Impact of Potentially Antioxidant Probiotic Strains on Fermentation Quality and Antioxidant Status in Alfalfa Silage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Antioxidant Properties of Three LAB Strains
2.2. Alfalfa Silage Preparation
2.3. Sampling and Analyses
2.4. Statistical Analysis
3. Results
3.1. Antioxidant Properties of the Three LAB Strains
3.2. The Effect of Three LAB Strains on the Fermentation and Antioxidant Status of Alfalfa Silages
4. Discussion
4.1. Antioxidant Activities of L. plantarum XY15 and L. plantarum XY20
4.2. The Effects of L. plantarum YX15 and L. plantarum YX20 on the Fermentation Quality of Alfalfa Silages
4.3. The Effects of L. plantarum YX15 and L. plantarum YX20 on the Antioxidant Status of Alfalfa Silages
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
LAB | lactic acid bacteria |
DPPH | 2,2-diphenyl-1-picrylhydrazyl |
OH | hydroxyl |
SOD | superoxide dismutase |
GSH-Px | glutathione peroxidase |
T-AOC | total antioxidant capacity |
CON | control |
PA | propionic acid |
ROS | reactive oxygen species |
WSC | water-soluble carbohydrate |
BA | butyric acid |
LA | lactate |
AcA | acetate |
CAT | catalase |
MRS | de Man, Rogosa and Sharpe medium |
DM | Dry matter |
FW | fresh weight |
ABTS | 2,2′-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) |
NDF | neutral detergent fiber |
ADF | acid detergent fiber |
rpm | revolutions per minute |
PDA | Potato Dextrose Agar |
CFU | colony-forming units |
INO | inoculants |
LA/AcA | The raito of lactate to acetate |
References
- Tafuri, S.; Cocchia, N.; Landolfi, F.; Iorio, E.L.; Ciani, F. Redoxomics and Oxidative Stress: From the Basic Research to the Clinical Practice; InTechOpen: London, UK, 2016; pp. 117–137. [Google Scholar]
- Mirowska-Guzel, D.; Balkowiec-Iskra, E. The Role of Monoamine Oxidase in Humans and Its Metabolism. Psychiatr. Ann. 2014, 44, 495–501. [Google Scholar] [CrossRef]
- Chew, B.P. Importance of antioxidant vitamins in immunity and health in animals. Anim. Feed Sci. Technol. 1996, 59, 103–114. [Google Scholar] [CrossRef]
- Wang, J.; Ji, H.F.; Wang, S.X.; Zhang, D.Y.; Liu, H.; Shan, D.C.; Wang, Y.M. Lactobacillus plantarum ZLP001: In vitro Assessment of Antioxidant Capacity and Effect on Growth Performance and Antioxidant Status in Weaning Piglets. Asian-Austral. J. Anim. 2012, 25, 1153–1158. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, Y.; Chen, H.; Wei, H.; Wan, C. Potential of Lactobacillus plantarum ZDY2013 and Bifidobacterium bifidum WBIN03 in relieving colitis by gut microbiota, immune, and anti-oxidative stress. Can. J. Microbiol. 2018, 64, 327–337. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Zhang, T.; Dai, Y.; Jiang, G.; Peng, Y.; Wang, J.; Song, Y.; Ding, Z. Effects of probiotics on antioxidant activity, flavor compounds and sensory evaluation of Rosa roxburghii Tratt. LWT 2023, 179, 114664. [Google Scholar] [CrossRef]
- Jaurena, G.; Pichard, G. Contribution of storage and structural polysaccharides to the fermentation process and nutritive value of lucerne ensiled alone or mixed with cereal grains. Anim. Feed Sci. Technol. 2001, 92, 159–173. [Google Scholar] [CrossRef]
