Hepatoprotective Effects of Citri reticulatae Pericarpium and Chaenomelese speciosa (Sweet) Nakai Extracts in Alcohol-Related Liver Injury: Modulation of Oxidative Stress, Lipid Metabolism, and Gut Microbiota
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of CRPE and CSPE
2.2. Analysis of Active Ingredients in CRPE and CSPE
2.3. Determination of the In Vitro Antioxidant Activity of CRPE and CSPE
2.4. Animal Experiment
2.5. Euthanasia and Biomaterial Collection
2.6. Histological Analysis
2.7. Biochemical Analysis
2.8. SCFAs Analysis of Fecal Content
2.9. 16S rRNA Gene Sequencing and Microbiome Analysis
2.10. Transcriptional Analysis
2.11. Statistical Analysis
3. Results
3.1. Chemical Characteristics of CRPE and CSPE
3.2. In Vitro Antioxidant Properties of CRPE and CSPE
3.3. CRPE and CSPE Alleviated ALI in Mice
3.4. CRPE and CSPE Alleviated OS and Inflammation Triggered by Alcohol in Mouse Liver
3.5. CRPE and CSPE Increase the Production of SCFAs
3.6. CRPE and CSPE Altered the Structure and Composition of Gut Microflora
3.7. Potential Mechanisms of CRPE and CSPE in Alleviating ALI Identified by Transcriptome Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lucey, M.R.; Im, G.Y.; Mellinger, J.L.; Szabo, G.; Crabb, D.W. Introducing the 2019 American Association for the Study of Liver Diseases Guidance on Alcohol-Associated Liver Disease. Liver Transplant. 2020, 26, 14–16. [Google Scholar] [CrossRef]
- Jophlin, L.L.; Singal, A.K.; Bataller, R.; Wong, R.J.; Sauer, B.G.; Terrault, N.A.; Shah, V.H. ACG Clinical Guideline: Alcohol-Associated Liver Disease. Am. J. Gastroenterol. 2024, 119, 30–54. [Google Scholar] [CrossRef] [PubMed]
- Ghosh Dastidar, S.; Warner, J.B.; Warner, D.R.; McClain, C.J.; Kirpich, I.A. Rodent Models of Alcoholic Liver Disease: Role of Binge Ethanol Administration. Biomolecules 2018, 8, 3. [Google Scholar] [CrossRef] [PubMed]
- Rehm, J.; Mathers, C.; Popova, S.; Thavorncharoensap, M.; Teerawattananon, Y.; Patra, J. Global burden of disease and injury and economic cost attributable to alcohol use and alcohol-use disorders. Lancet 2009, 373, 2223–2233. [Google Scholar] [CrossRef]
- Yang, Y.M.; Cho, Y.E.; Hwang, S. Crosstalk between Oxidative Stress and Inflammatory Liver Injury in the Pathogenesis of Alcoholic Liver Disease. Int. J. Mol. Sci. 2022, 23, 774. [Google Scholar] [CrossRef]
- Wu, D.; Cederbaum, A.I. Oxidative stress and alcoholic liver disease. Semin. Liver Dis. 2009, 29, 141–154. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Nie, Y.; Luo, M.; Chen, Z.; He, B. Natural Compounds: A Potential Treatment for Alcoholic Liver Disease? Front. Pharmacol. 2021, 12, 694475. [Google Scholar] [CrossRef]
- Pabst, O.; Hornef, M.W.; Schaap, F.G.; Cerovic, V.; Clavel, T.; Bruns, T. Gut-liver axis: Barriers and functional circuits. Nat. Reviews. Gastroenterol. Hepatol. 2023, 20, 447–461. [Google Scholar] [CrossRef]
- Hsu, C.L.; Schnabl, B. The gut-liver axis and gut microbiota in health and liver disease. Nat. Rev. Microbiol. 2023, 21, 719–733. [Google Scholar] [CrossRef]
