIV: A Review of the Literature. Am. J. Lifestyle Med. 2014, 10, 184–192. [Google Scholar] [CrossRef]
- McComsey, G.A.; Moser, C.; Currier, J.; Ribaudo, H.J.; Paczuski, P.; Dube, M.P.; Kelesidis, T.; Rothenberg, J.; Stein, J.H.; Brown, T.T. Body Composition Changes after Initiation of Raltegravir or Protease Inhibitors: ACTG A5260s. Clin. Infect. Dis. 2016, 62, 853–862. [Google Scholar] [CrossRef]
- Maduagwu, S.M.; Gashau, W.; Balami, A.; Kaidal, A.; Oyeyemi, A.Y.; Danue, B.A.; Umeonwuka, C.I.; Akanbi, O.A. Aerobic Exercise Improves Quality of Life and CD4 Cell Counts in HIV Seropositives in Nigeria. J. Hum. Virol. Retrovirol 2017, 5, 151. [Google Scholar] [CrossRef] [PubMed]
- Cusato, J.; Allegra, S.; Nicolo, A.; Calcagno, A.; D’Avolio, A. Precision medicine for HIV: Where are we? Pharmacogenomics 2017, 19, 145–165. [Google Scholar] [CrossRef] [PubMed]
- Calcagno, A.; Cusato, J.; D’Avolio, A.; Bonora, S. Genetic Polymorphisms Affecting the Pharmacokinetics of Antiretroviral Drugs. Clin. Pharmacokinet. 2016, 56, 355–369. [Google Scholar] [CrossRef]
- Barreiro, P.; Fernandez-Montero, J.V.; de Mendoza, C.; Labarga, P.; Soriano, V. Pharmacogenetics of antiretroviral therapy. Expert. Opin. Drug Metab. Toxicol. 2014, 10, 1119–1130. [Google Scholar] [CrossRef]
- Cattaneo, D.; Astuti, N.; Montrasio, C.; Calvagna, N.; Beltrami, M.; Perno, C.F.; Gervasoni, C. The case of multiple HIV virological failures in a compliant patient: Do pharmacogenetics matter? J. Antimicrob. Chemother. 2023, 79, 471–473. [Google Scholar] [CrossRef]
- Wartenberg, M.; Hoffmann, E.; Schwindt, H.; Grunheck, F.; Petros, J.; Arnold, J.R.; Hescheler, J.; Sauer, H. Reactive oxygen species-linked regulation of the multidrug resistance transporter P-glycoprotein in Nox-1 overexpressing prostate tumor spheroids. FEBS Lett. 2005, 579, 4541–4549. [Google Scholar] [CrossRef]
- Chen, M.; Li, W.; Wang, N.; Zhu, Y.; Wang, X. ROS and NF-kappaB but not LXR mediate IL-1beta signaling for the downregulation of ATP-binding cassette transporter A1. Am. J. Physiol. Cell Physiol. 2007, 292, C1493–C1501. [Google Scholar] [CrossRef]
- Cai, Y.; Lu, J.; Miao, Z.; Lin, L.; Ding, J. Reactive oxygen species contribute to cell killing and P-glycoprotein downregulation by salvicine in multidrug resistant K562/A02 cells. Cancer Biol. Ther. 2007, 6, 1794–1799. [Google Scholar] [CrossRef]
- Ivanov, A.V.; Bartosch, B.; Isaguliants, M.G. Oxidative Stress in Infection and Consequent Disease. Oxid. Med. Cell Longev. 2017, 2017, 3496043. [Google Scholar] [CrossRef]
- Lavanchy, D. The global burden of hepatitis C. Liver Int. 2009, 29 (Suppl. S1), 74–81. [Google Scholar] [CrossRef] [PubMed]
- Madan, V.; Bartenschlager, R. Structural and Functional Properties of the Hepatitis C Virus p7 Viroporin. Viruses 2015, 7, 4461–4481. [Google Scholar] [CrossRef] [PubMed]
- Geiszt, M.; Kopp, J.B.; Varnai, P.; Leto, T.L. Identification of renox, an NAD(P)H oxidase in kidney. Proc. Natl. Acad. Sci. USA 2000, 97, 8010–8014. [Google Scholar] [CrossRef] [PubMed]
