Phenolics of Maqui Leaf Residues Exhibit Antioxidant Properties Against Ozone-Induced Oxidation in Fish Model Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Sample Preparation
2.2. Chemicals and Reagents
2.3. Conventional Extraction of Polyphenols
2.4. Optimization of Ultrasound-Assisted Polyphenol Extraction
2.5. Total Phenolic Content
2.6. Ferric Reducing Antioxidant Potential (FRAP)
2.7. Oxygen Radical Absorbance Capacity (ORAC)
2.8. Phenolic Profile (UPLC-ESI-MS/MS)
2.9. Evaluation of MLR on Lipid Oxidation in a Fish Model System
2.9.1. Salmon Oxidation with Ozone
2.9.2. Storage Test
- Group 1—oxidized salmon: 2 g of salmon + 0.5 mL of ozonized water + 0.5 mL of water.
- Group 2—oxidized salmon + optimized MLR extract: 2 g of salmon + 0.5 mL of ozonized water + 0.5 mL of optimized MLR extract.
- Group 3—oxidized salmon + BHT 200 ppm: 2 g of salmon + 0.5 mL of ozonized water + 0.5 mL of BHT.
- Group 4—oxidized salmon + BHA 200 ppm: 2 g of salmon + 0.5 mL of ozonized water + 0.5 mL of BHA.
- Group 5—control salmon: 2 g of salmon + 1 mL of water.
2.9.3. 2-Thiobarbituric Acid Reactive Substances (TBAR) Assay
2.10. Statistical Analysis
3. Results
3.1. Total Phenolic Content in Maqui Leaves and Maqui Leaf Waste
3.2. Optimization of Polyphenol Extraction with Ultrasound
3.3. Phenolic Profile (UPLC-ESI-MS/MS)
3.4. Effect of Maqui Leaf Residue Extract on Salmon Oxidation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- González, B.; Vogel, H.; Razmilic, I.; Wolfram, E. Polyphenol, anthocyanin and antioxidant content in different parts of maqui fruits (Aristotelia chilensis) during ripening and conservation treatments after harvest. Ind. Crops. Prod. 2015, 76, 158–165. [Google Scholar] [CrossRef]
- Suwalsky, M.; Vargas, P.; Avello, M.; Villena, F.; Sotomayor, C.P. Human erythrocytes are affected in vitro by flavonoids of Aristotelia chilensis (Maqui) leaves. Int. J. Pharm. 2008, 363, 85–90. [Google Scholar] [CrossRef]
- Muñoz, O.; Christen, P.; Cretton, S.; Backhouse, N.; Torres, V.; Correa, O.; Costa, E.; Miranda, H.; Delporte, C. Chemical study and anti-inflammatory, analgesic and antioxidant activities of the leaves of Aristotelia chilensis (Mol.) Stuntz, Elaeocarpaceae. J. Pharm. Pharmacol. 2011, 63, 849–859. [Google Scholar] [CrossRef]
- Salehi, B.; Sharifi-Rad, J.; Herrera-Bravo, J.; Salazar, L.A.; Delporte, C.; Barra, G.V.; Cazar Ramirez, M.-E.; López, M.D.; Ramírez-Alarcón, K.; Cruz-Martins, N.; et al. Ethnopharmacology, phytochemistry and biological activities of native Chilean plants. Curr. Pharm. Des. 2021, 27, 953–970. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, Y.; Li, H.; Deng, Z.; Tsao, R. A review on insoluble-bound phenolics in plant-based food matrix and their contribution to human health with future perspectives. Trends. Food. Sci. Technol. 2020, 105, 347–362. [Google Scholar] [CrossRef]
- Alara, O.R.; Abdurahman, N.H.; Ukaegbu, C.I. Extraction of phenolic compounds: A review. Curr. Res. Food Sci. 2021, 4, 200–214. [Google Scholar] [CrossRef]
- Li, H.; Guo, H.; Luo, Q.; Wu, D.-T.; Zou, L.; Liu, Y.; Li, H.-B.; Gan, R.-Y. Current extraction, purification, and identification techniques of tea polyphenols: An updated review. Crit. Rev. Food Sci. Nutr. 2021, 63, 3912–3930. [Google Scholar] [CrossRef]
