Lactobacillus delbrueckii subsp. bulgaricus 1.0207 Exopolysaccharides Attenuate Hydrogen Peroxide-Induced Oxidative Stress Damage in IPEC-J2 Cells through the Keap1/Nrf2 Pathway
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains and Cells
2.2. Extraction of EPS from L. bulgaricus 1.0207
2.3. Monosaccharide Composition Analysis
2.4. Molecular Weight Determination
2.5. Infrared Spectral Analysis
2.6. Antioxidant Activity Assay of L. bulgaricus 1.0207 EPS In Vitro
2.6.1. DPPH Radical Scavenging Activity
2.6.2. Hydroxyl Radical Scavenging Activity
2.6.3. Superoxide Anion Scavenging Activity
2.6.4. ABTS Radical Scavenging Capacity
2.7. Effects of L. bulgaricus 1.0207 EPS against Hydrogen Peroxide-Induced Oxidative Damage in IPEC-J2 Cells
2.7.1. CCK-8 Activity Assay
2.7.2. IPEC-J2 Cellular Antioxidant Capacity Assay
2.7.3. Quantitative RT-PCR
2.7.4. Western Blotting
2.8. Statistical Analysis
3. Results
3.1. Monosaccharide Composition and Molecular Weight of L. bulgaricus 1.0207 EPS
3.2. Functional Group Analysis of L. bulgaricus 1.0207 EPS
3.3. Antioxidant capacity of L. bulgaricus 1.0207 EPS In Vitro
3.4. Effects of L. bulgaricus 1.0207 EPS on H2O2-Induced Cytotoxicity in IPEC-J2 Cells
3.5. Effect of L. bulgaricus 1.0207 EPS on Antioxidant Capacity in H2O2-Induced IPEC-J2 Cells
3.6. Effect of L. bulgaricus 1.0207 EPS on Keap1/Nrf2 Pathway in H2O2-Induced IPEC-J2 Cells
3.7. Effect of L. bulgaricus 1.0207 EPS on Apoptotic Proteins in H2O2-Induced IPEC-J2 Cells
3.8. Effect of L. bulgaricus 1.0207 EPS on the Intestinal Barrier in H2O2-Induced IPEC-J2 Cells
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Navarro-Yepes, J.; Burns, M.; Anandhan, A.; Khalimonchuk, O.; Maria del Razo, L.; Quintanilla-Vega, B.; Pappa, A.; Panayiotidis, M.I.; Franco, R. Oxidative stress, redox signaling, and autophagy: Cell death versus survival. Antioxid. Redox Signal. 2014, 21, 66–85. [Google Scholar] [CrossRef] [PubMed]
- Bardaweel, S.K.; Gul, M.; Alzweiri, M.; Ishaqat, A.; ALSalamat, H.A.; Bashatwah, R.M. Reactive oxygen species: The dual role in physiological and pathological conditions of the human body. Eurasian J. Med. 2018, 50, 193. [Google Scholar] [CrossRef]
- Rojkind, M.; Dominguez-Rosales, J.-A.; Nieto, N.; Greenwel, P. Role of hydrogen peroxide and oxidative stress in healing responses. Cell Mol. Life Sci. 2002, 59, 1872–1891. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Lv, J.; Pan, L.; Zhang, Y. Roles and applications of probiotic Lactobacillus strains. Appl. Microbiol. Biotechnol. 2018, 102, 8135–8143. [Google Scholar] [CrossRef] [PubMed]
- Bhat, B.; Bajaj, B.K. Hypocholesterolemic and bioactive potential of exopolysaccharide from a probiotic Enterococcus faecium K1 isolated from kalarei. Bioresour. Technol. 2018, 254, 264–267. [Google Scholar] [CrossRef]
- Tang, W.; Dong, M.; Wang, W.; Han, S.; Rui, X.; Chen, X.; Jiang, M.; Zhang, Q.; Wu, J.; Li, W. Structural characterization and antioxidant property of released exopolysaccharides from Lactobacillus delbrueckii ssp. bulgaricus SRFM-1. Carbohydr. Polym. 2017, 173, 654–664. [Google Scholar] [CrossRef]
