Antioxidant and Anti-Inflammatory Activity of a New Formulation of Slow-Release Amino Acids in Human Intestinal Caco-2 Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
Free AAs and SR-AAs Composition
2.2. DPPH (2,2-Diphenyl-1-Picrylhydrazyl Radical Scavenging) Assay
2.3. Assessment of Ferric Reducing Antioxidant Power (FRAP)
2.4. Cell Culture
2.5. 3-(4,5-Dimethylthiazol-2-Yl)-2,5-Diphenyltetrazolium Bromide (MTT) Assay
2.6. Fluorometric Intracellular ROS Assay
2.7. Evaluation of Lipid Peroxidation Through Malondialdehyde (MDA) Assay
2.8. Nitric Oxide Level Evaluation on Caco-2 Cell
2.9. Western Blot Analysis
2.10. Pro-Inflammatory and Anti-Inflammatory Secreted Cytokines Quantification
2.11. Statistical Analysis
3. Results
3.1. FRAP and DPPH Assays Are Used to Evaluate the Free AAs’ and SR-AAs’ Capacity to Scavenge Radicals In Vitro
3.2. Assessment of the Impact of Free AAs and SR-AAs on the Viability of Caco-2 Cells
3.3. Free AAs and SR-AAs Exert Antioxidant Activity in Human Intestinal Caco-2 Cells
3.4. Free AAs and SR-AAs Modulate the Generation of NO and iNOS Expression in Intestinal Caco-2 Cells
3.5. Free AAs and SR-AAs Exert Anti-Inflammatory Activity in Human Intestinal Cells
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Van Wegberg, A.M.J.; MacDonald, A.; Ahring, K.; Bélanger-Quintana, A.; Blau, N.; Bosch, A.M.; Burlina, A.; Campistol, J.; Feillet, F.; Giżewska, M.; et al. The Complete European Guidelines on Phenylketonuria: Diagnosis and Treatment. Orphanet J. Rare Dis. 2017, 12, 162. [Google Scholar] [CrossRef]
- Diamond, A.; Prevor, M.B.; Callender, G.; Druin, D.P. Prefrontal Cortex Cognitive Deficits in Children Treated Early and Continuously for PKU. Monogr. Soc. Res. Child Dev. 1997, 62, i-206. [Google Scholar] [CrossRef] [PubMed]
- Campistol, J.; Gassió, R.; Artuch, R.; Vilaseca, M.A. Neurocognitive Function in Mild Hyperphenylalaninemia. Dev. Med. Child Neurol. 2011, 53, 405–408. [Google Scholar] [CrossRef]
- Chen, H.F.; Rose, A.M.; Waisbren, S.; Ahmad, A.; Prosser, L.A. Newborn Screening and Treatment of Phenylketonuria: Projected Health Outcomes and Cost-Effectiveness. Children 2021, 8, 381. [Google Scholar] [CrossRef] [PubMed]
- MacDonald, A.; Van Wegberg, A.M.J.; Ahring, K.; Beblo, S.; Bélanger-Quintana, A.; Burlina, A.; Campistol, J.; Coşkun, T.; Feillet, F.; Giżewska, M.; et al. PKU Dietary Handbook to Accompany PKU Guidelines. Orphanet J. Rare Dis. 2020, 15, 171. [Google Scholar] [CrossRef]
- Gropper, S.S.; Acosta, P.B. Effect of Simultaneous Ingestion of L-Amino Acids and Whole Protein on Plasma Amino Acid and Urea Nitrogen Concentrations in Humans. J. Parenter. Enter. Nutr. 1991, 15, 48–53. [Google Scholar] [CrossRef]
- Macdonald, A.; Singh, R.H.; Rocha, J.C.; Van Spronsen, F.J. Optimising Amino Acid Absorption: Essential to Improve Nitrogen Balance and Metabolic Control in Phenylketonuria. Nutr. Res. Rev. 2019, 32, 70–78. [Google Scholar] [CrossRef]