- Bianchi, A.; Rivera-Tovar, P.R.; Sanz, V.; Ferreira-Anta, T.; Torres, M.D.; Pérez-Correa, J.R.; Domínguez, H. Pressurized hot water extraction and bio-hydrogels formulation with Aristotelia chilensis [Mol.] Stuntz leaves. Molecules 2021, 26, 6402. [Google Scholar] [CrossRef]
- Sharma, R.; Rawat, P.; Singh, P.; Kanojiya, S.; Gupta, P. Statistical optimization of ultrasound assisted extraction of free and bound phenolic acids, antioxidant and antibacterial activities and UPLC–MS/MS characterization from two varieties of Eleusine coracana. J. Food Meas. Charact. 2022, 16, 2086–2103. [Google Scholar] [CrossRef]
- Qian, Y.-F.; Zhang, J.-J.; Liu, C.-C.; Ertbjerg, P.; Yang, S.-P. Effects of gaseous ozone treatment on the quality and microbial community of salmon (Salmo salar) during cold storage. Food Control 2022, 142, 109217. [Google Scholar] [CrossRef]
- Vaz-Velho, M.; Silva, M.; Pessoa, J.; Gibbs, P. Inactivation by ozone of Listeria innocua on salmon-trout during cold-smoke processing. Food Control 2006, 17, 609–616. [Google Scholar] [CrossRef]
- Khanashyam, A.C.; Shanker, M.A.; Kothakota, A.; Mahanti, N.K.; Pandiselvam, R. Ozone applications in milk and meat industry. Ozone Sci. Eng. 2022, 44, 50–65. [Google Scholar] [CrossRef]
- de Mendonça Silva, A.M.; Gonçalves, A.A. Effect of aqueous ozone on microbial and physicochemical quality of Nile tilapia processing. J. Food Process. Preserv. 2017, 41, e13298. [Google Scholar] [CrossRef]
- Tanaka, M.S.; Albergaria, F.C.; Fernandes Oliveira, D.C.; Mendes Ramos, E.; Solis Murgas, L.D.; de Sousa Gomes, M.E.; Sousa Ramos, A.D.L. Microbiological and physicochemical quality of tilapia fillets treated with ozone and chlorine solution and stored under refrigeration. Food Chem. Adv. 2023, 3, 100371. [Google Scholar] [CrossRef]
- Crowe, K.M.; Skonberg, D.; Bushway, A.; Baxter, S. Application of ozone sprays as a strategy to improve the microbial safety and quality of salmon fillets. Food Control 2012, 25, 464–468. [Google Scholar] [CrossRef]
- Albishi, T.; John, J.A.; Al-Khalifa, A.S.; Shahidi, F. Phenolic content and antioxidant activities of selected potato varieties and their processing by-products. J. Funct. Foods 2013, 5, 590–600. [Google Scholar] [CrossRef]
- Albishi, T.; Banoub, J.H.; de Camargo, A.C.; Shahidi, F. Date palm wood as a new source of phenolic antioxidants and in preparation of smoked salmon. J. Food. Biochem. 2019, 43, e12760. [Google Scholar] [CrossRef]
- de Camargo, A.C.; Regitano-d’Arce, M.A.B.; Rasera, G.B.; Canniatti-Brazaca, S.G.; do Prado-Silva, L.; Alvarenga, V.O.; Sant’Ana, A.S.; Shahidi, F. Phenolic acids and flavonoids of peanut by-products: Antioxidant capacity and antimicrobial effects. Food Chem. 2017, 237, 538–544. [Google Scholar] [CrossRef]
- Miraglia, D.; Esposto, S.; Branciari, R.; Urbani, S.; Servili, M.; Perucci, S.; Ranucci, D. Effect of a phenolic extract from Olive vegetation water on fresh salmon steak quality during storage. Ital. J. Food Saf. 2016, 5, 6167. [Google Scholar] [CrossRef]