- de Mochel, N.S.; Seronello, S.; Wang, S.H.; Ito, C.; Zheng, J.X.; Liang, T.J.; Lambeth, J.D.; Choi, J. Hepatocyte NAD(P)H oxidases as an endogenous source of reactive oxygen species during hepatitis C virus infection. Hepatology 2010, 52, 47–59. [Google Scholar] [CrossRef] [PubMed]
- Qadri, I.; Iwahashi, M.; Capasso, J.M.; Hopken, M.W.; Flores, S.; Schaack, J.; Simon, F.R. Induced oxidative stress and activated expression of manganese superoxide dismutase during hepatitis C virus replication: Role of JNK, p38 MAPK and AP-1. Biochem. J. 2004, 378, 919–928. [Google Scholar] [CrossRef] [PubMed]
- Lindsay, D.P.; Camara, A.K.; Stowe, D.F.; Lubbe, R.; Aldakkak, M. Differential effects of buffer pH on Ca2+-induced ROS emission with inhibited mitochondrial complexes I and III. Front. Physiol. 2015, 6, 58. [Google Scholar] [CrossRef]
- Tu, B.P.; Weissman, J.S. Oxidative protein folding in eukaryotes: Mechanisms and consequences. J. Cell Biol. 2004, 164, 341–346. [Google Scholar] [CrossRef]
- Pisaturo, M.; Onorato, L.; Russo, A.; Martini, S.; Chiodini, P.; Signoriello, S.; Maggi, P.; Coppola, N. Risk of failure in dual therapy versus triple therapy in naive HIV patients: A systematic review and meta-analysis. Clin. Microbiol. Infect. 2020, 27, 28–35. [Google Scholar] [CrossRef] [PubMed]
- Mondi, A.; Cozzi-Lepri, A.; Tavelli, A.; Rusconi, S.; Vichi, F.; Ceccherini-Silberstein, F.; Calcagno, A.; De Luca, A.; Maggiolo, F.; Marchetti, G.; et al. Effectiveness of dolutegravir-based regimens as either first-line or switch antiretroviral therapy: Data from the Icona cohort. J. Int. AIDS Soc. 2019, 22, e25227. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, T.; Bull, F. Development of the World Health Organization Global Physical Activity Questionnaire (GPAQ). J. Public Health 2006, 14, 66–70. [Google Scholar] [CrossRef]
- Richert, L.; Brault, M.; Mercie, P.; Dauchy, F.A.; Bruyand, M.; Greib, C.; Dabis, F.; Bonnet, F.; Chene, G.; Dehail, P. Decline in locomotor functions over time in HIV-infected patients. AIDS 2014, 28, 1441–1449. [Google Scholar] [CrossRef] [PubMed]
- Vance, D.E.; Fazeli, P.L.; Gakumo, C.A. The impact of neuropsychological performance on everyday functioning between older and younger adults with and without HIV. J. Assoc. Nurses AIDS Care 2012, 24, 112–125. [Google Scholar] [CrossRef]
- WHO. Global Status Report on Physical Activity 2022; WHO: Geneva, Switzerland, 2022; Available online: https://www.who.int/teams/health-promotion/physical-activity/global-status-report-on-physical-activity-2022 (accessed on 25 April 2024).
- Nguyen, H.; Moreno-Agostino, D.; Chua, K.C.; Vitoratou, S.; Prina, A.M. Trajectories of healthy ageing among older adults with multimorbidity: A growth mixture model using harmonised data from eight ATHLOS cohorts. PLoS ONE 2021, 16, e0248844. [Google Scholar] [CrossRef]
- Ramos, S.R.; O’Hare, O.M.; Hernandez Colon, A.; Kaplan Jacobs, S.; Campbell, B.; Kershaw, T.; Vorderstrasse, A.; Reynolds, H.R. Purely Behavioral: A Scoping Review of Nonpharmacological Behavioral and Lifestyle Interventions to Prevent Cardiovascular Disease in Persons Living with HIV. J. Assoc. Nurses AIDS Care 2021, 32, 536–547. [Google Scholar] [CrossRef] [PubMed]