- Sarin, S.K.; Pande, A.; Schnabl, B. Microbiome as a therapeutic target in alcohol-related liver disease. J. Hepatol. 2019, 70, 260–272. [Google Scholar] [CrossRef]
- Albillos, A.; de Gottardi, A.; Rescigno, M. The gut-liver axis in liver disease: Pathophysiological basis for therapy. J. Hepatol. 2020, 72, 558–577. [Google Scholar] [CrossRef] [PubMed]
- Ganesan, R.; Suk, K.T. Microbiome and metabolomics in alcoholic liver disease. Clin. Mol. Hepatol. 2022, 28, 580–582. [Google Scholar] [CrossRef]
- Dukić, M.; Radonjić, T.; Jovanović, I.; Zdravković, M.; Todorović, Z.; Kraišnik, N.; Aranđelović, B.; Mandić, O.; Popadić, V.; Nikolić, N.; et al. Alcohol, Inflammation, and Microbiota in Alcoholic Liver Disease. Int. J. Mol. Sci. 2023, 24, 3735. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; He, Y.; Xiong, H.; Sun, Y. Rice Protein Peptides Alleviate Alcoholic Liver Disease via the PPARγ Signaling Pathway: Through Liver Metabolomics and Gut Microbiota Analysis. J. Agric. Food Chem. 2024, 72, 23790–23803. [Google Scholar] [CrossRef]
- Zhao, X.; Gong, L.; Wang, C.; Liu, M.; Hu, N.; Dai, X.; Peng, C.; Li, Y. Quercetin mitigates ethanol-induced hepatic steatosis in zebrafish via P2X7R-mediated PI3K/Keap1/Nrf2 signaling pathway. J. Ethnopharmacol. 2021, 268, 113569. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, S.; Wan, T.; Huang, Y.; Pang, N.; Jiang, X.; Gu, Y.; Zhang, Z.; Luo, J.; Yang, L. Cyanidin-3-O-β-glucoside inactivates NLRP3 inflammasome and alleviates alcoholic steatohepatitis via SirT1/NF-κB signaling pathway. Free Radic. Biol. Med. 2020, 160, 334–341. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Chen, Y.; Luo, Z.; Huang, Q.; Zhang, Y.; Ning, H.; Liu, S.; Wang, J.; Han, X. Citri Reticulatae Pericarpium-Reynoutria japonica Houtt. herb pair suppresses breast cancer liver metastasis by targeting ECM1-mediated cholesterol biosynthesis pathway. Phytomedicine 2023, 116, 154896. [Google Scholar] [CrossRef]
- Gao, S.; Chen, X.; Yu, Z.; Du, R.; Chen, B.; Wang, Y.; Cai, X.; Xu, J.; Chen, J.; Duan, H.; et al. Progress of research on the role of active ingredients of Citri Reticulatae Pericarpium in liver injury. Phytomedicine 2023, 115, 154836. [Google Scholar] [CrossRef]
- Hou, M.; Lin, C.; Ma, Y.; Shi, J.; Liu, J.; Zhu, L.; Bian, Z. One-step enrichment of phenolics from Chaenomeles speciosa (Sweet) Nakai fruit using macroporous resin: Adsorption/desorption characteristics, process optimization and UPLC-QqQ-MS/MS-based quantification. Food Chem. 2024, 439, 138085. [Google Scholar] [CrossRef]
- Wang, Z.-J.; Jin, D.-N.; Zhou, Y.; Sang, X.-Y.; Zhu, Y.-Y.; He, Y.-J.; Xie, T.-Z.; Dai, Z.; Zhao, Y.-L.; Luo, X.-D. Bioactivity Ingredients of Chaenomeles speciosa against Microbes: Characterization by LC-MS and Activity Evaluation. J. Agric. Food Chem. 2021, 69, 4686–4696. [Google Scholar] [CrossRef]
- Chen, L.; Cao, H.; Huang, Q.; Xiao, J.; Teng, H. Absorption, metabolism and bioavailability of flavonoids: A review. Crit. Rev. Food Sci. Nutr. 2022, 62, 7730–7742. [Google Scholar] [CrossRef] [PubMed]