- Zhang, Y.X.; Ke, W.C.; Vyas, D.; Adesogan, A.T.; Franco, M.; Li, F.H.; Bai, J.; Guo, X.S. Antioxidant status, chemical composition and fermentation profile of alfalfa silage ensiled at two dry matter contents with a novel Lactobacillus plantarum strain with high-antioxidant activity. Anim. Feed Sci. Technol. 2021, 272, 114751. [Google Scholar] [CrossRef]
- Zhang, Y.X.; Ke, W.C.; Bai, J.; Li, F.H.; Xu, D.M.; Ding, Z.T.; Guo, X.S. The effect of Pediococcus acidilactici J17 with high-antioxidant activity on antioxidant, α-tocopherol, β-carotene, fatty acids, and fermentation profiles of alfalfa silage ensiled at two different dry matter contents. Anim. Feed Sci. Technol. 2020, 268, 114614. [Google Scholar] [CrossRef]
- Yang, X. Effects of Elevation Gradient on Phyllosphere Microbes and Fermentation Characteristics of Kobresia pygmaea and Avena sativa L. Master’s Thesis, Nanjing Agricultural University, Nanjing, China, 2022. [Google Scholar]
- Zhang, X.; Guo, X.S.; Li, F.H.; Usman, S.; Zhang, Y.X.; Ding, Z.T. Antioxidant, flavonoid, α-tocopherol, β-carotene, fatty acids, and fermentation profiles of alfalfa silage inoculated with novel Lactiplantibacillus Plantarum and Pediococcus acidilactici strains with high-antioxidant activity. Anim. Feed Sci. Technol. 2022, 288, 115301. [Google Scholar] [CrossRef]
- Shimada, K.; Fujikawa, K.; Yahara, K.; Nakamura, T. Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. J. Agric. Food Chem. 1992, 40, 945–948. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, L.; Su, Y.; Li, H.; Sun, Q.; Liang, X.; Lv, J. Antioxidative activity of lactic acid bacteria in yogurt. Afr. J. Microbiol. Res. 2011, 5, 5194–5201. [Google Scholar]
- Ding, W.; Wang, L.; Zhang, J.; Ke, W.; Zhou, J.; Zhu, J.; Guo, X.; Long, R. Characterization of antioxidant properties of lactic acid bacteria isolated from spontaneously fermented yak milk in the Tibetan Plateau. J. Funct. Foods 2017, 35, 481–488. [Google Scholar] [CrossRef]
- Weatherburn, M. Phenol-hypochlorite reaction for determination of ammonia. Anal. Chem. 1967, 39, 971–974. [Google Scholar] [CrossRef]
- Zhao, H.; Fan, W.; Dong, J.; Lu, J.; Chen, J.; Shan, L.; Lin, Y.; Kong, W. Evaluation of antioxidant activities and total phenolic contents of typical malting barley varieties. Food Chem. 2008, 107, 296–304. [Google Scholar] [CrossRef]
- Arthur Thomas, T. An automated procedure for the determination of soluble carbohydrates in herbage. J. Sci. Food Agric. 1977, 28, 639–642. [Google Scholar] [CrossRef]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Zhang, B.; Zhang, Y.; Zhang, X.; Usman, S.; Ding, Z.; Hao, L.; Guo, X. Probiotic effect of ferulic acid esterase-producing Lactobacillus plantarum inoculated alfalfa silage on digestion, antioxidant, and immunity status of lactating dairy goats. Anim. Nutr. 2022, 11, 38–47. [Google Scholar] [CrossRef]