- Mönch, E. Utilisation of Amino Acid Mixtures in Adolescents with Phenylketonuria. Eur. J. Pediatr. 1996, 155, S115–S120. [Google Scholar] [CrossRef] [PubMed]
- Daly, A.; Evans, S.; Pinto, A.; Ashmore, C.; Macdonald, A. Protein Substitutes in PKU; Their Historical Evolution. Nutrients 2021, 13, 484. [Google Scholar] [CrossRef]
- Scheinin, M.; Barassi, A.; Junnila, J.; Lovró, Z.; Reiner, G.; Sarkkinen, E.; Macdonald, A. Amino Acid Plasma Profiles from a Prolonged-Release Protein Substitute for Phenylketonuria: A Randomized, Single-Dose, Four-Way Crossover Trial in Healthy Volunteers. Nutrients 2020, 12, 1653. [Google Scholar] [CrossRef] [PubMed]
- Giovannini, M.; Riva, E.; Salvatici, E.; Cefalo, G.; Radaelli, G. Randomized Controlled Trial of a Protein Substitute with Prolonged Release on the Protein Status of Children with Phenylketonuria. J. Am. Coll. Nutr. 2014, 33, 103–110. [Google Scholar] [CrossRef]
- Giarratana, N.; Gallina, G.; Panzeri, V.; Frangi, A.; Canobbio, A.; Reiner, G. A New Phe-Free Protein Substitute Engineered to Allow a Physiological Absorption of Free Amino Acids for Phenylketonuria. J. Inborn Errors Metab. Screen. 2018, 6, 2326409818783780. [Google Scholar] [CrossRef]
- Macdonald, A.; Ashmore, C.; Daly, A.; Pinto, A.; Evans, S. An Observational Study Evaluating the Introduction of a Prolonged-Release Protein Substitute to the Dietary Management of Children with Phenylketonuria. Nutrients 2020, 12, 2686. [Google Scholar] [CrossRef]
- Lammi, C.; Ottaviano, E.; Fiore, G.; Bollati, C.; d’Adduzio, L.; Fanzaga, M.; Ceccarani, C.; Vizzuso, S.; Zuccotti, G.; Borghi, E.; et al. Effect of Docosahexaenoic Acid as an Anti-Inflammatory for Caco-2 Cells and Modulating Agent for Gut Microbiota in Children with Obesity (the DAMOCLE Study). J. Endocrinol. Investig. 2024, 48, 465–481. [Google Scholar] [CrossRef]
- Lammi, C.; Bollati, C.; Fiori, L.; Li, J.; Fanzaga, M.; d’Adduzio, L.; Tosi, M.; Burlina, A.; Zuccotti, G.; Verduci, E. Glycomacropeptide (GMP) Rescued the Oxidative and Inflammatory Activity of Free L-AAs in Human Caco-2 Cells: New Insights That Support GMP as a Valid and Health-Promoting Product for the Dietary Management of Phenylketonuria (PKU) Patients. Food Res. Int. 2023, 173, 113258. [Google Scholar] [CrossRef] [PubMed]
- Sambuy, Y.; De Angelis, I.; Ranaldi, G.; Scarino, M.L.; Stammati, A.; Zucco, F. The Caco-2 Cell Line as a Model of the Intestinal Barrier: Influence of Cell and Culture-Related Factors on Caco-2 Cell Functional Characteristics. Cell Biol. Toxicol. 2005, 21, 1–26. [Google Scholar] [CrossRef]
- Blois, M.S. Antioxidant Determinations by the Use of a Stable Free Radical. Nature 1958, 181, 1199–1200. [Google Scholar] [CrossRef]
- MacDonald-Wicks, L.K.; Wood, L.G.; Garg, M.L. Methodology for the Determination of Biological Antioxidant Capacity in Vitro: A Review. J. Sci. Food Agric. 2006, 86, 2046–2056. [Google Scholar] [CrossRef]