- Ayivi, R.D.; Ibrahim, S.A. Lactic acid bacteria: An essential probiotic and starter culture for the production of yoghurt. Int. J. Food Sci. Technol. 2022, 57, 7008–7025. [Google Scholar] [CrossRef]
- Li, X.; Zhang, Y.; Meng, X.; Pei, X.; Liu, X.; Li, C.; Wang, Y.; Li, M.; Li, B.; Chunyang, L.; et al. A novel Lactobacillus bulgaricus isolate can maintain the intestinal health, improve the growth performance and reduce the colonization of E. coli O157, H7 in broilers. Br. Poult. Sci. 2022, 63, 621–632. [Google Scholar]
- Moro-García, M.A.; Alonso-Arias, R.; Baltadjieva, M.; Benítez, C.F.; Barrial MA, F.; Ruisánchez, E.D.; Santos, R.A.; Sánchez, M.A.; Miján, J.S.; López-Larrea, C. Oral supplementation with Lactobacillus delbrueckii subsp. bulgaricus 8481 enhances systemic immunity in elderly subjects. Age 2013, 35, 1311–1326. [Google Scholar] [CrossRef]
- Silveira DS, C.; Veronez, L.C.; Lopes-Júnior, L.C.; Anatriello, E.; Brunaldi, M.O.; Pereira-da-Silva, G. Lactobacillus bulgaricus inhibits colitis-associated cancer via a negative regulation of intestinal inflammation in azoxymethane/dextran sodium sulfate model. World J. Gastroenterol. 2020, 26, 6782. [Google Scholar] [CrossRef]
- Sengupta, D.; Datta, S.; Biswas, D. Towards a better production of bacterial exopolysaccharides by controlling genetic as well as physico-chemical parameters. Appl. Microbiol. Biotechnol. 2018, 102, 1587–1598. [Google Scholar] [CrossRef] [PubMed]
- Saadat, Y.R.; Khosroushahi, A.Y.; Gargari, B.P. A comprehensive review of anticancer, immunomodulatory and health beneficial effects of the lactic acid bacteria exopolysaccharides. Carbohydr. Polym. 2019, 217, 79–89. [Google Scholar] [CrossRef]
- Li, J.; Li, Q.; Gao, N.; Wang, Z.; Li, F.; Li, J.; Shan, A. Exopolysaccharides produced by Lactobacillus rhamnosus GG alleviate hydrogen peroxide-induced intestinal oxidative damage and apoptosis through the Keap1/Nrf2 and Bax/Bcl-2 pathways in vitro. Food Funct. 2021, 12, 9632–9641. [Google Scholar] [CrossRef]
- Abdalla, A.K.; Ayyash, M.M.; Olaimat, A.N.; Osaili, T.M.; Al-Nabulsi, A.A.; Shah, N.P.; Holley, R. Exopolysaccharides as antimicrobial agents: Mechanism and spectrum of activity. Front. Microbiol. 2021, 12, 664395. [Google Scholar] [CrossRef]
- Salazar, N.; Neyrinck, A.M.; Bindels, L.B.; Druart, C.; Ruas-Madiedo, P.; Cani, P.D.; de Los Reyes-Gavilán, C.G.; Delzenne, N.M. Functional effects of EPS-producing bifidobacterium administration on energy metabolic alterations of diet-induced obese mice. Front. Microbiol. 2019, 10, 1809. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, G.; Liu, R.; Wei, M.; Zhang, J.; Sun, C. EPS364, a novel deep-sea bacterial exopolysaccharide, inhibits liver cancer cell growth and adhesion. Mar. Drugs 2021, 19, 171. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Pan, D.; Li, H.; Sun, Y.; Zeng, X.; Yan, B. Antioxidant and immunomodulatory activity of selenium exopolysaccharide produced by Lactococcus lactis subsp. lactis. Food Chem. 2013, 138, 84–89. [Google Scholar] [CrossRef] [PubMed]
- Sykiotis, G.P. Keap1/Nrf2 signaling pathway. Antioxidants 2021, 10, 828. [Google Scholar] [CrossRef]