- Cao, R.; Cao, C.; Hu, X.; Du, K.; Zhang, J.; Li, M.; Li, B.; Lin, H.; Zhang, A.; Li, Y.; et al. Kaempferol attenuates carbon tetrachloride (CCl(4))-induced hepatic fibrosis by promoting ASIC1a degradation and suppression of the ASIC1a-mediated ERS. Phytomedicine 2023, 121, 155125. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, B.; Deng, H.; Zhang, C.; Wang, Y.; Chen, L.; Teng, H. Galangin Alleviates Alcohol-Provoked Liver Injury Associated with Gut Microbiota Disorder and Intestinal Barrier Dysfunction in Mice. J. Agric. Food Chem. 2024, 72, 22336–22348. [Google Scholar] [CrossRef]
- Yi, Z.; Liu, X.; Liang, L.; Wang, G.; Xiong, Z.; Zhang, H.; Song, X.; Ai, L.; Xia, Y. Antrodin A from Antrodia camphorata modulates the gut microbiome and liver metabolome in mice exposed to acute alcohol intake. Food Funct. 2021, 12, 2925–2937. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Li, P.; Li, X.; Ma, L.; Chen, K.; Man, S. Pueraria Extract Ameliorates Alcoholic Liver Disease via the Liver-Gut-Brain Axis: Focus on Restoring the Intestinal Barrier and Inhibiting Alcohol Metabolism. J. Agric. Food Chem. 2024, 72, 24449–24462. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Jung, I.K.; Lee, Y.; Jin, S.; Yun, H.J.; Kim, B.W.; Kwon, H.J. Alcohol stimulates the proliferation of mouse small intestinal epithelial cells via Wnt signaling. Biochem. Biophys. Res. Commun. 2021, 534, 639–645. [Google Scholar] [CrossRef] [PubMed]
- Rice-Evans, C.A.; Miller, N.J.; Paganga, G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic. Biol. Med. 1996, 20, 933–956. [Google Scholar] [CrossRef]
- Pan, Y.; Li, H.; Zheng, S.; Zhang, B.; Deng, Z.Y. Implication of the Significance of Dietary Compatibility: Based on the Antioxidant and Anti-Inflammatory Interactions with Different Ratios of Hydrophilic and Lipophilic Antioxidants among Four Daily Agricultural Crops. J. Agric. Food Chem. 2018, 66, 7461–7474. [Google Scholar] [CrossRef]
- Wang, S.; Meckling, K.A.; Marcone, M.F.; Kakuda, Y.; Tsao, R. Synergistic, additive, and antagonistic effects of food mixtures on total antioxidant capacities. J. Agric. Food Chem. 2011, 59, 960–968. [Google Scholar] [CrossRef]
- Parker, R.; Kim, S.J.; Gao, B. Alcohol, adipose tissue and liver disease: Mechanistic links and clinical considerations. Nat. Rev. Gastroenterol. Hepatol. 2018, 15, 50–59. [Google Scholar] [CrossRef]
- You, M.; Arteel, G.E. Effect of ethanol on lipid metabolism. J. Hepatol. 2019, 70, 237–248. [Google Scholar] [CrossRef]
- Ding, T.; Shen, W.; Tao, W.; Peng, J.; Pan, M.; Qi, X.; Feng, W.; Wei, N.; Zheng, S.; Jin, H. Curcumol ameliorates alcohol and high-fat diet-induced fatty liver disease via modulation of the Ceruloplasmin/iron overload/mtDNA signaling pathway. J. Nutr. Biochem. 2025, 136, 109807. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Ma, H.; Liang, J.; Sun, C.; Wang, D.; Chen, K.; Zhao, J.; Ji, S.; Ma, C.; Ye, X.; et al. Hepatoprotective potential of four fruit extracts rich in different structural flavonoids against alcohol-induced liver injury via gut microbiota-liver axis. Food Chem. 2024, 460, 140460. [Google Scholar] [CrossRef] [PubMed]