- Lea, T. Caco-2 Cell Line. In The Impact of Food Bioactives on Health: In Vitro and Ex Vivo Models; Springer International: Cham, Switzerland, 2015; pp. 103–111. [Google Scholar] [CrossRef]
- Ghasemi, M.; Turnbull, T.; Sebastian, S.; Kempson, I. The Mtt Assay: Utility, Limitations, Pitfalls, and Interpretation in Bulk and Single-Cell Analysis. Int. J. Mol. Sci. 2021, 22, 12827. [Google Scholar] [CrossRef] [PubMed]
- Zglińska, K.; Niemiec, T.; Łozicki, A.; Matusiewicz, M.; Szczepaniak, J.; Puppel, K.; Kutwin, M.; Jaworski, S.; Rygało-Galewska, A.; Koczoń, P. Effect of Elaeagnus Umbellata (Thunb.) Fruit Extract on H2O2-Induced Oxidative and Inflammatory Responses in Normal Fibroblast Cells. PeerJ 2021, 9, e10760. [Google Scholar] [CrossRef]
- Misra, S.K.; Mukherjee, P.; Chang, H.H.; Tiwari, S.; Gryka, M.; Bhargava, R.; Pan, D. Multi-Functionality Redefined with Colloidal Carotene Carbon Nanoparticles for Synchronized Chemical Imaging, Enriched Cellular Uptake and Therapy. Sci. Rep. 2016, 6, 29299. [Google Scholar] [CrossRef] [PubMed]
- Ayala, A.; Muñoz, M.F.; Argüelles, S. Lipid Peroxidation: Production, Metabolism, and Signaling Mechanisms of Malondialdehyde and 4-Hydroxy-2-Nonenal. Oxid. Med. Cell. Longev. 2014, 2014, 360438. [Google Scholar] [CrossRef] [PubMed]
- Van De Walle, J.; Hendrickx, A.; Romier, B.; Larondelle, Y.; Schneider, Y.J. Inflammatory Parameters in Caco-2 Cells: Effect of Stimuli Nature, Concentration, Combination and Cell Differentiation. Toxicol. Vitr. 2010, 24, 1441–1449. [Google Scholar] [CrossRef]
- Di Marzo, N.; Chisci, E.; Giovannoni, R. The Role of Hydrogen Peroxide in Redox-Dependent Signaling: Homeostatic and Pathological Responses in Mammalian Cells. Cells 2018, 7, 156. [Google Scholar] [CrossRef] [PubMed]
- Dangin, M.; Boirie, Y.; Garcia-Rodenas, C.; Gachon, P.; Fauquant, J.; Callier, P.; Ballèvre, O.; Beaufrère, B. The Digestion Rate of Protein Is an Independent Regulating Factor of Postprandial Protein Retention. Am. J. Physiol. Endocrinol. Metab. 2001, 280, E340–E348. [Google Scholar] [CrossRef] [PubMed]
- Scheinin, M.; Junnila, J.; Reiner, G.; Macdonald, A.; Muntau, A.C. Nitrogen Balance after the Administration of a Prolonged-Release Protein Substitute for Phenylketonuria as a Single Dose in Healthy Volunteers. Nutrients 2021, 13, 3189. [Google Scholar] [CrossRef] [PubMed]
- Dioguardi, F.S. Wasting and the Substrate-to-Energy Controlled Pathway: A Role for Insulin Resistance and Amino Acids. Am. J. Cardiol. 2004, 93, 6–12. [Google Scholar] [CrossRef]
- Pasini, E.; Corsetti, G.; Aquilani, R.; Romano, C.; Picca, A.; Calvani, R.; Dioguardi, F.S. Protein-Amino Acid Metabolism Disarrangements: The Hidden Enemy of Chronic Age-Related Conditions. Nutrients 2018, 10, 391. [Google Scholar] [CrossRef]
- Rocha, J.C.; Martins, M.J. Oxidative Stress in Phenylketonuria: Future Directions. J. Inherit. Metab. Dis. 2012, 35, 381–398. [Google Scholar] [CrossRef]