- Ge, Q.; Chen, S.; Liu, R.; Chen, L.; Yang, B.; Yu, H.; Wu, M.; Zhang, W.; Zhou, G. Effects of Lactobacillus plantarum NJAU-01 on the protein oxidation of fermented sausage. Food Chem. 2019, 295, 361–367. [Google Scholar] [CrossRef]
- Yu, X.; Li, S.; Yang, D.; Qiu, L.; Wu, Y.; Wang, D.; Shah, N.P.; Xu, F.; Wei, H. A novel strain of Lactobacillus mucosae isolated from a Gaotian villager improves in vitro and in vivo antioxidant as well as biological properties in d-galactose-induced aging mice. J. Dairy Sci. 2016, 99, 903–914. [Google Scholar] [CrossRef]
- Liu, N.; Miao, S.; Qin, L. Screening and application of lactic acid bacteria and yeasts with l-lactic acid-producing and antioxidant capacity in traditional fermented rice acid. Food Sci. Nutr. 2020, 8, 6095–6111. [Google Scholar] [CrossRef]
- Kanno, T.; Kuda, T.; An, C.; Takahashi, H.; Kimura, B. Radical scavenging capacities of saba-narezushi, Japanese fermented chub mackerel, and its lactic acid bacteria. LWT-Food Sci. Technol. 2012, 47, 25–30. [Google Scholar] [CrossRef]
- Liu, Y.; Ji, M.; Yu, T.; Zaugg, J.; Anesio, A.M.; Zhang, Z.; Hu, S.; Hugenholtz, P.; Liu, K.; Liu, P.; et al. A genome and gene catalog of glacier microbiomes. Nat. Biotechnol. 2022, 40, 1341–1348. [Google Scholar] [CrossRef]
- Liu, C.-F.; Tseng, K.-C.; Chiang, S.-S.; Lee, B.-H.; Hsu, W.-H.; Pan, T.-M. Immunomodulatory and antioxidant potential of Lactobacillus exopolysaccharides. J. Sci. Food Agric. 2011, 91, 2284–2291. [Google Scholar] [CrossRef] [PubMed]
- Lin, M.-Y.; Yen, C.-L. Antioxidative Ability of Lactic Acid Bacteria. J. Agric. Food Chem. 1999, 47, 1460–1466. [Google Scholar] [CrossRef] [PubMed]
- Amaretti, A.; Di Nunzio, M.; Pompei, A.; Raimondi, S.; Rossi, M.; Bordoni, A. Antioxidant properties of potentially probiotic bacteria: In vitro and in vivo activities. Appl. Microbiol. Biot. 2013, 97, 809–817. [Google Scholar]
- Hassan, H.M. Biosynthesis and regulation of superoxide dismutases. Free Radic. Biol. Med. 1988, 5, 377–385. [Google Scholar]
- Yang, T.; Yang, J.; Tang, K.; Zhi, W.; Chen, R.; Tan, H. Antioxidative properties analysis of gastrointestinal lactic acid bacteria in Hainan black goat and its effect on the aerobic stability of total mixed ration. Front. Microbiol. 2022, 13, 974925. [Google Scholar] [CrossRef]
- Abdel Tawab, F.I.; Abd Elkadr, M.H.; Sultan, A.M.; Hamed, E.O.; El-Zayat, A.S.; Ahmed, M.N. Probiotic potentials of lactic acid bacteria isolated from Egyptian fermented food. Sci. Rep. 2023, 13, 16601. [Google Scholar] [CrossRef]
- Yang, J.; Dong, C.; Ren, F.; Xie, Y.; Liu, H.; Zhang, H.; Jin, J. Lactobacillus paracasei M11-4 isolated from fermented rice demonstrates good antioxidant properties in vitro and in vivo. J. Sci. Food Agric. 2021, 102, 3107–3118. [Google Scholar] [CrossRef]
- Shi, S.; Dong, J.; Cheng, X.; Hu, J.; Liu, Y.; He, G.; Zhang, J.; Yu, H.; Jia, L.; Zhou, D. Biological characteristics and whole-genome analysis of the potential probiotic, Lactobacillus reuteri S5. Lett. Appl. Microbiol. 2022, 74, 593–603. [Google Scholar]
