Development and Characterization of Liposome-Based Dermocosmetic Formulations with Red Grape Pomace and Polygonum cuspidatum Extracts
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Countercurrent Extraction Under Pressure and Concentration of Samples
2.3. Total Condensed Tannins
2.4. Total Anthocyanins Content
2.5. Total Flavonoids Content
2.6. Total Polyphenols Content
2.7. High-Performance Liquid Chromatography—Fluorescence Detection and Diode Array Detection Assay
2.8. DPPH (2,2-Diphenyl-Picryl-Hydrazyl) Radical Scavenging Capacity
2.9. Formulation of Dermatocosmetic Products
2.9.1. Visual Inspection
2.9.2. pH Measurement
2.9.3. Spreadability Assessment
2.9.4. Texture Analysis
2.9.5. Antioxidant Activity
2.9.6. Stability
2.10. Preparation of Liposomes Loaded with PcF Extract
2.11. Formulation and Characterisation of Dermatocosmetic Products Containing Liposomes Loaded with PcF Extract
2.12. In Vitro Polyphenols Release Study
2.13. In Vitro Dermal Irritation and Corrosion Testing
2.14. Statistical Analysis
3. Results and Discussion
3.1. Total Condensed Tannins
3.2. Total Anthocyanins Content
3.3. Total Flavonoids Content
3.4. Total Polyphenols Content
3.5. DPPH (2,2-Diphenyl-Picryl-Hydrazyl) Radical Scavenging Capacity
3.6. Characterization of Extracts
3.6.1. Correlation of Antioxidant Activity with Polyphenols Determined by HPLC/DAD/FLD
3.6.2. Pearson Analysis
3.6.3. Regression Analysis
3.6.4. Principal Component Analysis (PCA)
3.6.5. Hierarchical Cluster Analysis
3.7. Formulation of Dermatocosmetic Products
3.8. Liposomes Loaded with PcF and Dermatocosmetic Gel Containing Liposomes Loaded with PcF
4. Conclusions
5. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bouslimani, A.; da Silva, R.; Kosciolek, T.; Janssen, S.; Callewaert, C.; Amir, A.; Dorrestein, K.; Melnik, A.V.; Zaramela, L.S.; Kim, J.N.; et al. The impact of skin care products on skin chemistry and microbiome dynamics. BMC Biol. 2019, 17, 47. [Google Scholar] [CrossRef]
- Lau, M.; Mineroff Gollogly, J.; Wang, J.Y.; Jagdeo, J. Cosmeceuticals for antiaging: A systematic review of safety and efficacy. Arch. Dermatol. Res. 2024, 316, 173. [Google Scholar] [CrossRef] [PubMed]
- Crespi, O.; Rosset, F.; Pala, V.; Sarda, C.; Accorinti, M.; Quaglino, P.; Ribero, S. Cosmeceuticals for Anti-Aging: Mechanisms, Clinical Evidence, and Regulatory Insights—A Comprehensive Review. Cosmetics 2025, 12, 209. [Google Scholar] [CrossRef]
- Dreno, B.; Araviiskaia, E.; Berardesca, E.; Bieber, T.; Hawk, J.; Sanchez-Viera, M.; Wolkenstein, P. The science of dermocosmetics and its role in dermatology. J. Eur. Acad. Dermatol. Venereol. 2014, 28, 1409–1417. [Google Scholar] [CrossRef]
- Bucur, R.M.; Radulescu, C.; Dulama, I.D.; Stirbescu, R.M.; Bucurica, I.A.; Banica, A.L.; Stanescu, S.G. Potential Health Risk of Microplastic Exposures from Skin-Cleansing Products. Toxics 2025, 13, 354. [Google Scholar] [CrossRef]