- Hartman, J.; Frishman, W.H. Inflammation and Atherosclerosis: A Review of the Role of Interleukin-6 in the Development of Atherosclerosis and the Potential for Targeted Drug Therapy. Cardiol. Rev. 2014, 22, 147–151. [Google Scholar] [CrossRef] [PubMed]
- Sitta, A.; Manfredini, V.; Biasi, L.; Treméa, R.; Schwartz, I.V.D.; Wajner, M.; Vargas, C.R. Evidence That DNA Damage Is Associated to Phenylalanine Blood Levels in Leukocytes from Phenylketonuric Patients. Mutat. Res. 2009, 679, 13–16. [Google Scholar] [CrossRef]
- de Aquino, A.M.I.; Gomes, K.A.L.; de Brito, L.L.M.; de Lima, L.D.; Gomes, E.R.d.M.; Andrade, S.M.M.d.S. Diagnostic Accuracy of Interleukin-6, Interleukin-10 and Tumor Necrosis Factor Alpha Cytokine Levels in Patients with Mild Cognitive Impairment: Systematic Review and Meta-Analysis. Dement. Neuropsychol. 2024, 18, e20230027. [Google Scholar] [CrossRef]
- Gupta, L.; Thomas, J.; Ravichandran, R.; Singh, M.; Nag, A.; Panjiyar, B.K. Inflammation in Cardiovascular Disease: A Comprehensive Review of Biomarkers and Therapeutic Targets. Cureus 2023, 15, e45483. [Google Scholar] [CrossRef] [PubMed]
- Silveira Rossi, J.L.; Barbalho, S.M.; Reverete de Araujo, R.; Bechara, M.D.; Sloan, K.P.; Sloan, L.A. Metabolic Syndrome and Cardiovascular Diseases: Going beyond Traditional Risk Factors. Diabetes Metab. Res. Rev. 2022, 38, e3502. [Google Scholar] [CrossRef] [PubMed]
- Whitehall, K.B.; Rose, S.; Clague, G.E.; Ahring, K.K.; Bilder, D.A.; Harding, C.O.; Hermida, Á.; Inwood, A.; Longo, N.; Maillot, F.; et al. Systematic Literature Review of the Somatic Comorbidities Experienced by Adults with Phenylketonuria. Orphanet J. Rare Dis. 2024, 19, 293. [Google Scholar] [CrossRef] [PubMed]
- Ubaldi, F.; Frangella, C.; Volpini, V.; Fortugno, P.; Valeriani, F.; Romano Spica, V. Systematic Review and Meta-Analysis of Dietary Interventions and Microbiome in Phenylketonuria. Int. J. Mol. Sci. 2023, 24, 17428. [Google Scholar] [CrossRef] [PubMed]
- Bassanini, G.; Ceccarani, C.; Borgo, F.; Severgnini, M.; Rovelli, V.; Morace, G.; Verduci, E.; Borghi, E. Phenylketonuria Diet Promotes Shifts in Firmicutes Populations. Front. Cell Infect. Microbiol. 2019, 9, 101. [Google Scholar] [CrossRef] [PubMed]
- Fouillet, H.; Juillet, B.; Gaudichon, C.; Mariotti, F.; Tomé, D.; Bos, C. Absorption Kinetics Are a Key Factor Regulating Postprandial Protein Metabolism in Response to Qualitative and Quantitative Variations in Protein Intake. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2009, 297, R1691–R1705. [Google Scholar] [CrossRef] [PubMed]
- Yılmaz, B.K.; Baykan, A.; Kardaş, F.; Kendirci, M. Evaluation of the Effect of Obesity, Dietary Glycemic Index and Metabolic Profiles on the Cardiovascular Risk in Children with Classical Phenylketonuria. Mol. Genet. Metab. 2023, 140, 107677. [Google Scholar] [CrossRef]
- Verduci, E.; Banderali, G.; Moretti, F.; Lassandro, C.; Cefalo, G.; Radaelli, G.; Salvatici, E.; Giovannini, M. Diet in Children with Phenylketonuria and Risk of Cardiovascular Disease: A Narrative Overview. Nutr. Metab. Cardiovasc. Dis. 2016, 26, 171–177. [Google Scholar] [CrossRef] [PubMed]