- Sun, Y.; Sun, Q.; Tang, Y.; Li, Q.; Tian, C.; Sun, H. Integrated microbiology and metabolomic analysis reveal the improvement of rice straw silage quality by inoculation of Lactobacillus brevis. Biotechnol. Biofuels Bioprod. 2023, 16, 184. [Google Scholar] [CrossRef]
- Driehuis, F.; Oude Elferink, S.J.W.H.; Van Wikselaar, P.G. Fermentation characteristics and aerobic stability of grass silage inoculated with Lactobacillus buchneri, with or without homofermentative lactic acid bacteria. Grass Forage Sci. 2001, 56, 330–343. [Google Scholar] [CrossRef]
- Sun, L.; Xue, Y.L.; Xiao, Y.Z.; Te, R.G.L.; Wu, X.G.; Na, N.; Wu, N.R.; Qili, M.; Zhao, Y.; Cai, Y.M. Community Synergy of Lactic Acid Bacteria and Cleaner Fermentation of Oat Silage Prepared with a Multispecies Microbial Inoculant. Microbiol. Spectr. 2023, 11, e00705-23. [Google Scholar] [CrossRef]
- Li, F.H.; Ding, Z.T.; Chen, X.Z.; Zhang, Y.X.; Ke, W.C.; Zhang, X.; Li, Z.Q.; Usman, S.; Guo, X.S. The effects of Lactobacillus plantarum with feruloyl esterase-producing ability or high antioxidant activity on the fermentation, chemical composition, and antioxidant status of alfalfa silage. Anim. Feed Sci. Technol. 2021, 273, 114835. [Google Scholar] [CrossRef]
- Yang, F.; Wang, Y.; Zhao, S.; Feng, C.; Fan, X. Dynamics of the Fermentation Products, Residual Non-structural Carbohydrates, and Bacterial Communities of Wilted and Non-wilted Alfalfa Silage with and Without Lactobacillus plantarum Inoculation. Front. Microbiol. 2021, 12, 824229. [Google Scholar] [CrossRef]
- Zhao, S.; Yang, F.; Wang, Y.; Fan, X.; Feng, C.; Wang, Y. Dynamics of Fermentation Parameters and Bacterial Community in High-Moisture Alfalfa Silage with or without Lactic Acid Bacteria. Microorganisms 2021, 9, 1225. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Huan, H.; Gu, H.; Xu, N.; Shen, Q.; Ding, C. Dynamics of a microbial community during ensiling and upon aerobic exposure in lactic acid bacteria inoculation-treated and untreated barley silages. Bioresour. Technol. 2019, 273, 212–219. [Google Scholar] [CrossRef] [PubMed]
- Muck, R.E.; Nadeau, E.M.G.; McAllister, T.A.; Contreras-Govea, F.E.; Santos, M.C.; Kung, L., Jr. Silage review: Recent advances and future uses of silage additives. J. Dairy Sci. 2018, 101, 3980–4000. [Google Scholar] [CrossRef] [PubMed]
- Borch, E.; Berg, H.; Holst, O. Heterolactic fermentation by a homofermentative Lactobacillus sp. during glucose limitation in anaerobic continuous culture with complete cell recycle. J. Appl. Bacteriol. 1991, 71, 265–269. [Google Scholar] [CrossRef]
- Isipato, M.; Dessi, P.; Sanchez, C.; Mills, S.; Ijaz, U.Z.; Asunis, F.; Spiga, D.; De Gioannis, G.; Mascia, M.; Collins, G.; et al. Propionate Production by Bioelectrochemically-Assisted Lactate Fermentation and Simultaneous CO2 Recycling. Front. Microbiol. 2020, 11, 599438. [Google Scholar] [CrossRef]
- Woolford, M.K. The Significance of Propionibacterium Species and Micrococcus lactilyticus to the Ensiling Process. J. Appl. Bacteriol. 1975, 39, 301–306. [Google Scholar] [CrossRef]