- Peinado, F.M.; Ocon-Hernandez, O.; Iribrane-Duran, L.M.; Vela-Soria, F.; Ubina, A.; Padilla, C.; Mora, J.C.; Cardona, J.; Leon, J.; Fernandez, M.F.; et al. Cosmetic and personal care product use, urinary levels of parabens and benzophenones, and risk of endometriosis: Results from the EndEA study. Environ. Res. 2021, 196, 110342. [Google Scholar] [CrossRef]
- Ouedraogo, G.; Alexander-White, C.; Bury, D.; Clewell, H.J., III; Cronin, M.; Cull, T.; Dent, M.; Desprez, B.; Detroyer, A.; Ellison, C.; et al. Read-across and new approach methodologies applied in a 10-step framework for cosmetics safety assessment—A case study with parabens. Regul. Toxicol. Pharmacol. 2022, 132, 105161. [Google Scholar] [CrossRef] [PubMed]
- Pistollato, F.; Madia, F.; Corvi, R.; Munn, S.; Grignard, E.; Paini, A.; Worth, A.; Bal-Price, A.; Prieto, P.; Casati, S.; et al. Current EU regulatory requirements for the assessment of chemicals and cosmetic products: Challenges and opportunities for introducing new approach methodologies. Arch. Toxicol. 2021, 95, 1867–1897. [Google Scholar] [CrossRef] [PubMed]
- EU Cosmetic Products Regulation (EC) No 1223/2009. Off. J. Eur. Union 2009, L 342, 59–209. Available online: https://eur-lex.europa.eu/eli/reg/2009/1223/oj/eng (accessed on 20 August 2025).
- Berggren, E. Current trends in safety assessment of cosmetics ingredients. Regul. Toxicol. Pharmacol. 2022, 134, 105228. [Google Scholar] [CrossRef]
- Berggren, E.; White, A.; Ouedraogo, G.; Paini, A.; Richarz, A.N.; Bois, F.Y.; Exner, T.; Leite, S.; van Grunsven, L.A.; Worth, A.; et al. Ab initio chemical safety assessment: A workflow based on exposure considerations and non-animal methods. Comput. Toxicol. 2017, 4, 31–44. [Google Scholar] [CrossRef]
- Gilmour, N.; Kern, P.S.; Alepee, N.; Noisleve, F.; Bury, D.; Cloulet, E.; Hirota, M.; Hoffmann, S.; Kuhnl, J.; Lalko, J.F.; et al. Development of a next generation risk assessment framework for the evaluation of skin sensitisation of cosmetic ingredients. Regul. Toxicol. Pharmacol. 2020, 116, 104721. [Google Scholar] [CrossRef]
- Radulescu, C.; Olteanu, R.L.; Buruleanu, C.L.; Nechifor, M.; Dulama, I.D.; Stirbescu, R.M.; Bucurica, I.A.; Stanescu, S.G.; Banica, A.L. Polyphenolic Screening and the Antioxidant Activity of Grape Pomace Extracts of Romanian White and Red Grape Varieties. Antioxidants 2024, 13, 1133. [Google Scholar] [CrossRef]
- Radulescu, C.; Nicolescu, C.M.; Bumbac, M.; Olteanu, R.L.; Buruleanu, L.C.; Gorghiu, L.M.; Holban, C.G. Dry Skin Emollient Cream with Skin/Seed Extract (Vitis vinifera L. Organic Culture, Fetească Neagra Variety). Patent RO 135101 B1, 29 November 2022. Available online: https://osim.ro/images/Publicatii/Inventii/2022/bopi_11_2022.pdf (accessed on 22 August 2025).