Nutritional Values | Mean Values per 100 g |
---|---|
Energy (Kj) | 1678 |
Energy (Kcal) | 396 |
Total Fats (g) | 3.6 |
Saturated Fats (g) | 3.59 |
Carbohydrates (g) | 13 |
Sugars (g) | 0 |
Total Fiber (g) | 3.7 |
Total Protein Equivalents (g) | 70.7 |
L-Alanine (g) | 3.07 |
L-Arginine (g) | 4.90 |
L-Aspartic-Acid (g) | 7.76 |
L-Cystine (g) | 2.01 |
Glycine (g) | 7.68 |
L-Glutamine (g) | 6.02 |
L-Histidine (g) | 3.07 |
L-Isoleucine (g) | 5.31 |
L-Leucine (g) | 8.27 |
L-Lysine (g) | 5.50 |
L-Methionine (g) | 1.42 |
L-Phenylalanine (g) | 0 |
L-Proline (g) | 5.54 |
L-Serine (g) | 3.42 |
L-Threonine (g) | 5.31 |
L-Tryptophan (g) | 1.65 |
L-Tyrosine (g) | 7.78 |
L-Valine (g) | 6.13 |
L-Carnitine (g) | 0.08 |
L-Taurine (g) | 0.12 |
Salt (g) | 1 |
Nutritional Values | Mean Values per 100 g |
---|---|
Energy (Kj) | 1456 |
Energy (Kcal) | 343 |
Total Fats (g) | / |
Saturated Fats (g) | / |
Carbohydrates (g) | 44 |
Sugars (g) | 40.6 |
Toral Fiber (g) | / |
Total Proteins Equivalents (g) | 41.65 |
L-Alanine (g) | 2.05 |
L-Arginine (g) | 3.6 |
L-Aspartic-Acid (g) | 3.4 |
L-Cystine (g) | 1.35 |
Glycine (g) | 3.2 |
L-Glutamine (g) | 2.5 |
L-Histidine (g) | 2.05 |
L-Isoleucine (g) | 3.2 |
L-Leucine (g) | 5.45 |
L-Lysine (g) | 3.7 |
L-Methionine (g) | 0.85 |
L-Phenylalanine (g) | 0 |
L-Proline (g) | 3.85 |
L-Serine (g) | 2.35 |
L-Threonine (g) | 2.7 |
L-Tryptophan (g) | 1.1 |
L-Tyrosine (g) | 4.85 |
L-Valine (g) | 3.5 |
L-Carnitine (g) | 0.04 |
Taurine (g) | 0.07 |
Salt (g) | <0.01 |
Sodium (mg) | <5 |
Potassium (mg) | 35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bollati, C.; Tosi, M.; d’Adduzio, L.; Fanzaga, M.; Burlina, A.; Zuccotti, G.; Lammi, C.; Verduci, E. Antioxidant and Anti-Inflammatory Activity of a New Formulation of Slow-Release Amino Acids in Human Intestinal Caco-2 Cells. Antioxidants 2025, 14, 271. https://doi.org/10.3390/antiox14030271
Bollati C, Tosi M, d’Adduzio L, Fanzaga M, Burlina A, Zuccotti G, Lammi C, Verduci E. Antioxidant and Anti-Inflammatory Activity of a New Formulation of Slow-Release Amino Acids in Human Intestinal Caco-2 Cells. Antioxidants. 2025; 14(3):271. https://doi.org/10.3390/antiox14030271
Chicago/Turabian StyleBollati, Carlotta, Martina Tosi, Lorenza d’Adduzio, Melissa Fanzaga, Alberto Burlina, Gianvincenzo Zuccotti, Carmen Lammi, and Elvira Verduci. 2025. "Antioxidant and Anti-Inflammatory Activity of a New Formulation of Slow-Release Amino Acids in Human Intestinal Caco-2 Cells" Antioxidants 14, no. 3: 271. https://doi.org/10.3390/antiox14030271
APA StyleBollati, C., Tosi, M., d’Adduzio, L., Fanzaga, M., Burlina, A., Zuccotti, G., Lammi, C., & Verduci, E. (2025). Antioxidant and Anti-Inflammatory Activity of a New Formulation of Slow-Release Amino Acids in Human Intestinal Caco-2 Cells. Antioxidants, 14(3), 271. https://doi.org/10.3390/antiox14030271