- Anelli, T.; Bergamelli, L.; Margittai, E.; Rimessi, A.; Fagioli, C.; Malgaroli, A.; Pinton, P.; Ripamonti, M.; Rizzuto, R.; Sitia, R. Ero1alpha regulates Ca2+ fluxes at the endoplasmic reticulum-mitochondria interface (MAM). Antioxid. Redox Signal 2011, 16, 1077–1087. [Google Scholar] [CrossRef]
- Burdette, D.; Olivarez, M.; Waris, G. Activation of transcription factor Nrf2 by hepatitis C virus induces the cell-survival pathway. J. Gen. Virol. 2009, 91, 681–690. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.; Lazaro, C.A.; Campbell, J.S.; Parks, W.T.; Katze, M.G.; Fausto, N. Responses of nontransformed human hepatocytes to conditional expression of full-length hepatitis C virus open reading frame. Am. J. Pathol. 2007, 171, 1831–1846. [Google Scholar] [CrossRef]
- Brault, C.; Levy, P.; Duponchel, S.; Michelet, M.; Salle, A.; Pecheur, E.I.; Plissonnier, M.L.; Parent, R.; Vericel, E.; Ivanov, A.V.; et al. Glutathione peroxidase 4 is reversibly induced by HCV to control lipid peroxidation and to increase virion infectivity. Gut 2014, 65, 144–154. [Google Scholar] [CrossRef]
- Avadhani, N.G. Targeting of the same proteins to multiple subcellular destinations: Mechanisms and physiological implications. FEBS J. 2011, 278, 4217. [Google Scholar] [CrossRef] [PubMed]
- Fujita, N.; Itoh, T.; Omori, H.; Fukuda, M.; Noda, T.; Yoshimori, T. The Atg16L complex specifies the site of LC3 lipidation for membrane biogenesis in autophagy. Mol. Biol. Cell 2008, 19, 2092–2100. [Google Scholar] [CrossRef] [PubMed]
- Hamasaki, M.; Furuta, N.; Matsuda, A.; Nezu, A.; Yamamoto, A.; Fujita, N.; Oomori, H.; Noda, T.; Haraguchi, T.; Hiraoka, Y.; et al. Autophagosomes form at ER-mitochondria contact sites. Nature 2013, 495, 389–393. [Google Scholar] [CrossRef]
- Mari, M.; Morales, A.; Colell, A.; Garcia-Ruiz, C.; Fernandez-Checa, J.C. Mitochondrial glutathione, a key survival antioxidant. Antioxid. Redox Signal 2009, 11, 2685–2700. [Google Scholar] [CrossRef]
- Gu, J.C.; Wu, Y.G.; Huang, W.G.; Fan, X.J.; Chen, X.H.; Zhou, B.; Lin, Z.J.; Feng, X.L. Effect of vitamin D on oxidative stress and serum inflammatory factors in the patients with type 2 diabetes. J. Clin. Lab. Anal. 2022, 36, e24430. [Google Scholar] [CrossRef]
Triple Therapy | Double Therapy | ||||
---|---|---|---|---|---|
MEDIAN | IQR | MEDIAN | IQR | p-Value | |
Weight | 71.00 | 65.75–80.00 | 70.00 | 65.75–87.75 | |
White blood cells (wbc) | 5.69 | 4.72–7.30 | 5.54 | 5.16–6.45 | 0.865 |
Red blood cells (rbc) | 4.86 | 4.68–5.12 | 4.84 | 4.57–5.06 | 0.985 |
Hemoglobin (hgb) | 153.50 | 144.30–158.0 | 151.50 | 140.3–157.50 | 0.690 |
Hematocrit (hct) | 0.46 | 0.44–0.47 | 0.45 | 0.42–0.48 | 0.703 |
Platelets (plt) | 265.00 | 215.00–301.00 | 239.00 | 192.5–289.3 | 0.478 |
Total lymphocytes % | 76.56 | 69.95–83.10 | 75.40 | 67.4–80.7 | 0.413 |
Helper/inducer lymphocytes % | 36.00 | 32.00–43.00 | 35.50 | 31.50–40.00 | 0.674 |
Suppressor/cytotoxic lymphocytes % | 31.85 | 28.05–43.00 | 31.30 | 28.70–40.00 | 0.785 |