- Rubilar, M.; Jara, C.; Poo, Y.; Acevedo, F.; Gutierrez, C.; Sineiro, J.; Shene, C. Extracts of Maqui (Aristotelia chilensis) and Murta (Ugni molinae Turcz.): Sources of antioxidant compounds and α-Glucosidase/α-Amylase inhibitors. J. Agric. Food Chem. 2011, 59, 1630–1637. [Google Scholar] [CrossRef]
- Rivera-Tovar, P.R.; Torres, M.D.; Camilo, C.; Mariotti-Celis, M.S.; Domínguez, H.; Pérez-Correa, J.R. Multi-response optimal hot pressurized liquid recovery of extractable polyphenols from leaves of maqui (Aristotelia chilensis [Mol.] Stuntz). Food Chem. 2021, 357, 129729. [Google Scholar] [CrossRef]
- Avello, M.; Valdivia, R.; Sanzana, R.; Mondaca, M.A.; Mennickent, S.; Aeschlimann, V.; Magalis Bittner, M.; Becerra, J. Extractos antioxidantes y antimicrobianos de Aristotelia chilensis y Ugni molinae y sus aplicaciones como preservantes en productos cosméticos. Bol. Latinoam. Caribe Plant. Med. Aromat. 2009, 8, 479–486. [Google Scholar]
- González-Silva, N.; Nolasco-González, Y.; Aguilar-Hernández, G.; Sáyago-Ayerdi, S.G.; Villagrán, Z.; Acosta, J.L.; Montalvo-González, E.; Anaya-Esparza, L.M. Ultrasound-assisted extraction of phenolic compounds from Psidium cattleianum leaves: Optimization using the response surface methodology. Molecules 2022, 27, 3557. [Google Scholar] [CrossRef] [PubMed]
- Detti, C.; Dos Santos Nascimento, L.B.; Brunetti, C.; Ferrini, F.; Gori, A. Optimization of a green ultrasound-assisted extraction of different polyphenols from Pistacia lentiscus L. leaves using a response surface methodology. Plants 2020, 9, 1482. [Google Scholar] [CrossRef] [PubMed]
- Toledo-Merma, P.R.; Arias-Santé, M.F.; Rincón-Cervera, M.Á.; Porras, O.; Bridi, R.; Rhein, S.; Sánchez-Contreras, M.; Hernandez-Pino, P.; Tobar, N.; Puente-Díaz, L.; et al. Phenolic Fractions from Walnut Milk Residue: Antioxidant Activity and Cytotoxic Potential. Plants 2024, 13, 3473. [Google Scholar] [CrossRef]
- Benzie, I.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- de Camargo, A.C.; Concepción Alvarez, A.; Arias-Santé, M.F.; Oyarzún, J.E.; Andia, M.E.; Uribe, S.; Núñez Pizarro, P.; Bustos, S.M.; Schwember, A.R.; Shahidi, F.; et al. Soluble free, esterified and insoluble-bound phenolic antioxidants from chickpeas prevent cytotoxicity in human hepatoma HuH-7 cells induced by peroxyl radicals. Antioxidants 2022, 11, 1139. [Google Scholar] [CrossRef]
- Velázquez, L.; Quiñones, J.; Inostroza, K.; Sepúlveda, G.; Díaz, R.; Scheuermann, E.; Domínguez, R.; Lorenzo, J.M.; Velásquez, C.; Sepúlveda, N. Maqui (Aristotelia chilensis (Mol.) Stuntz): A natural antioxidant to improve quality of meat patties. Antioxidants 2022, 11, 1405. [Google Scholar] [CrossRef]
- Su, H.; Wu, W.; Wan, X.; Ning, J. Discriminating geographical origins of green tea based on amino acid, polyphenol, and caffeine content through high-performance liquid chromatography: Taking Lu’an guapian tea as an example. Food. Sci. Nutr. 2019, 7, 2167–2175. [Google Scholar] [CrossRef]
- Tsubaki, S.; Iida, H.; Sakamoto, M.; Azuma, J.-I. Microwave heating of tea residue yields polysaccharides, polyphenols, and plant biopolyester. J. Agric. Food Chem. 2008, 56, 11293–11299. [Google Scholar] [CrossRef]