- Mahalingam, S.; Bellamkonda, R.; Kharbanda, K.K.; Arumugam, M.K.; Kumar, V.; Casey, C.A.; Leggio, L.; Rasineni, K. Role of ghrelin hormone in the development of alcohol-associated liver disease. Biomed. Pharmacother. 2024, 174, 116595. [Google Scholar] [CrossRef]
- He, Q.; Yin, Z.; Chen, Y.; Wu, Y.; Pan, D.; Cui, Y.; Zhang, Z.; Ma, H.; Li, X.; Shen, C.; et al. Cyanidin-3-O-glucoside alleviates ethanol-induced liver injury by promoting mitophagy in a Gao-binge mouse model of alcohol-associated liver disease. Biochim. Biophys. Acta Mol. Basis Dis. 2024, 1870, 167259. [Google Scholar] [CrossRef] [PubMed]
- Lv, X.C.; Wu, Q.; Cao, Y.J.; Lin, Y.C.; Guo, W.L.; Rao, P.F.; Zhang, Y.Y.; Chen, Y.T.; Ai, L.Z.; Ni, L. Ganoderic acid A from Ganoderma lucidum protects against alcoholic liver injury through ameliorating the lipid metabolism and modulating the intestinal microbial composition. Food Funct. 2022, 13, 5820–5837. [Google Scholar] [CrossRef]
- Zhou, L.; Xiao, M.; Li, Y.; Chitrakar, B.; Sheng, Q.; Zhao, W. Ursolic Acid Ameliorates Alcoholic Liver Injury through Attenuating Oxidative Stress-Mediated Ferroptosis and Modulating Gut Microbiota. J. Agric. Food Chem. 2024, 72, 21181–21192. [Google Scholar] [CrossRef]
- Liu, D.; Zhan, J.; Wang, S.; Chen, L.; Zhu, Q.; Nie, R.; Zhou, X.; Zheng, W.; Luo, X.; Wang, B.; et al. Chrysanthemum morifolium attenuates metabolic and alcohol-associated liver disease via gut microbiota and PPARα/γ activation. Phytomedicine 2024, 130, 155774. [Google Scholar] [CrossRef]
- Guan, H.; Zhang, W.; Liu, H.; Jiang, Y.; Li, F.; Wang, D.; Liu, Y.; He, F.; Wu, M.; Ivan Neil Waterhouse, G.; et al. Simultaneous binding of quercetin and catechin to FOXO3 enhances IKKα transcription inhibition and suppression of oxidative stress-induced acute alcoholic liver injury in rats. J. Adv. Res. 2025, 67, 71–92. [Google Scholar] [CrossRef]
- Cichoż-Lach, H.; Michalak, A. Oxidative stress as a crucial factor in liver diseases. World J. Gastroenterol. 2014, 20, 8082–8091. [Google Scholar] [CrossRef]
- Lai, W.; Zhang, J.; Sun, J.; Min, T.; Bai, Y.; He, J.; Cao, H.; Che, Q.; Guo, J.; Su, Z. Oxidative stress in alcoholic liver disease, focusing on proteins, nucleic acids, and lipids: A review. Int. J. Biol. Macromol. 2024, 278, 134809. [Google Scholar] [CrossRef] [PubMed]
- Forman, H.J.; Zhang, H. Targeting oxidative stress in disease: Promise and limitations of antioxidant therapy. Nat. Rev. Drug Discov. 2021, 20, 689–709. [Google Scholar] [CrossRef]
- Zheng, L.; Aimaiti, Z.; Long, L.; Xia, C.; Wang, W.; Zhou, Z.Z. Discovery of 4-Ethoxy-6-chloro-5-azaindazoles as Novel PDE4 Inhibitors for the Treatment of Alcohol Use Disorder and Alcoholic Liver Diseases. J. Med. Chem. 2024, 67, 728–753. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.H.; Chang, Y.Y.; Liu, C.W.; Kang, W.Y.; Lin, Y.L.; Chang, H.C.; Chen, Y.C. Fruiting body of Niuchangchih (Antrodia camphorata) protects livers against chronic alcohol consumption damage. J. Agric. Food Chem. 2010, 58, 3859–3866. [Google Scholar] [CrossRef]