- Radulescu, C.; Olteanu, R.L.; Pavaloiu, R.D.; Sha’at, F.; Petrescu, M.M.; Menihart, L.; Moldovan, D. Gel Dermatocosmetic pe baza de Lipozomi cu Extract de Floare de Polygonum cuspidatum (Dermatocosmetic Gel Based on Liposomes with Polygonum cuspidatum Flower Extract). Patent Application A/00383/2025, 3 September 2025. [Google Scholar]
- Zheng, L.; Zhou, C.; Li, T.; Yuan, Z.; Zhou, H.; Tamada, Y.; Zhao, Y.; Wang, J.; Zheng, Q.; Hao, X.; et al. Global transcriptome analysis reveals dynamic gene expression profiling and provides insights into biosynthesis of resveratrol and anthraquinones in a medicinal plant Polygonum cuspidatum. Ind. Crops Prod. 2021, 171, 113919. [Google Scholar] [CrossRef]
- Ricci, A.; Stefanuto, L.; Gasperi, T.; Bruni, F.; Tofani, D. Lipid Nanovesicles for Antioxidant Delivery in Skin: Liposomes, Ufasomes, Ethosomes, and Niosomes. Antioxidants 2024, 13, 1516. [Google Scholar] [CrossRef] [PubMed]
- Jovanović, A.A.; Balanč, B.; Volić, M.; Pećinar, I.; Živković, J.; Šavikin, K.P. Rosehip Extract-Loaded Liposomes for Potential Skin Application: Physicochemical Properties of Non- and UV-Irradiated Liposomes. Plants 2023, 12, 3063. [Google Scholar] [CrossRef]
- Popovici, V.; Boldianu, A.B.; Pintea, A.; Caraus, V.; Ghendov-Mosanu, A.; Subotin, I.; Druta, R.; Sturza, R. In Vitro Antioxidant Activity of Liposomal Formulations of Sea Buckthorn and Grape Pomace. Foods 2024, 13, 2478. [Google Scholar] [CrossRef]
- Pavaloiu, R.D.; Sha’at, F.; Neagu, G.; Deaconu, M.; Bubueanu, C.; Albulescu, A.; Sha’at, M.; Hlevca, C. Encapsulation of Polyphenols from Lycium barbarum Leaves into Liposomes as a Strategy to Improve Their Delivery. Nanomaterials 2021, 11, 1938. [Google Scholar] [CrossRef] [PubMed]
- Broadhurst, R.B.; Jones, W.T. Analysis of Condensed Tannins Using Acidified Vanilin. J. Sci. Food Agric. 1978, 29, 788–794. [Google Scholar] [CrossRef]
- Rebaya, A.; Belghith, S.I.; Baghdikian, B.; Leddet, V.M.; Mabrouki, F.; Olivier, E.; Cherif, J.K.; Ayadi, M.T. Total Phenolic, Total Flavonoid, Tannin Content, and Antioxidant Capacity of Halimium halimifolium (Cistaceae). J. Appl. Pharm. Sci. 2015, 5, 52–57. [Google Scholar]
- Giusti, M.M.; Wrolstad, R.E. Characterization and measurement of anthocyanins by UV-visible spectroscopy. Curr. Protoc. Food Anal. Chem. 2001, F1.2.1–F1.2.13. [Google Scholar] [CrossRef]
- Fuleki, T.; Francis, F.J. Quantitative Methods for Anthocyanins. 4. Determination of Individual Anthocyanins in Cranberry and Cranberry Products. J. Food Sci. 1968, 33, 471–478. [Google Scholar] [CrossRef]
- Jurd, L.; Asen, S. The formation of metal and “co-pigment” complexes of cyanidin 3-glucoside. Phytochemistry 1966, 5, 1263–1271. [Google Scholar] [CrossRef]
- Kamtekar, S.; Keer, V.; Patil, V. Estimation of Phenolic content, Flavonoid content, Antioxidant and Alpha-amylase Inhibitory Activity of Marketed Polyherbal Formulation. J. Appl. Pharm. Sci. 2014, 4, 61–65. [Google Scholar] [CrossRef]
- ISO 14502-1:2005E; Determination of Substances Characteristic of Green and Black Tea/Part 1: Content of Total Polyphenols in Tea-Colorimetric Method Using Folin-Ciocalteu Reagent. ISO: Geneva, Switzerland, 2005.