- Abdeltaif, S.; SirElkhatim, K.; Hassan, A. Estimation of phenolic and flavonoid compounds and antioxidant activity of spent coffee and black tea (processing) waste for potential recovery and reuse in Sudan. Recycling 2018, 3, 27. [Google Scholar] [CrossRef]
- Jovanović, A.A.; Đorđević, V.B.; Zdunić, G.M.; Pljevljakušić, D.S.; Šavikin, K.P.; Gođevac, D.M.; Bugarski, B.M. Optimization of the extraction process of polyphenols from Thymus serpyllum L. herb using maceration, heat- and ultrasound-assisted techniques. Sep. Purif. Technol. 2017, 179, 369–380. [Google Scholar] [CrossRef]
- Algan Cavuldak, Ö.; Vural, N.; Akay, M.A.; Anlı, R.E. Optimization of ultrasound-assisted water extraction conditions for the extraction of phenolic compounds from black mulberry leaves (Morus nigra L.). J. Food. Process. Eng. 2019, 42, e13132. [Google Scholar] [CrossRef]
- Peixoto Araujo, N.M.; Silva, E.K.; Arruda, H.S.; Rodrigues de Morais, D.; Angela, A.; Meireles, M.; Pereira, G.A.; Pastore, G.M. Recovering phenolic compounds from Eugenia calycina Cambess employing high-intensity ultrasound treatments: A comparison among its leaves, fruit pulp, and seed as promising sources of bioactive compounds. Sep. Purif. Technol. 2021, 272, 118920. [Google Scholar] [CrossRef]
- Abi-Khattar, A.-M.; Boussetta, N.; Rajha, H.N.; Abdel-Massih, R.M.; Louka, N.; Maroun, R.G.; Vorobiev, E.; Debs, E. Mechanical damage and thermal effect induced by ultrasonic treatment in olive leaf tissue. Impact on polyphenols recovery. Ultrason. Sonochem. 2022, 82, 105895. [Google Scholar] [CrossRef]
- Ji, D.; Wang, Q.; Lu, T.; Ma, H.; Chen, X. The effects of ultrasonication on the phytochemicals, antioxidant, and polyphenol oxidase and peroxidase activities in coffee leaves. Food Chem. 2022, 373, 131480. [Google Scholar] [CrossRef]
- Flores, M.; Reyes-García, L.; Ortiz-Viedma, J.; Romero, N.; Vilcanqui, Y.; Rogel, C.; Echeverría, J.; Forero-Doria, O. Thermal behavior improvement of fortified commercial avocado (Persea americana mill.) oil with maqui (Aristotelia chilensis) leaf extracts. Antioxidants 2021, 10, 664. [Google Scholar] [CrossRef]
- Vidal, L.; Avello, M.; Loyola, C.; Campos, J.; Aqueveque, P.; Dungan, S.R.; Galotto, M.; Guarda, A. Microencapsulation of maqui (Aristotelia chilensis [Molina] Stuntz) leaf extracts to preserve and control antioxidant properties. Chil. J. Agric. Res. 2013, 73, 17–23. [Google Scholar] [CrossRef]
- Ntalouka, F.; Tsirivakou, A. Luteolin: A promising natural agent in management of pain in chronic conditions. Front. Pain Res. 2023, 4, 1114428. [Google Scholar] [CrossRef]
- Jeon, I.H.; Kim, H.S.; Kang, H.J.; Lee, H.-S.; Jeong, S.I.; Kim, S.J.; Jang, S.I. Anti-inflammatory and antipruritic effects of luteolin from Perilla (P. frutescens L.) leaves. Molecules 2014, 19, 6941–6951. [Google Scholar] [CrossRef]
- Devisetti, R.; Sreerama, Y.N.; Bhattacharya, S. Processing effects on bioactive components and functional properties of moringa leaves: Development of a snack and quality evaluation. J. Food Sci. Technol. 2016, 53, 649–657. [Google Scholar] [CrossRef] [PubMed]