- Dong, Z.; Wang, S.; Zhao, J.; Li, J.; Shao, T. Effects of additives on the fermentation quality, in vitro digestibility and aerobic stability of mulberry (Morus alba L.) leaves silage. Asian-Australas. J. Anim. Sci. 2020, 33, 1292–1300. [Google Scholar] [CrossRef] [PubMed]
- Filya, I.; Muck, R.E.; Contreras-Govea, F.E. Inoculant effects on alfalfa silage: Fermentation products and nutritive value. J. Dairy Sci. 2007, 90, 5108–5114. [Google Scholar] [CrossRef]
- Rafińska, K.; Pomastowski, P.; Wrona, O.; Górecki, R.; Buszewski, B. Medicago sativa as a source of secondary metabolites for agriculture and pharmaceutical industry. Phytochem. Lett. 2017, 20, 520–539. [Google Scholar] [CrossRef]
- Zhang, Y.; Usman, S.; Li, Q.; Li, F.; Zhang, X.; Nussio, L.G.; Guo, X. Effects of antioxidant-rich Lactiplantibacillus plantarum inoculated alfalfa silage on rumen fermentation, antioxidant and immunity status, and mammary gland gene expression in dairy goats. J. Anim. Sci. Biotechnol. 2024, 15, 9. [Google Scholar] [CrossRef]
- Tian, X.Z.; Paengkoum, P.; Paengkoum, S.; Chumpawadee, S.; Ban, C.; Thongpea, S. Short communication: Purple corn (Zea mays L.) stover silage with abundant anthocyanins transferring anthocyanin composition to the milk and increasing antioxidant status of lactating dairy goats. J. Dairy Sci. 2019, 102, 413–418. [Google Scholar] [CrossRef]
- Kachouri, F.; Ksontini, H.; Kraiem, M.; Setti, K.; Mechmeche, M.; Hamdi, M. Involvement of antioxidant activity of Lactobacillus plantarum on functional properties of olive phenolic compounds. J. Food Sci. Technol. 2015, 52, 7924–7933. [Google Scholar] [CrossRef]
- Pilarczyk, B.; Jankowiak, D.; Tomza-Marciniak, A.; Pilarczyk, R.; Sablik, P.; Drozd, R.; Tylkowska, A.; Skolmowska, M. Selenium concentration and glutathione peroxidase (GSH-Px) activity in serum of cows at different stages of lactation. Biol. Trace Elem. Res. 2012, 147, 91–96. [Google Scholar] [CrossRef]
- Yang, F.; Chen, C.; Ni, D.; Yang, Y.; Tian, J.; Li, Y.; Chen, S.; Ye, X.; Wang, L. Effects of Fermentation on Bioactivity and the Composition of Polyphenols Contained in Polyphenol-Rich Foods: A Review. Foods 2023, 12, 3315. [Google Scholar] [CrossRef]
- Liu, W.; Cui, X.; Zhong, Y.; Ma, R.; Liu, B.; Xia, Y. Phenolic metabolites as therapeutic in inflammation and neoplasms: Molecular pathways explaining their efficacy. Pharmacol. Res. 2023, 193, 106812. [Google Scholar] [CrossRef]
- Dong, X.; Qi, J.; Xu, K.; Li, B.; Xu, H.; Tian, X.; Lei, H. Effect of lactic acid fermentation and in vitro digestion on the bioactive compounds in Chinese wolfberry (Lycium barbarum) pulp. Food Biosci. 2023, 53, 102558. [Google Scholar] [CrossRef]
- Isas, A.S.; Escobar, F.; Álvarez-Villamil, E.; Molina, V.; Mateos, R.; Lizarraga, E.; Mozzi, F.; Van Nieuwenhove, C. Fermentation of pomegranate juice by lactic acid bacteria and its biological effect on mice fed a high-fat diet. Food Biosci. 2023, 53, 102516. [Google Scholar] [CrossRef]
- Mohd Zin, Z.; Azman, S.N.S.; Yahya, F.; Hasmadi, M.; Zainol, M.K. Effect of pH and temperature on antioxidant enzymes activities in Morinda citrifolia L. (Mengkudu) leaves extract. Food Res. 2022, 6, 60–67. [Google Scholar] [CrossRef]