- Sun, Y.; Men, Q.; Ren, X.; Yan, C.; Song, S.; Ai, C. Low molecular fucoidan alleviated alcohol-induced liver injury in BALB/c mice by regulating the gut microbiota-bile acid-liver axis. Int. J. Biol. Macromol. 2024, 282, 136930. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, F.; Lu, H.; Wang, B.; Chen, Y.; Lei, D.; Wang, Y.; Zhu, B.; Li, L. Characterization of fecal microbial communities in patients with liver cirrhosis. Hepatology 2011, 54, 562–572. [Google Scholar] [CrossRef]
- Jiang, J.; Chen, L.; Wu, S.; Lv, L.; Liu, X.; Wang, Q.; Zhao, X. Effects of difenoconazole on hepatotoxicity, lipid metabolism and gut microbiota in zebrafish (Danio rerio). Environ. Pollut. 2020, 265, 114844. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, H.; Teng, X.; Guo, P.; Zuo, Y.; Zhao, H.; Wang, P.; Liang, H. Garlic oil alleviates high triglyceride levels in alcohol-exposed rats by inhibiting liver oxidative stress and regulating the intestinal barrier and intestinal flora. Food Sci. Nutr. 2022, 10, 2479–2495. [Google Scholar] [CrossRef]
- Li, F.; Duan, K.; Wang, C.; McClain, C.; Feng, W. Probiotics and Alcoholic Liver Disease: Treatment and Potential Mechanisms. Gastroenterol. Res. Pract. 2016, 2016, 5491465. [Google Scholar] [CrossRef]
- Zhang, Y.; Dong, R.; Zhou, H.; Wang, J.; Shi, J.; Ye, S.; Cheng, Y.; Leng, Y.; Xu, W.; Kong, L.; et al. The Flavonoid Glycoside from Abrus cantoniensis Hance Alleviates Alcoholic Liver Injury by Inhibiting Ferroptosis in an AMPK-Dependent Manner. J. Agric. Food Chem. 2024, 72, 16323–16333. [Google Scholar] [CrossRef]
- Kim, D.K.; Rajan, P.; Cuong, D.M.; Choi, J.H.; Yoon, T.H.; Go, G.M.; Lee, J.W.; Noh, S.W.; Choi, H.K.; Cho, S.K. Melosira nummuloides Ethanol Extract Ameliorates Alcohol-Induced Liver Injury by Affecting Metabolic Pathways. J. Agric. Food Chem. 2024, 72, 8476–8490. [Google Scholar] [CrossRef]
- Chu, J.; Yan, R.; Wang, S.; Li, G.; Kang, X.; Hu, Y.; Lin, M.; Shan, W.; Zhao, Y.; Wang, Z.; et al. Sinapic Acid Reduces Oxidative Stress and Pyroptosis via Inhibition of BRD4 in Alcoholic Liver Disease. Front. Pharmacol. 2021, 12, 668708. [Google Scholar] [CrossRef] [PubMed]
- Loos, N.H.C.; Retmana, I.A.; Li, W.; Martins, M.L.; Lebre, M.C.; Sparidans, R.W.; Beijnen, J.H.; Schinkel, A.H. ABCB1 limits brain exposure of the KRAS(G12C) inhibitor sotorasib, whereas ABCB1, CYP3A, and possibly OATP1a/1b restrict its oral availability. Pharmacol. Res. 2022, 178, 106137. [Google Scholar] [CrossRef] [PubMed]
- Cao, H.; Xi, S.; He, W.; Ma, X.; Liu, L.; Xu, J.; Zhang, K.; Li, Y.; Jin, L. The effects of Gentiana dahurica Fisch on alcoholic liver disease revealed by RNA sequencing. J. Ethnopharmacol. 2021, 279, 113422. [Google Scholar] [CrossRef]
- Souza-Smith, F.M.; Molina, P.E.; Maiya, R. Chronic alcohol feeding alters lymph and plasma proteome in a rodent model. Life Sci. 2023, 327, 121818. [Google Scholar] [CrossRef]
- Nawroth, J.C.; Petropolis, D.B.; Manatakis, D.V.; Maulana, T.I.; Burchett, G.; Schlünder, K.; Witt, A.; Shukla, A.; Kodella, K.; Ronxhi, J.; et al. Modeling alcohol-associated liver disease in a human Liver-Chip. Cell Rep. 2021, 36, 109393. [Google Scholar] [CrossRef]