- Shimamura, T.; Sumikura, Y.; Yamazaki, T.; Tada, A.; Kashiwagi, T.; Ishikawa, H.; Matsui, T.; Sugimoto, N.; Akiyama, H.; Ukeda, H. Applicability of the DPPH assay for evaluating the antioxidant capacity of food additives-inter-laboratory evaluation study. Anal. Sci. 2014, 30, 717–721. [Google Scholar] [CrossRef]
- Sebaugh, J.L. Guidelines for accurate EC50/IC50 estimation. Pharm. Statist. 2011, 10, 128–134. [Google Scholar] [CrossRef] [PubMed]
- Molino, S.; Francino, M.P.; Rufián Henares, J.Á. Why is it important to understand the nature and chemistry of tannins to exploit their potential as nutraceuticals? Food Res. Int. 2023, 173, 113329. [Google Scholar] [CrossRef] [PubMed]
- Sallam, I.E.; Abdelwareth, A.; Attia, H.; Aziz, R.K.; Homsi, M.N.; von Bergen, M.; Farag, M.A. Effect of gut microbiota biotransformation on dietary tannins and human health implications. Microorganisms 2021, 9, 965. [Google Scholar] [CrossRef]
- Furlan, A.L.; Jobin, M.L.; Pianet, I.; Dufourc, E.J.; Géan, J. Flavanol/lipid interaction: A novel molecular perspective in the description of wine astringency & bitterness and antioxidant action. Tetrahedron 2015, 71, 3143–3147. [Google Scholar] [CrossRef]
- Cuong, D.X.; Hoan, N.X.; Dong, D.H.; Thuy, L.T.M.; van Thanh, N.; Ha, H.T.; Tuyen, D.T.T.; Chinh, D.X. Tannins: Extraction from Plants. In Tannins—Structural Properties, Biological Properties and Current Knowledge; Aires, A., Ed.; IntechOpen: London, UK, 2020; pp. 1–20. [Google Scholar] [CrossRef]
- Lupsor, S.; Stanciu, G.; Cristache, R.E.; Panus, E.; Radulescu, C.; Olteanu, R.L.; Buruleanu, L.C.; Stirbescu, R.M. Phytochemical Evaluation and Antioxidant-Antimicrobial Potential of Lilium spp. Bulbs: Therapeutic and Dermatocosmetic Applications. Plants 2025, 14, 1917. [Google Scholar] [CrossRef]
- Sahlabgi, A.; Lupuliasa, D.; Stanciu, G.; Lupsor, S.; Vlaia, L.L.; Rotariu, R.; Predescu, N.C.; Radulescu, C.; Olteanu, R.L.; Stanescu, S.G.; et al. The Development and Comparative Evaluation of Rosemary Hydroalcoholic Macerate-Based Dermatocosmetic Preparations: A Study on Antioxidant, Antimicrobial, and Anti-Inflammatory Properties. Gels 2025, 11, 149. [Google Scholar] [CrossRef]
- Peng, W.; Qin, R.; Li, X.; Zhou, H. Botany, phytochemistry, pharmacology, and potential application of Polygonum cuspidatum Sieb.et Zucc.: A review. J. Ethnopharmacol. 2013, 148, 729–745. [Google Scholar] [CrossRef]