- Miean, K.H.; Mohamed, S. Flavonoid (myricetin, quercetin, kaempferol, luteolin, and apigenin) content of edible tropical plants. J. Agric. Food Chem. 2001, 49, 3106–3112. [Google Scholar] [CrossRef] [PubMed]
- Yusoff, I.M.; Mat Taher, Z.; Rahmat, Z.; Chua, L.S. A review of ultrasound-assisted extraction for plant bioactive compounds: Phenolics, flavonoids, thymols, saponins and proteins. Food. Res. Int. 2022, 157, 111268. [Google Scholar] [CrossRef]
- Qiao, L.; Sun, Y.; Chen, R.; Fu, Y.; Zhang, W.; Li, X.; Chen, J.; Shen, Y.; Ye, X. Sonochemical effects on 14 flavonoids common in citrus: Relation to stability. PLoS ONE 2014, 9, e87766. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Cheng, C.; Ma, Y.; Jia, M. Degradation behavior of polyphenols in model aqueous extraction system based on mechanical and sonochemical effects induced by ultrasound. Sep. Purif. Technol. 2020, 247, 116967. [Google Scholar] [CrossRef]
- Ortiz-Viedma, J.; Romero, N.; Puente, L.; Burgos, K.; Toro, M.; Ramirez, L.; Rodriguez, A.; Barros-Velazquez, J.; Aubourg, S.P. Antioxidant and antimicrobial effects of stevia (Stevia rebaudiana Bert.) extracts during preservation of refrigerated salmon paste. Eur. J. Lipid Sci. Technol. 2017, 119, 1600467. [Google Scholar] [CrossRef]
- Jag Pal, J.P.; Raju, C.V.; Lakshmisha, I.P.; Gayatri Pandey, G.P.; Rehana Raj, R.R.; Singh, R.R. Antioxidant activity of pomegranate peel extract and its effect on storage stability of cooked meat model system of Indian mackerel (Rastrelliger kanagurta) stored at 4 ± 2 °C. Biochem. Cell. Arch. 2017, 17, 183–187. [Google Scholar]
Experiment | Time (min) | MLR:Water | Power (W) | TPC (mg GAE/g dw) | FRAP (µmol TE/g dw) | ORAC (µmol TE/g dw) |
---|---|---|---|---|---|---|
1 | 1 | 1:10 | 70 | 17.63 | 144.82 | 21.18 |
2 | 30 | 1:10 | 70 | 20.98 | 158.99 | 20.34 |
3 | 1 | 1:40 | 70 | 42.26 | 216.97 | 34.09 |
4 | 30 | 1:40 | 70 | 26.12 | 319.63 | 29.42 |
5 | 1 | 1:25 | 30 | 18.42 | 149.56 | 23.15 |
6 | 30 | 1:25 | 30 | 20.65 | 240.02 | 21.47 |
7 | 1 | 1:25 | 110 | 32.72 | 245.64 | 35.44 |
8 | 30 | 1:25 | 110 | 35.24 | 287.39 | 29.87 |
9 | 15.5 | 1:10 | 30 | 14.88 | 99.10 | 19.11 |
10 | 15.5 | 1:40 | 30 | 24.95 | 238.04 | 31.49 |
11 | 15.5 | 1:10 | 110 | 16.30 | 118.27 | 18.11 |
12 | 15.5 | 1:40 | 110 | 37.15 | 160.67 | 28.50 |
13 | 15.5 | 1:25 | 70 | 41.12 | 401.34 | 36.95 |
14 | 15.5 | 1:25 | 70 | 42.15 | 400.72 | 36.59 |
15 | 15.5 | 1:25 | 70 | 44.12 | 405.39 | 35.75 |
16 | 15.5 | 1:25 | 70 | 43.14 | 400.24 | 36.19 |
17 * | 6 | 1:30 | 70 | 44.26 | 301.21 | 41.64 |
Source | TPC | FRAP | ORAC | ||||||
---|---|---|---|---|---|---|---|---|---|
Sum of Squares | df | p-Value | Sum of Squares | df | p-Value | Sum of Squares | df | p-Value | |
Model | 1719.31 | 9 | 0.0016 | 172,001.03 | 9 | 0.0007 | 656.46 | 9 | 0.0236 |
A: Time | 8.08 | 1 | 0.4456 | 7752.01 | 1 | 0.0267 | 20.34 | 1 | 0.2559 |
B: MLR:Water | 460.38 | 1 | 0.0008 | 21,437.16 | 1 | 0.0028 | 250.59 | 1 | 0.0045 |
C: Power | 225.91 | 1 | 0.005 | 908.65 | 1 | 0.3562 | 34.86 | 1 | 0.1513 |
AB | 94.98 | 1 | 0.0312 | 1957.15 | 1 | 0.1928 | 3.67 | 1 | 0.6128 |
AC | 0.021 | 1 | 0.9682 | 593.23 | 1 | 0.4502 | 3.78 | 1 | 0.6077 |
BC | 29.05 | 1 | 0.1726 | 2329.89 | 1 | 0.1607 | 1 | 1 | 0.7902 |