- Du, X.; Liu, M.; Trevisi, E.; Ju, L.; Yang, Y.; Gao, W.; Song, Y.; Lei, L.; Zolzaya, M.; Li, X.; et al. Expression of hepatic genes involved in bile acid metabolism in dairy cows with fatty liver. J. Dairy Sci. 2024, 107, 8629–8641. [Google Scholar] [CrossRef] [PubMed]
- You, Y.; Li, W.Z.; Zhang, S.; Hu, B.; Li, Y.X.; Li, H.D.; Tang, H.H.; Li, Q.W.; Guan, Y.Y.; Liu, L.X.; et al. SNX10 mediates alcohol-induced liver injury and steatosis by regulating the activation of chaperone-mediated autophagy. J. Hepatol. 2018, 69, 129–141. [Google Scholar] [CrossRef]
- Ma, S.; Xie, F.; Wen, X.; Adzavon, Y.M.; Zhao, R.; Zhao, J.; Li, H.; Li, Y.; Liu, J.; Liu, C.; et al. GSTA1/CTNNB1 axis facilitates sorafenib resistance via suppressing ferroptosis in hepatocellular carcinoma. Pharmacol. Res. 2024, 210, 107490. [Google Scholar] [CrossRef]
- Silitonga, M.; Sidabutar, H.; Pranoto, H.; LumbanGaol, A.Y.D.; Sipahutar, F.R.P. Protective effects of Bidens pilosa alleviates against alcohol—Induced hepatic steatosis in rats: In vivo studies and in silico analysis. Pharmacol. Res. Mod. Chin. Med. 2024, 13, 100546. [Google Scholar] [CrossRef]
- Singh, M.K.; Jayarajan, R.; Varshney, S.; Upadrasta, S.; Singh, A.; Yadav, R.; Scaria, V.; Sengupta, S.; Shanmugam, D.; Shalimar; et al. Chronic systemic exposure to IL6 leads to deregulation of glycolysis and fat accumulation in the zebrafish liver. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2021, 1866, 158905. [Google Scholar] [CrossRef] [PubMed]
No. | Formula | Molecular Weight | m/z 1 | RT 2 (min) | Adduct | Compound | Peak Area |
---|---|---|---|---|---|---|---|
1 | C21H22O8 | 402.13 | 403.14 | 7.43 | [M + H]+ | Hexamethylquercetagetin | 552,559,349,174.21 |
2 | C22H24O9 | 432.14 | 433.15 | 7.53 | [M + H]+ | 3,3′,4′,5,6,7,8-heptamethoxyflavone | 83,477,038,443.83 |
3 | C20H20O7 | 372.12 | 395.11 | 7.95 | [M + Na]+ | Isosinensetin | 39,400,878,448.19 |
4 | C21H22O8 | 402.13 | 425.12 | 8.07 | [M + Na]+ | Nobiletin | 15,332,712,531.77 |
5 | C18H16O6 | 328.09 | 329.10 | 6.72 | [M + H]+ | Salvigenin | 10,194,311,275.88 |
6 | C20H20O8 | 388.12 | 389.12 | 7.75 | [M + H]+ | 5-O-Demethylnobiletin | 6,208,555,256.71 |
7 | C19H18O7 | 358.11 | 359.11 | 8.28 | [M + H]+ | 5-Desmethylsinensetin | 6,055,111,923.25 |
8 | C19H18O8 | 374.10 | 373.09 | 6.73 | [M − H]− | Chrysosplenetin | 5,720,426,977.83 |
9 | C20H18O10 | 418.09 | 417.08 | 5.87 | [M − H]− | Juglanin | 5,502,584,609.53 |
10 | C18H16O5 | 312.10 | 313.11 | 7.71 | [M + H]+ | 4′,5,7-Trimethoxyflavone | 4,405,711,889.73 |
11 | C19H20O7 | 360.12 | 361.13 | 6.65 | [M + H]+ | 9,10-Dihydro-8-hydroxy-10-methyl-8H-pyrano[2,3-h]epicatechin | 4,163,792,751.41 |
12 | C20H20O7 | 372.12 | 395.11 | 7.05 | [M+ Na]+ | Quercetin 3,5,7,3,4-pentamethyl ether | 4,098,778,344.09 |
13 | C20H20O7 | 372.12 | 373.13 | 0.55 | [M + H]+ | Tangeritin | 3,659,997,786.06 |
14 | C28H34O15 | 610.19 | 609.18 | 5.65 | [M − H]− | Hesperidin | 3,612,723,408.31 |
15 | C19H16O8 | 372.08 | 373.09 | 7.43 | [M + H]+ | Melisimplin | 3,481,061,795.95 |