- Dai, M.; Yuan, D.; Lei, Y.; Li, J.; Ren, Y.; Zhang, Y.; Cang, H.; Gao, W.; Tang, Y. Expression, purification, and structural characterization of resveratrol synthase from Polygonum cuspidatum. Protein Expr. Purif. 2022, 191, 106024. [Google Scholar] [CrossRef]
- Chong, Y.; Yan, A.; Yang, X.; Cai, Y.; Chen, J. An optimum fermentation model established by genetic algorithm for biotransformation from crude polydatin to resveratrol. Appl. Biochem. Biotechnol. 2012, 166, 446–457. [Google Scholar] [CrossRef]
- Sun, B.; Zheng, Y.L.; Yang, S.K.; Zhang, J.R.; Cheng, X.Y.; Ghiladi, R.; Ma, Z.; Wang, J.; Deng, W.W. One-pot method based on deep eutectic solvent for extraction and conversion of polydatin to resveratrol from Polygonum cuspidatum. Food Chem. 2021, 343, 128498. [Google Scholar] [CrossRef]
- Castangia, I.; Caddeo, C.; Manca, M.L.; Casu, L.; Catalan Latorre, A.; Díez-Sales, O.; Ruiz-Saurí, A.; Bacchetta, G.; Fadda, A.M.; Manconi, M. Delivery of liquorice extract by liposomes and hyalurosomes to protect the skin against oxidative stress injuries. Carbohydr. Polym. 2015, 134, 657–663. [Google Scholar] [CrossRef]
- Gharib, R.; Amal Najjar, A.; Auezova, L.; Catherine Charcosset, C.; Greige-Gerges, H. Interaction of selected phenylpropenes with dipalmitoylphosphatidylcholine membrane and their relevance to antibacterial activity. J. Membr. Biol. 2017, 250, 259–271. [Google Scholar] [CrossRef] [PubMed]
- Gibis, M.; Rahn, N.; Weiss, J. Physical and oxidative stability of uncoated and chitosan-coated liposomes containing grape seed extract. Pharmaceutics 2013, 5, 421–433. [Google Scholar] [CrossRef] [PubMed]
- Montagner, G.E.; Ribeiro, M.F.; Cadoná, F.C.; Franco, C.; Gomes, P. Liposomes loading grape seed extract: A nanotechnological solution to reduce wine-making waste and obtain health-promoting products. Future Foods 2022, 5, 100144. [Google Scholar] [CrossRef]
- OECD. Guideline for the Testing of Chemicals: In Vitro Skin Irritation—Reconstructed Human Epidermis Test Method; OECD/OCDE 2019; OECD: Paris, France, 2019; No. 439. Available online: https://www.oecd.org/en/publications/2021/06/test-no-439-in-vitro-skin-irritation-reconstructed-human-epidermis-test-method_g1g59b2f.html (accessed on 15 February 2025).
- OECD. Guidelines for the Testing of Chemicals: In Vitro Skin Corrosion—Reconstructed Human Epidermis (RhE) Test Method; OECD/OCDE 2014; OECD: Paris, France, 2014; TG 431. Available online: https://www.oecd.org/en/publications/2019/06/test-no-431-in-vitro-skin-corrosion-reconstructed-human-epidermis-rhe-test-method_g1g6ed0a.html (accessed on 15 February 2025).