- Yu, C.; Xiao, J.-H. The Keap1-Nrf2 system: A mediator between oxidative stress and aging. Oxid. Med. Cell Longev. 2021, 2021, 6635460. [Google Scholar] [CrossRef]
- Shaw, P.; Chattopadhyay, A. Nrf2–ARE signaling in cellular protection: Mechanism of action and the regulatory mechanisms. J. Cell Physiol. 2020, 235, 3119–3130. [Google Scholar] [CrossRef]
- Ayyash, M.; Abu-Jdayil, B.; Olaimat, A.; Esposito, G.; Itsaranuwat, P.; Osaili, T.; Obaid, R.; Kizhakkayil, J.; Liu, S. Physicochemical, bioactive and rheological properties of an exopolysaccharide produced by a probiotic Pediococcus pentosaceus M41. Carbohydr. Polym. 2020, 229, 115462. [Google Scholar] [CrossRef] [PubMed]
- Qiao, H.; Shao, H.; Zheng, X.; Liu, J.; Liu, J.; Huang, J.; Zhang, C.; Liu, Z.; Wang, J.; Guan, W. Modification of sweet potato (Ipomoea batatas Lam.) residues soluble dietary fiber following twin-screw extrusion. Food Chem. 2021, 335, 127522. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhao, X.; Yang, Y.; Zhao, A.; Yang, Z. Characterization and bioactivities of an exopolysaccharide produced by Lactobacillus plantarum YW32. Int. J. Biol. Macromol. 2015, 74, 119–126. [Google Scholar] [CrossRef]
- Zhao, L.; Wang, S.; Dong, J.; Shi, J.; Guan, J.; Liu, D.; Liu, F.; Li, B.; Huo, G. Identification, characterization, and antioxidant potential of Bifidobacterium longum subsp. longum strains isolated from feces of healthy infants. Front. Microbiol. 2021, 12, 756519. [Google Scholar] [CrossRef] [PubMed]
- Padayatty, S.J.; Katz, A.; Wang, Y.; Eck, P.; Kwon, O.; Lee, J.-H.; Chen, S.; Corpe, C.; Dutta, A.; Dutta, S.; et al. Vitamin C as an antioxidant: Evaluation of its role in disease prevention. J. Am. Coll. Nutr. 2003, 22, 18–35. [Google Scholar] [CrossRef]
- Min, W.-H.; Fang, X.-B.; Wu, T.; Fang, L.; Liu, C.-L.; Wang, J. Characterization and antioxidant activity of an acidic exopolysaccharide from Lactobacillus plantarum JLAU103. J. Biosci. Bioeng. 2019, 127, 758–766. [Google Scholar] [CrossRef]
- Wang, Y.; Du, R.; Qiao, X.; Zhao, B.; Zhou, Z.; Han, Y. Optimization and characterization of exopolysaccharides with a highly branched structure extracted from Leuconostoc citreum B-2. Int. J. Biol. Macromol. 2020, 142, 73–84. [Google Scholar] [CrossRef]
- Guan, J.; Liu, F.; Zhao, S.; Evivie, S.E.; Shi, J.; Li, N.; Zhao, L.; Yue, Y.; Xie, Q.; Huo, G.; et al. Effect of Bifidobacterium longum subsp. longum on the proliferative and tight-junction activities of Human Fetal Colon Epithelial Cells. J. Funct. Foods 2021, 86, 104715. [Google Scholar] [CrossRef]
- Ying, Z.; Han, X.; Li, J. Ultrasound-assisted extraction of polysaccharides from mulberry leaves. Food Chem. 2011, 127, 1273–1279. [Google Scholar] [CrossRef]
- Pan, D.; Mei, X. Antioxidant activity of an exopolysaccharide purified from Lactococcus lactis subsp. lactis 12. Carbohydr. Polym. 2010, 80, 908–914. [Google Scholar] [CrossRef]