CD4/CD8 | 1.20 | 0.80–1.55 | 1.10 | 0.90–1.38 | 0.802 |
Glucose | 84.00 | 78.00–86.0 | 80.0 | 73.50–87.80 | 0.634 |
Creatinine | 1.00 | 0.89–1.09 | 1.01 | 0.90–1.14 | 0.521 |
Total cholesterol | 189.50 | 153.0–203.80 | 179.00 | 164.00–203.00 | 0.869 |
High-density lipoproteins (hdl) | 47.00 | 40.00–62.00 | 51.00 | 41.30–63.80 | 0.938 |
High-density lipoproteins (ldl) | 118.00 | 91.00–130.00 | 107.50 | 100.80–137.50 | 0.938 |
Triglycerides | 108.50 | 79.30–131.80 | 91 | 62.30–120.30 | 0.285 |
Aspartate amino transaminase (ast) | 25.50 | 22.80–30.80 | 27.50 | 23.80–31.00 | 0.330 |
Alanine amino transaminase (alt) | 27.50 | 20.50–33.80 | 28.00 | 20.00–34.00 | 0.553 |
Gamma glutamyl transpeptidase (ggt) | 19.00 | 16.00–27.00 | 19.00 | 14.00–24.00 | 0.861 |
Alkaline phosphatase | 62.00 | 52.00–82.00 | 63.50 | 56.80–73.80 | 0.938 |
Lactate dehydrogenase (ldh) | 177.50 | 161.80–200.80 | 180.50 | 159.30–208.8 | 0.823 |
Creatinine kinase (ck) | 134.50 | 89.80–192.50 | 159.50 | 96.00–220.8 | 0.409 |
Total bilirubin | 0.49 | 0.38–0.67 | 0.46 | 0.39–0.59 | 0.726 |
Sodium | 141.00 | 140.00–142.00 | 141.00 | 139.00–142.00 | 0.525 |
Potassium | 4.20 | 4.07–4.53 | 4.30 | 4.20–4.50 | 0.399 |
Calcium | 2.40 | 2.30–2.41 | 2.30 | 2.20–2.40 | 0.105 |
Phosphorus | 3.05 | 2.80–3.50 | 3.10 | 2.80–3.43 | 0.930 |
Vitamin D | 27.80 | 22.20–36.6 | 21.85 | 17.58–29.20 | 0.026 |
HIV RNA | Not detectable | Not detectable | - |
Drugs | Triple Therapy |
---|---|
DTG/ABV/3TC | 1 (4%) |
BIC/TAF/FTC | 12 (48%) |
DTG/TAF/FTC | 1 (4%) |
RPV/TAF/FTC | 10 (40%) |
DRV/c/TAF/FTC | 1 (4%) |
Dual Therapy | |
DTG/3TC | 20 (80%) |
DTG/RPV | 5 (20%) |
Triple Therapy | Double Therapy | ||||
---|---|---|---|---|---|
MEDIAN | IQR | MEDIAN | IQR | p-Value | |
Mitochondrial cysteine | 5.6 | 4.4–8.7 | 5.4 | 4.8–6.1 | 0.719 |
Mitochondrial glycine | 25.03 | 17.8–35.6 | 26.1 | 18.5–33.6 | 0.719 |
Mitochondrial glutamic acid | 11.2 | 9.4–13.1 | 11.1 | 9.9–13.3 | 0.379 |
Mitochondrial disolphorous glutathione | 0.75 | 0.69–0.78 | 0.75 | 0.65–0.81 | 0.764 |
Mitochondrial glutathione | 3.5 | 3.4–3.6 | 3.7 | 3.6–3.9 | 0.003 |
Mitochondrial homocysteine | 1.2 | 1.1–1.6 | 1.2 | 1.1–1.5 | 0.826 |
Mitochondrial methionine | 2.2 | 1.6–3.0 | 2.3 | 1.9–3.0 | 0.976 |
Mitochondrial n-acetyl cysteine | 1.5 | 1.4–1.6 | 1.6 | 1.2–1.7 | 0.478 |
Mitochondrial n-formyl-methionine | 4.5 | 4.1–4.9 | 4.5 | 4.1–5.0 | 0.569 |
Mitochondrial pyruvic acid | 12.3 | 10.7–15.8 | 12.1 | 11.1–15.3 | 0.976 |
Mitochondrial serine | 2.0 | 1.7–2.4 | 2.0 | 1.7–2.4 | 0.904 |
Mitochondrial taurine | 2.0 | 1.1–2.2 | 1.9 | 0.9–2.2 | 0.881 |
Mitochondrial s-adenosyl methionine | 0.11 | 0.08–0.13 | 0.12 | 0.10–0.13 | 0.207 |
Mitochondrial s-adenosyl homocysteine | 0.0053 | 0.0039–0.0073 | 0.0055 | 0.0041–0.0066 | 0.849 |
Cytosol cysteine | 3.9 | 3.6–4.8 | 4.2 | 3.8–4.5 | 0.285 |
Cytosol glycine | 7.1 | 6.3–8.3 | 7.4 | 6.9–8.2 | 0.308 |
Cytosol glutamic acid | 8.4 | 4.1–10.0 | 6.9 | 5.5–9.1 | 0.646 |
Cytosol disolphorous glutathione | 0.62 | 0.52–0.66 | 0.61 | 0.54–0.65 | 0.795 |
Cytosol glutathione | 35.0 | 25.3–56.1 | 33.6 | 25.8–57.6 | 0.834 |