Sample Code | Extract |
---|---|
M-FN/PcF | Mixture of Merlot—Feteasca Neagra grapes pomace and P. cuspidatum flower hydroalcoholic extract, in a ratio of 1:1 (v:v) |
M-FN/PcR | Mixture of Merlot—Feteasca Neagra grape pomace extract and P. cuspidatum root hydroalcoholic extract, in a 3:1 ratio (v:v) |
M-FN | Merlot—Feteasca Neagra grape pomace hydroalcoholic extract |
PcF | Hydroalcoholic extract of P. cuspidatum flower |
PcR | Hydroalcoholic extract of P. cuspidatum root |
Component | Formulations | ||||
---|---|---|---|---|---|
CBG1-M-FN/PcF | CBG1-M-FN/PcR | CBG1-M-FN | CBG1-PcF | CBG1-PcR | |
Carbopol 940 | 1% | 1% | 1% | 1% | 1% |
Glycerin | 6% | 6% | 6% | 6% | 6% |
M-FN/PcF | 2% | - | - | - | - |
M-FN/PcR | - | 2% | - | - | - |
M-FN | - | - | 2% | - | - |
PcF | - | - | - | 2% | - |
PcR | - | - | - | - | 2% |
Lavandin essential oil | 1% | 1% | 1% | 1% | 1% |
Sodium hydroxide | q.s | q.s | q.s | q.s | q.s |
Purified water | Up to 100% | Up to 100% | Up to 100% | Up to 100% | Up to 100% |
Component | Formulations | ||||
---|---|---|---|---|---|
CBG1.25-M-FN/PcF | CBG1.25-M-FN/PcR | CBG1.25-M-FN | CBG1.25-PcF | CBG1.25-PcR | |
Carbopol 940 | 1.25% | 1.25% | 1.25% | 1.25% | 1.25% |
Glycerin | 7.5% | 7.5% | 7.5% | 7.5% | 7.5% |
M-FN/PcF | 2% | - | - | - | - |
M-FN/PcR | - | 2% | - | - | - |
M-FN | - | - | 2% | - | - |
PcF | - | - | - | 2% | - |
PcR | - | - | - | - | 2% |
Lavandin essential oil | 1% | 1% | 1% | 1% | 1% |
Sodium hydroxide | q.s. | q.s. | q.s. | q.s. | q.s. |
Purified water | Up to 100% | Up to 100% | Up to 100% | Up to 100% | Up to 100% |
Component | Component |
---|---|
Carbopol 940 | 1.25% |
Glycerin | 7.5% |
Liposomes containing PcF | 2% |
Vitamin E | 0.5% |
Lavandin essential oil | 1% |
Sodium hydroxide | q.s. |
Purified water | Up to 100% |
Sample | pH | Rezistivity [Ω/cm] | TDS [mg/L] | Conductivity [µS/cm] | Salinity [‰] | Sugar Content [%] |
---|---|---|---|---|---|---|
M-FN/PcF | 4.118 | 138.7 | 7.21 | 7.22 | 3.90 | 2.6 |
M-FN/PcR | 3.740 | 181.7 | 5.51 | 5.52 | 3.00 | 2.4 |
M-FN | 3.863 | 250 | 4.01 | 4.01 | 2.10 | 1.9 |
PcF | 4.194 | 95.3 | 10.51 | 10.52 | 5.90 | 3.1 |
PcR | 3.620 | 79.8 | 8.02 | 8.03 | 5.05 | 2.9 |
Sample Code | Total Condensed Tannins (TCT) [mg CE/mL] | Total Anthocyanins Content (TAC) MAP * [μg/mL] | Total Flavonoids Content (TFC) [mg QE/mL] | Total Polyphenols Content (TPC) [mg GAE/mL] | DPPH Radical Scavenging Capacity, IC50 [μg GAE/mL] |
---|---|---|---|---|---|
M-FN/PcF | 6.058 ± 0.082 | 6.513 ± 0.334 | 10.178 ± 0.098 | 3.769 ± 0.017 | 96.77 ± 0.67 |
M-FN/PcR | 4.523 ± 0.106 | 10.381 ± 0.048 | 8.056 ± 0.226 | 2.843 ± 0.037 | 107.17 ± 0.92 |