- Kuang, M.-T.; Xu, J.-Y.; Li, J.-Y.; Yang, L.; Hou, B.; Zhao, Q.; Hu, J.-M. Purification, structural characterization and immunomodulatory activities of a polysaccharide from the fruiting body of Morchella sextelata. Int. J. Biol. Macromol. 2022, 213, 394–403. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.-Y.; Nie, S.-P.; Zhou, C.; Wan, Y.; Xie, M.-Y. Chemical characteristics and antioxidant activities of polysaccharide purified from the seeds of Plantago asiatica L. J. Sci. Food Agric. 2010, 90, 210–217. [Google Scholar] [CrossRef] [PubMed]
- Kogani, G.; Pajtinka, M.; Babincova, M.; Miadokova, E.; Rauko, P.; Slamenova, D.; Korolenko, T.A. Yeast cell wall polysaccharides as antioxidants and antimutagens: Can they fight cancer? Neoplasma 2008, 55, 387–393. [Google Scholar]
- Li, S.; Huang, R.; Shah, N.P.; Tao, X.; Xiong, Y.; Wei, H. Antioxidant and antibacterial activities of exopolysaccharides from Bifidobacterium bifidum WBIN03 and Lactobacillus plantarum R315. J. Dairy. Sci. 2014, 97, 7334–7343. [Google Scholar] [CrossRef]
- Seo, B.-J.; Bajpai, V.K.; Rather, I.A.; Park, Y.-H. Partially purified exopolysaccharide from Lactobacillus plantarum YML009 with total phenolic content, antioxidant and free radical scavenging efficacy. Indian. J. Pharm. Educ. Res. 2015, 49, 282–292. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, Z.; Tao, X.; Wei, H. Characterization and sulfated modification of an exopolysaccharide from Lactobacillus plantarum ZDY2013 and its biological activities. Carbohydr. Polym. 2016, 153, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Petry, S.; Furlan, S.; Crepeau, M.-J.; Cerning, J.; Desmazeaud, M. Factors affecting exocellular polysaccharide production by Lactobacillus delbrueckii subsp. bulgaricus grown in a chemically defined medium. Appl. Environ. Microbiol. 2000, 66, 3427–3431. [Google Scholar] [CrossRef]
- Lynch, K.M.; Zannini, E.; Coffey, A.; Arendt, E.K. Lactic acid bacteria exopolysaccharides in foods and beverages: Isolation, properties, characterization, and health benefits. Annu. Rev. Food Sci. Technol. 2018, 9, 155–176. [Google Scholar] [CrossRef]
- Sheng, J.; Sun, Y. Antioxidant properties of different molecular weight polysaccharides from Athyrium multidentatum (Doll.) Ching. Carbohydr. Polym. 2014, 108, 41–45. [Google Scholar] [CrossRef]
- Surayot, U.; Wang, J.; Seesuriyachan, P.; Kuntiya, A.; Tabarsa, M.; Lee, Y.; Kim, J.-K.; Park, W.; You, S. Exopolysaccharides from lactic acid bacteria: Structural analysis, molecular weight effect on immunomodulation. Int. J. Biol. Macromol. 2014, 68, 233–240. [Google Scholar] [CrossRef]
- Sies, H. Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress: Oxidative eustress. Redox Biol. 2017, 11, 613–619. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Z.; Liang, Z.; Yi, J.; Chen, X.; Li, R.; Wu, Y.; Wu, J.; Sun, J. Protective effect of koumine, an alkaloid from gelsemium sempervirens, on injury induced by H2O2 in IPEC-J2 cells. Int. J. Mol. Sci. 2019, 20, 754. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.; Li, S.; Guo, W.; Yang, Y.; Zhang, W.; Zhang, Q.; He, Y.; Yi, X.; Cui, T.; An, Y.; et al. Simvastatin protects human melanocytes from H2O2-induced oxidative stress by activating Nrf2. J. Investig. Dermatol. 2017, 137, 1286–1296. [Google Scholar] [CrossRef] [PubMed]