No. | Formula | Molecular Weight | m/z 1 | RT 2 (min) | Adduct | Compound | Peak Area |
---|---|---|---|---|---|---|---|
1 | C20H20O7 | 372.12 | 373.13 | 6.44 | [M + H]+ | Isosinensetin | 5,808,079,464.56 |
2 | C15H14O6 | 290.08 | 291.09 | 5.16 | [M + H]+ | Catechin | 5,046,372,923.94 |
3 | C19H18O6 | 342.11 | 343.12 | 6.72 | [M + H]+ | 6-Demethoxytangeretin | 4,017,371,570.56 |
4 | C15H10O7 | 302.04 | 303.05 | 5.6 | [M + H]+ | Morin | 2,915,784,800.70 |
5 | C22H24O9 | 432.14 | 433.15 | 6.81 | [M + H]+ | 3,3′,4′,5,6,7,8-heptamethoxyflavone | 2,594,448,236.13 |
6 | C21H20O12 | 464.1 | 465.1 | 5.6 | [M + H]+ | Quercimeritrin | 1,123,926,158.49 |
7 | C20H20O8 | 388.12 | 389.12 | 7 | [M + H]+ | 5-O-Demethylnobiletin | 1,078,133,775.42 |
8 | C21H22O8 | 402.13 | 425.12 | 6.73 | [M+Na]+ | Nobiletin | 963,811,532.09 |
9 | C15H14O7 | 306.07 | 289.07 | 5 | [M + H − H2O]+ | Leucocyanidin | 757,660,021.50 |
10 | C20H18O9 | 402.1 | 403.1 | 5.25 | [M + H]+ | 7-Hydroxy-5,6,8,3′-tetramethoxy-4′,5′-methylenedioxyflavone | 657,489,658.88 |
11 | C21H22O8 | 402.13 | 403.14 | 0.52 | [M + H]+ | Hexamethylquercetagetin | 562,041,913.85 |
12 | C21H20O11 | 448.1 | 449.11 | 5.73 | [M + H]+ | Kaempferol 3-O-alpha-L-galactoside | 415,045,255.05 |
13 | C15H12O3 | 240.08 | 223.08 | 6.98 | [M + H − H2O]+ | 4′-Hydroxyflavanone | 302,956,914.05 |
14 | C27H30O16 | 610.15 | 611.16 | 5.57 | [M + H]+ | Rhodiosin | 291,546,369.06 |
15 | C21H24O11 | 452.13 | 453.14 | 4.91 | [M + H]+ | Epicatechin 5-O-beta-D-glucopyranoside | 260,292,890.65 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, S.; Kang, L.; Gao, Z.; Pan, Z.; Huang, L.; Chen, J.; Liao, Y.; Guo, J.; Fu, F. Hepatoprotective Effects of Citri reticulatae Pericarpium and Chaenomelese speciosa (Sweet) Nakai Extracts in Alcohol-Related Liver Injury: Modulation of Oxidative Stress, Lipid Metabolism, and Gut Microbiota. Antioxidants 2025, 14, 343. https://doi.org/10.3390/antiox14030343
Ma S, Kang L, Gao Z, Pan Z, Huang L, Chen J, Liao Y, Guo J, Fu F. Hepatoprotective Effects of Citri reticulatae Pericarpium and Chaenomelese speciosa (Sweet) Nakai Extracts in Alcohol-Related Liver Injury: Modulation of Oxidative Stress, Lipid Metabolism, and Gut Microbiota. Antioxidants. 2025; 14(3):343. https://doi.org/10.3390/antiox14030343
Chicago/Turabian StyleMa, Shuangshuang, Lingtao Kang, Zhipeng Gao, Zhaoping Pan, Lvhong Huang, Jiaxu Chen, Yanfang Liao, Jiajing Guo, and Fuhua Fu. 2025. "Hepatoprotective Effects of Citri reticulatae Pericarpium and Chaenomelese speciosa (Sweet) Nakai Extracts in Alcohol-Related Liver Injury: Modulation of Oxidative Stress, Lipid Metabolism, and Gut Microbiota" Antioxidants 14, no. 3: 343. https://doi.org/10.3390/antiox14030343
APA StyleMa, S., Kang, L., Gao, Z., Pan, Z., Huang, L., Chen, J., Liao, Y., Guo, J., & Fu, F. (2025). Hepatoprotective Effects of Citri reticulatae Pericarpium and Chaenomelese speciosa (Sweet) Nakai Extracts in Alcohol-Related Liver Injury: Modulation of Oxidative Stress, Lipid Metabolism, and Gut Microbiota. Antioxidants, 14(3), 343. https://doi.org/10.3390/antiox14030343