M-FN | 3.881 ± 0.064 | 13.804 ± 0.293 | 5.976 ± 0.170 | 2.399 ± 0.035 | 122.29 ± 2.36 |
PcF | 15.682 ± 0.026 | 0.167 ± 0.005 | 30.679 ± 0.393 | 10.920 ± 0.268 | 28.04 ± 1.12 |
PcR | 9.041 ± 0.331 | 0.083 ± 0.005 | 14.396 ± 0.129 | 4.751 ± 0.072 | 83.91 ± 1.13 |
TCT | TAC | TFC | TPC | IC50 | Catechin | Vanillic_Acid | Caffeic_Acid | Myricetin | Resveratrol | Kaempferol | |
---|---|---|---|---|---|---|---|---|---|---|---|
TCT | 1 | −0.846 ** | 0.992 ** | 0.983 ** | −0.988 ** | −0.668 ** | 0.299 | −0.611 * | −0.235 | −0.623 * | −0.737 ** |
TAC | 1 | −0.785 ** | −0.748 ** | 0.827 ** | 0.603 * | −0.159 | 0.503 | 0.414 | 0.570 * | 0.724 ** | |
TFC | 1 | 0.998 ** | −0.993 ** | −0.614 * | 0.275 | −0.559 * | −0.167 | −0.562 * | −0.667 ** | ||
TPC | 1 | −0.987 ** | −0.585 * | 0.305 | −0.539 * | −0.111 | −0.534 * | −0.643 ** | |||
IC50 | 1 | 0.569 * | −0.232 | 0.499 | 0.161 | 0.512 | 0.633 * | ||||
Catechin | 1 | −0.189 | 0.978 ** | 0.755 ** | 0.991 ** | 0.925 ** | |||||
Vanillic_acid | 1 | −0.353 | 0.408 | −0.287 | −0.488 | ||||||
Caffeic_acid | 1 | 0.650 ** | 0.993 ** | 0.937 ** | |||||||
Myricetin | 1 | 0.718 ** | 0.545 * | ||||||||
Resveratrol | 1 | 0.947 ** | |||||||||
Kaempferol | 1 |
Component | |||
---|---|---|---|
PC1 | PC2 | PC3 | |
Eigenvalue | 7.323 | 2.079 | 1.257 |
Cumulative variance (%) | 66.571 | 85.472 | 96.90 |
TCT | −0.937 | −0.327 | 0.121 |
TAC | 0.796 | 0.377 | 0.076 |
TFC | −0.951 | −0.257 | 0.115 |
TPC | −0.948 | −0.222 | 0.158 |
IC50 | 0.975 | 0.207 | −0.066 |
Catechin | 0.384 | 0.917 | −0.002 |
Vanillic_acid | −0.146 | −0.157 | 0.969 |
Caffeic_acid | 0.296 | 0.926 | −0.188 |
Myricetin | 0.034 | 0.819 | 0.568 |
Resveratrol | 0.316 | 0.941 | −0.104 |
Kaempferol | 0.462 | 0.829 | −0.281 |
Sample Code | %Inhibition (Mean ± SD) | Trolox Eq. (mM/g) ± SD |
---|---|---|
CBG1-M-FN/PcF | 22.75 ± 0.15% | 0.4079 ± 0.0029 |
CBG1.25-M-FN/PcF | 28.27 ± 0.40% | 0.5136 ± 0.0077 |
CBG1-M-FN/PcR | 12.62 ± 0.03% | 0.2114 ± 0.0006 |
CBG1.25-M-FN/PcR | 13.51 ± 0.04% | 0.2286 ± 0.0008 |
CBG1-M-FN | 10.54 ± 0.04% | 0.1715 ± 0.0008 |
CBG1.25-M-FN | 9.85 ± 0.02% | 0.1584 ± 0.0004 |
CBG1-PcF | 75.71 ± 0.17% | 1.4312 ± 0.0033 |
CBG1.25-PcF | 77.33 ± 0.52% | 1.4521 ± 0.0101 |
CBG1-PcR | 34.49 ± 0.17% | 0.6333 ± 0.0033 |
CBG1.25-PcR | 36.50 ± 0.27% | 0.6728 ± 0.0052 |
Sample | Particle Size [nm] | PDI | EE [%] |
---|---|---|---|
L_PcF | 157.6 ± 2.30 | 0.186 ± 0.01 | 84.60 ± 2.23 |
Empty liposome | 100.4 ± 0.34 | 0.300 ± 0.03 | - |
Characteristics | CBG1.25-L-PcF |
---|---|
Organoleptic evaluation—after 24 h | Appearance: Homogeneous Color: whitish Smell: Aromatic, specific |
pH—after 24 h | 5.20 ± 0.16 |
TPA profile—after 24 h | Firmness (hardness): 0.327 ± 0.014 N Cohesiveness: 0.645 ± 0.011 Springiness: 0.794 ± 0.024 |