A2 | 154.95 | 1 | 0.0117 | 13,268.4 | 1 | 0.0088 | 48.04 | 1 | 0.1019 |
B2 | 373.37 | 1 | 0.0014 | 72,064.74 | 1 | 0.0001 | 176.67 | 1 | 0.0101 |
C2 | 372.57 | 1 | 0.0015 | 51,689.81 | 1 | 0.0003 | 117.51 | 1 | 0.0235 |
Residual | 72.74 | 6 | 5459.16 | 6 | 77.41 | 6 | |||
Lack of fit | 67.75 | 3 | 0.0299 | 5442.52 | 3 | 0.0003 | 76.6 | 3 | 0.0018 |
Pure error | 4.99 | 3 | 16.64 | 3 | 0.8 | 3 | |||
Cor Total | 1792.05 | 15 | 177,460.19 | 15 | 733.87 | 15 |
Polyphenols | Ultrasound | Water | Methanol–Water–Acetone (3:4:3, v:v:v) |
---|---|---|---|
Phenolic acids | |||
Gallic acid | 158.48 ± 10.78 b,A | 52.47 ± 2.09 b,C | 99.43 ± 3.26 c,B |
Syringic acid | nd | 0.04 ± 0.00 h | nd |
Ferulic acid | tr | tr | tr |
Chlorogenic acid | 105.70 ± 1.54 d,B | 43.72 ± 0.65 c,C | 135.16 ± 3.37 b,A |
Caffeic acid | 2.35 ± 0.58 g,A | tr | 0.45 ± 0.01 h,B |
p-Coumaric acid | tr | 0.36 ± 0.00 h,A | 0.20 ± 0.00 h,B |
Cryptochlorogenic acid 1 | 111.57 ± 14,34 d,A | 23.16 ± 0.66 e,C | 42.06 ± 0.39 f,B |
3,4-Dihydroxybenzoic acid 2 | 3.50 ± 0.92 g,C | 5.74 ± 0.42 f,g,B | 7.15 ± 0.16 g,h,A |
Vanillic acid 2 | 0.58 ± 0.11 g | nd | nd |
Total phenolic acids | 382.18 | 125.49 | 284.45 |
Flavonoids | |||
Catechin | nd | 3.20 ± 0.06 f,g,h,B | 4.88 ± 0.14 h,A |
Rutin | 54.78 ± 1.89 e,C | 321.72 ± 2.87 a,A | 237.81 ± 7.33 a,B |
Quercetin | 17.92 ± 0.06 f.g.B | 6.37 ± 0.41 f.C | 49.85 ± 0.87 e.A |
Luteolin | 293.06 ± 3.70 a.A | 53.61 ± 1.90 b.B | 60.68 ± 0.43 d.B |
Kaempferol | 137.18 ± 6.56 c,A | 32.64 ± 1.62 d,C | 51.91 ± 1.40 e,B |
Epicatechin | nd | 2.28 ± 0.04 g,h,A | 2.88 ± 0.06 h,A |
Myricetin | nd | nd | nd |
Isorhamnetin | tr | 5.97 ± 0.30 f,B | 13.65 ± 0.26 g,A |
Quercitrin 3 | 31.46 ± 2.47 f,A | 6.22 ± 0.04 f,C | 12.71 ± 0.06 g,B |
Total flavonoids | 534.4 | 432.01 | 434.37 |
Total polyphenols | 916.65 | 557.51 | 718.83 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Varas Condori, M.A.; Arias-Santé, M.F.; Bridi, R.; Rincón-Cervera, M.Á.; Porras, O.; Reyes-Jara, A.; de Camargo, A.C. Phenolics of Maqui Leaf Residues Exhibit Antioxidant Properties Against Ozone-Induced Oxidation in Fish Model Systems. Antioxidants 2025, 14, 263. https://doi.org/10.3390/antiox14030263
Varas Condori MA, Arias-Santé MF, Bridi R, Rincón-Cervera MÁ, Porras O, Reyes-Jara A, de Camargo AC. Phenolics of Maqui Leaf Residues Exhibit Antioxidant Properties Against Ozone-Induced Oxidation in Fish Model Systems. Antioxidants. 2025; 14(3):263. https://doi.org/10.3390/antiox14030263
Chicago/Turabian StyleVaras Condori, Miguel Angel, María Fernanda Arias-Santé, Raquel Bridi, Miguel Ángel Rincón-Cervera, Omar Porras, Angélica Reyes-Jara, and Adriano Costa de Camargo. 2025. "Phenolics of Maqui Leaf Residues Exhibit Antioxidant Properties Against Ozone-Induced Oxidation in Fish Model Systems" Antioxidants 14, no. 3: 263. https://doi.org/10.3390/antiox14030263
APA StyleVaras Condori, M. A., Arias-Santé, M. F., Bridi, R., Rincón-Cervera, M. Á., Porras, O., Reyes-Jara, A., & de Camargo, A. C. (2025). Phenolics of Maqui Leaf Residues Exhibit Antioxidant Properties Against Ozone-Induced Oxidation in Fish Model Systems. Antioxidants, 14(3), 263. https://doi.org/10.3390/antiox14030263