- Barnwal, B.; Karlberg, H.; Mirazimi, A.; Tan, Y.-J. The non-structural protein of Crimean-Congo hemorrhagic fever virus disrupts the mitochondrial membrane potential and induces apoptosis. J. Biol. Chem. 2016, 291, 582–592. [Google Scholar] [CrossRef]
- Wang, J.; Chen, M.; Wang, S.; Chu, X.; Ji, H. Identification of phytogenic compounds with antioxidant action that protect porcine intestinal epithelial cells from hydrogen peroxide induced oxidative damage. Antioxidants 2022, 11, 2134. [Google Scholar] [CrossRef]
Study Content | Treat with H2O2 | Treat with EPS |
---|---|---|
Effect of different H2O2 concentrations on the viability of IPEC-J2 cells | IPEC-J2 cells viability was determined after 4 h of treatment with 0, 50, 100, 200, 400, 600, 800, 1000, 1200, and 1400 μmol/L H2O2 | |
Effect of different EPS concentrations on the viability of IPEC-J2 cells | Cell viability was determined after 12 h of treatment with 0, 6.25, 12.5, 25, 50, 100, 200, 400, 600, and 800 μg/mL EPS | |
Effect of different EPS concentrations on the viability of IPEC-J2 cells treated with H2O2 | IPEC-J2 cells were treated with 0, 6.25, 12.5, 25, 50, 100, 200, 400, 600, and 800 μg/mL EPS for 12 h and then added 1000 μmol/L H2O2 for 4h to determine the viability |
Grouping | Treatment to Cells | |
---|---|---|
C | Normal cell medium 12 h | Normal cell medium 4 h |
H2O2 | Normal cell medium 12 h | Treat with 1000 μmol/L H2O2 4 h |
50 | Cell medium with 50 μg/mL EPS 12 h | Treat with 1000 μmol/L H2O2 4 h |
100 | Cell medium with 100 μg/mL EPS 12 h | Treat with 1000 μmol/L H2O2 4 h |
200 | Cell medium with 200 μg/mL EPS 12 h | Treat with 1000 μmol/L H2O2 4 h |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, D.; Yue, Y.; Ping, L.; Sun, C.; Zheng, T.; Cheng, Y.; Huo, G.; Li, B. Lactobacillus delbrueckii subsp. bulgaricus 1.0207 Exopolysaccharides Attenuate Hydrogen Peroxide-Induced Oxidative Stress Damage in IPEC-J2 Cells through the Keap1/Nrf2 Pathway. Antioxidants 2024, 13, 1150. https://doi.org/10.3390/antiox13091150
Liu D, Yue Y, Ping L, Sun C, Zheng T, Cheng Y, Huo G, Li B. Lactobacillus delbrueckii subsp. bulgaricus 1.0207 Exopolysaccharides Attenuate Hydrogen Peroxide-Induced Oxidative Stress Damage in IPEC-J2 Cells through the Keap1/Nrf2 Pathway. Antioxidants. 2024; 13(9):1150. https://doi.org/10.3390/antiox13091150
Chicago/Turabian StyleLiu, Deyu, Yingxue Yue, Lijun Ping, Cuicui Sun, Tingting Zheng, Yang Cheng, Guicheng Huo, and Bailiang Li. 2024. "Lactobacillus delbrueckii subsp. bulgaricus 1.0207 Exopolysaccharides Attenuate Hydrogen Peroxide-Induced Oxidative Stress Damage in IPEC-J2 Cells through the Keap1/Nrf2 Pathway" Antioxidants 13, no. 9: 1150. https://doi.org/10.3390/antiox13091150
APA StyleLiu, D., Yue, Y., Ping, L., Sun, C., Zheng, T., Cheng, Y., Huo, G., & Li, B. (2024). Lactobacillus delbrueckii subsp. bulgaricus 1.0207 Exopolysaccharides Attenuate Hydrogen Peroxide-Induced Oxidative Stress Damage in IPEC-J2 Cells through the Keap1/Nrf2 Pathway. Antioxidants, 13(9), 1150. https://doi.org/10.3390/antiox13091150