Cytosol homocysteine | 1.8 | 0.8–4.5 | 1.2 | 0.9–4.6 | 0.772 |
Cytosol methionine | 2.9 | 2.1–3.2 | 3.1 | 2.6–3.7 | 0.267 |
Cytosol n-acetyl cysteine | 3.2 | 2.9–3.6 | 3.2 | 2.7–3.5 | 0.810 |
Cytosol n-formyl-methionine | 6.2 | 5.3–7.4 | 6.3 | 5.5–7.0 | 0.582 |
Cytosol pyruvic acid | 15.6 | 12.6–17.4 | 14.5 | 12.9–17.0 | 0.976 |
Cytosol serine | 3.0 | 2.1–3.2 | 2.7 | 1.9–3.3 | 0.490 |
Cytosol taurine | 16.5 | 14.0–29.0 | 15.8 | 14.1–17.7 | 0.298 |
Cytosol s-adenosyl methionine | 0.18 | 0.15–0.40 | 0.16 | 0.13–0.22 | 0.193 |
Cytosol s-adenosyl homocysteine | 0.0280 | 0.0135–0.0570 | 0.0284 | 0.0171–0.0387 | 0.944 |
Triple Therapy | Double Therapy | ||||
---|---|---|---|---|---|
Evaluated Factors | MEDIAN | IQR | MEDIAN | IQR | p-Value |
Dominant tapping test | 58 | 52–63 | 59 | 55–63 | 0.355 |
Non-dominant tapping test | 54 | 51–58 | 54 | 48–59 | 0.778 |
Tapping test percentile | 81 | 49–95 | 81 | 43–95 | 0.607 |
Dominant handgrip | 44 | 34–46 | 46 | 43–49 | 0.101 |
Non-dominant handgrip | 38 | 32–45 | 41 | 37–48 | 0.084 |
Handgrip percentile | 31.5 | 10.3–46.3 | 37.5 | 30.0–62.5 | 0.121 |
Sit and reach | 29 | 18–34 | 28 | 18–33 | 0.712 |
Sit and reach percentile | 81 | 33–92 | 73 | 25–93 | 0.938 |
Sit to stand | 6.14 | 5.38–6.90 | 5.65 | 4.42–6.06 | 0.103 |
Sit to stand percentile | 69 | 55–80 | 82 | 63–90 | 0.145 |
Step test | 104 | 88–119 | 96 | 80–114 | 0.277 |
Step test percentile | 52 | 26–71 | 60 | 35–80 | 0.242 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cusato, J.; Mulasso, A.; Ferrara, M.; Manca, A.; Antonucci, M.; Accardo, G.; Palermiti, A.; Bianco, G.; Chiara, F.; Mula, J.; et al. Studying the Changes in Physical Functioning and Oxidative Stress-Related Molecules in People Living with HIV after Switching from Triple to Dual Therapy. Antioxidants 2024, 13, 518. https://doi.org/10.3390/antiox13050518
Cusato J, Mulasso A, Ferrara M, Manca A, Antonucci M, Accardo G, Palermiti A, Bianco G, Chiara F, Mula J, et al. Studying the Changes in Physical Functioning and Oxidative Stress-Related Molecules in People Living with HIV after Switching from Triple to Dual Therapy. Antioxidants. 2024; 13(5):518. https://doi.org/10.3390/antiox13050518
Chicago/Turabian StyleCusato, Jessica, Anna Mulasso, Micol Ferrara, Alessandra Manca, Miriam Antonucci, Guido Accardo, Alice Palermiti, Gianluca Bianco, Francesco Chiara, Jacopo Mula, and et al. 2024. "Studying the Changes in Physical Functioning and Oxidative Stress-Related Molecules in People Living with HIV after Switching from Triple to Dual Therapy" Antioxidants 13, no. 5: 518. https://doi.org/10.3390/antiox13050518
APA StyleCusato, J., Mulasso, A., Ferrara, M., Manca, A., Antonucci, M., Accardo, G., Palermiti, A., Bianco, G., Chiara, F., Mula, J., Maddalone, M. G., Tettoni, M. C., Cuomo, S., Trevisan, G., Bonora, S., Di Perri, G., Lupo, C., Rainoldi, A., & D’Avolio, A. (2024). Studying the Changes in Physical Functioning and Oxidative Stress-Related Molecules in People Living with HIV after Switching from Triple to Dual Therapy. Antioxidants, 13(5), 518. https://doi.org/10.3390/antiox13050518