- Aguirre, J.D.; Culotta, V.C. Battles with iron: Manganese in oxidative stress protection. J. Biol. Chem. 2012, 287, 13541–13548. [Google Scholar] [PubMed]
- Archibald, F.S.; Duong, M.N. Manganese acquisition by Lactobacillus plantarum. J. Bacteriol. 1984, 158, 1–8. [Google Scholar] [CrossRef]
- Prabhakar, R.; Vreven, T.; Morokuma, K.; Musaev, D.G. Elucidation of the mechanism of selenoprotein glutathione peroxidase (GPx)-catalyzed hydrogen peroxide reduction by two glutathione molecules: A density functional study. Biochemistry 2005, 44, 11864–11871. [Google Scholar]
Items | Media | Strains | Means | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|---|---|
YX15 | YX20 | J17 | MED | S | MED × S | ||||
DPPH scavenging rates (%) | CS | 89.0 Aa | 88.0 Ab | 84.8 Ac | 87.3 | 4.41 | <0.001 | <0.001 | <0.001 |
IE | 84.4 Ba | 79.1 Bc | 81.6 Bb | 81.7 | |||||
BS | 13.2 Cc | 63.1 Cb | 70.0 Ca | 48.8 | |||||
OH scavenging rates (%) | CS | 25.9 Bab | 31.7 Ba | 23.8 Bb | 27.1 | 27.71 | <0.001 | 0.004 | <0.001 |
IE | 47.9 Aa | 41.4 Ab | 48.5 Aa | 45.9 | |||||
BS | 12.5 Ca | 14.4 Ca | 3.37 Cb | 10.1 | |||||
SOD activity (U/mL) | CS | 23.4 | 23.4 | 23.4 | 23.4 A | 15.701 | <0.001 | 0.278 | 0.290 |
IE | 8.74 | 7.73 | 7.46 | 7.97 B | |||||
BS | — | — | — | — | |||||
GSH-Px activity (U/mL) | CS | 115 Aa | 94.3 ab | 57.4 Ab | 89.0 | 73.52 | <0.001 | <0.001 | 0.045 |
IE | 59.4 Bab | 78.0 a | 36.9 Bb | 58.1 | |||||
BS | — | — | — | — | |||||
T-AOC (U/mL) | CS | 0.141 c | 0.264 Ab | 0.333 Aa | 0.246 | 0.17955 | <0.001 | <0.001 | <0.001 |
IE | 0.117 a | 0.124 Ba | 0.0971 Bb | 0.113 | |||||
BS | — | — | — | — |
Items | Mean | SD |
---|---|---|
Dry matter (g/kg FW) | 231 | 1.2 |
Water-soluble carbohydrates (g/kg DM) | 39.9 | 4.24 |
Neutral detergent fiber (g/kg DM) | 292 | 0.9 |
Acid detergent fiber (g/kg DM) | 238 | 0.3 |
Lactic acid bacteria (log10 CFU/g FW) | 8.04 | 0.046 |
Yeasts (log10 CFU/g FW) | 6.78 | 0.240 |
DPPH free radical scavenging rates (%) | 18.0 | 1.39 |
OH free radical scavenging rates (%) | 71.0 | 1.73 |
ABTS free radical scavenging rates (%) | 52.8 | 1.91 |
T-AOC ability (U/mL) | 9.34 | 2.871 |
SOD activity (U/mL) | 91.2 | 33.67 |
GSH-Px activity (U/mL) | 503 | 3.2 |
Flavonoid content (mg/g DM) | 3.80 | 1.26 |
Total phenol content (mg/g DM) | 0.0250 | 0.01183 |
Items | Treatments | Ensiling Days | SEM | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|---|
1 | 5 | 14 | 45 | 90 | INO | D | INO × D | |||
Dry matter (g/kg FW) | CON | 240 a | 219 Bab | 214 Bab | 205 Cb | 218 Bab | 1.4 | <0.01 | <0.01 | <0.01 |
IL | 224 ab | 227 ABa | 223 ABab | 212 Cb | 214 Bb | |||||
IP | 240 a | 230 Aab | 225 ABab | 224 Bab | 219 Bb | |||||
J | 231 b | 231 Ab | 233 Aab | 236 Aab | 239 Aa | |||||
Water-soluble carbohydrates (g/kg DM) | CON | 27.1 a | 23.8 b | 18.2 c | 16.4 ABc | 18.1 Bc | 0.50 | <0.01 | <0.01 | <0.01 |
IL | 28.2 a | 23.3 b | 17.0 c | 18.8 Ac | 21.5 Ab | |||||
IP | 28.1 a | 22.1 b | 17.8 cd | 16.4 ABd | 19.9 ABbc | |||||
J | 27.7 a | 20.8 b | 17.4 bc | 15.1 Bc | 14.6 Cc | |||||