Organoleptic evaluation—after 30 days | Appearance: Homogeneous Color: whitish Smell: Aromatic, specific No signs of phase separation, sedimentation, or texture alteration |
pH—after 30 days | 5.26 ± 0.03 |
TPA profile—after 30 days | Firmness (hardness): 0.311 ± 0.012 N Cohesiveness: 0.648 ± 0.017 Springiness: 0.709 ± 0.026 |
Kinetic Model | Model Coefficients | Formulation | |
---|---|---|---|
CBG1.25-PcF | CBG1.25-L-PcF | ||
Zero-order | R2 | 0.5171 | 0.7672 |
RMSE | 20.2123 | 13.1099 | |
AIC | 105.97 | 95.58 | |
First-order | R2 | 0.337 | 0.4598 |
RMSE | 24.2779 | 20.8165 | |
AIC | 110.37 | 106.68 | |
Higuchi | R2 | 0.7174 | 0.7113 |
RMSE | 45.4721 | 14.6013 | |
AIC | 125.43 | 98.17 | |
Korsmeyer-Peppas | R2 | 0.8382 | 0.9205 |
RMSE | 17.831 | 12.9263 | |
AIC | 102.96 | 95.24 | |
Hixson-Cromwell | R2 | 0.3978 | 0.5729 |
RMSE | 22.1349 | 16.4867 | |
AIC | 108.15 | 101.08 |
Sample | Mean OD | SD | Viability [%] | Observation *,** |
---|---|---|---|---|
DMEM (Control) | 1.261 | 0.049 | 100 | - |
Gel with Liposomal PcF (CBG1.25-L-PcF) | 1.371 | 0.027 | 108.72 | Non-Irritant (NI), Non-corrosive |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Radulescu, C.; Olteanu, R.L.; Buruleanu, C.L.; Stirbescu, R.M.; Banica, A.L.; Pavaloiu, R.-D.; Sha’at, F.; Petrescu, M.M.; Stanciu, G. Development and Characterization of Liposome-Based Dermocosmetic Formulations with Red Grape Pomace and Polygonum cuspidatum Extracts. Antioxidants 2025, 14, 1182. https://doi.org/10.3390/antiox14101182
Radulescu C, Olteanu RL, Buruleanu CL, Stirbescu RM, Banica AL, Pavaloiu R-D, Sha’at F, Petrescu MM, Stanciu G. Development and Characterization of Liposome-Based Dermocosmetic Formulations with Red Grape Pomace and Polygonum cuspidatum Extracts. Antioxidants. 2025; 14(10):1182. https://doi.org/10.3390/antiox14101182
Chicago/Turabian StyleRadulescu, Cristiana, Radu Lucian Olteanu, Claudia Lavinia Buruleanu, Raluca Maria Stirbescu, Andreea Laura Banica, Ramona-Daniela Pavaloiu, Fawzia Sha’at, Maria Monica Petrescu, and Gabriela Stanciu. 2025. "Development and Characterization of Liposome-Based Dermocosmetic Formulations with Red Grape Pomace and Polygonum cuspidatum Extracts" Antioxidants 14, no. 10: 1182. https://doi.org/10.3390/antiox14101182
APA StyleRadulescu, C., Olteanu, R. L., Buruleanu, C. L., Stirbescu, R. M., Banica, A. L., Pavaloiu, R.-D., Sha’at, F., Petrescu, M. M., & Stanciu, G. (2025). Development and Characterization of Liposome-Based Dermocosmetic Formulations with Red Grape Pomace and Polygonum cuspidatum Extracts. Antioxidants, 14(10), 1182. https://doi.org/10.3390/antiox14101182