Ammonia nitrogen (%DM) | CON | 1.24 d | 3.45 Ac | 5.66 Ab | 7.40 Aa | 8.02 Aa | 0.224 | <0.01 | <0.01 | <0.01 |
IL | 1.12 e | 2.28 Bd | 3.75 Bc | 5.24 Bb | 6.02 Ba | |||||
IP | 0.90 d | 2.55 Bc | 3.54 BCb | 4.55 Ca | 4.85 Ca | |||||
J | 1.02 d | 3.09 Aab | 2.88 Cc | 3.29 Db | 4.40 Ca | |||||
Lactic acid bacteria (log10 CFU/g FW) | CON | 8.44 a | 8.53 a | 8.10 a | 5.66 Cb | 5.98 Bb | 0.125 | <0.01 | <0.01 | <0.01 |
IL | 8.66 a | 8.62 a | 8.17 a | 6.13 Bb | 6.16 Bb | |||||
IP | 8.57 a | 8.68 a | 8.25 a | 6.70 Ab | 6.59 Ab | |||||
J | 8.49 a | 8.79 a | 8.49 a | 6.94 Ab | 6.57 Ab | |||||
Yeasts (log10 CFU/g FW) | CON | 7.48 Aa | 7.27 a | 7.01 a | 5.92 b | 5.27 b | 0.284 | <0.01 | <0.01 | <0.01 |
IL | 7.15 Bb | 7.61 a | 7.08 b | 6.15 c | <2 | |||||
IP | 7.35 ABa | 7.49 a | 6.94 b | 6.41 c | <2 | |||||
J | 7.28 ABa | 7.40 a | 6.86 a | 5.75 b | <2 |
Items | Treatments | Ensiling Days | SEM | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|---|
1 | 5 | 14 | 45 | 90 | INO | D | INO × D | |||
pH | CON | 5.40 Aa | 5.52 Aa | 5.53 Aa | 5.36 Aab | 5.08 Ab | 0.039 | <0.01 | <0.01 | <0.01 |
IL | 4.56 Cc | 4.64 Bc | 4.76 Bbc | 5.15 Ba | 4.99 Bab | |||||
IP | 4.57 Cbc | 4.51 Bc | 4.61 Bbc | 4.85 Ca | 4.70 Cb | |||||
J | 4.91 Ba | 4.68 Bb | 4.61 Bb | 4.64 Db | 4.56 Db | |||||
Lactic acid (g/kg DM) | CON | 20.2 Dbc | 36.7 Ca | 39.9 Ba | 16.5 Cc | 25.7 Cb | 1.43 | <0.01 | <0.01 | <0.01 |
IL | 48.1 Aa | 51.6 Aa | 43.9 Ba | 25.4 Cb | 24.6 Cb | |||||
IP | 39.1 Bb | 53.7 Aa | 53.8 Aa | 42.6 Bab | 41.7 Bab | |||||
J | 32.6 Cc | 45.2 Bb | 47.5 ABb | 58.5 Aa | 55.5 Aa | |||||
Acetic acid (g/kg DM) | CON | 10.1 Ad | 21.9 Ac | 22.5 c | 28.0 Bb | 39.3 Aa | 1.07 | <0.01 | <0.01 | <0.01 |
IL | 9.44 Ad | 17.8 Bc | 22.0 b | 21.1 Cb | 31.0 Ba | |||||
IP | 7.94 Bd | 17.1 Bc | 24.8 b | 26.4 Bb | 38.1 Aa | |||||
J | 10.2 Ad | 21.2 Ac | 21.8 c | 33.3 Ab | 38.7 Aa | |||||
Propionic acid (g/kg DM) | CON | 3.58 Ad | 6.17 Ac | 7.10 Abc | 8.09 b | 9.44 Aa | 0.281 | <0.01 | <0.01 | <0.01 |
IL | 2.33 Be | 4.24 Bd | 6.05 Bc | 7.64 b | 10.2 Aa | |||||
IP | 2.31 Bc | 3.29 Cc | 6.30 Bb | 8.66 a | 8.93 ABa | |||||
J | 2.66 Bc | 4.06 BCb | 4.48 Cb | 7.78 a | 7.59 Ba | |||||
Lactic/acetic acid | CON | 1.99 Ca | 1.68 Bb | 1.77 ab | 0.591 Cc | 0.653 Cc | 0.1369 | <0.01 | <0.01 | <0.01 |
IL | 5.11 Aa | 2.92 Ab | 2.00 c | 1.22 Bd | 0.793 Cd | |||||
IP | 4.91 Aa | 3.16 Ab | 2.19 c | 1.61 ABd | 1.09 Be | |||||
J | 3.22 Ba | 2.13 Bb | 2.18 b | 1.77 Abc | 1.43 Ac | |||||
Ethanol (g/kg DM) | CON | 5.41 Ac | 11.7 Aa | 10.5 Aab | 9.42 Ab | 7.04 Ac | 0.277 | <0.01 | <0.01 | <0.01 |
IL | 3.60 Cc | 4.81 Bb | 6.42 Ba | 5.01 Bb | 5.44 Bb | |||||
IP | 2.88 Db | 3.92 Cab | 4.62 Ba | 3.34 Bab | 4.02 Cab | |||||
J | 4.51 Ba | 4.25 BCa | 4.68 Ba | 4.35 Ba | 3.38 Cb |
Items | Ensiling Days | Treatments | Mean | SEM | p-Value | |||||
---|---|---|---|---|---|---|---|---|---|---|
CON | IL | IP | J | INO | D | INO × D | ||||
DPPH free radical scavenging rates (%) | Day1 | 18.0 | 19.2 | 17.0 B | 15.8 B | 17.5 | 3.85 | <0.001 | <0.001 | <0.001 |
Day90 | 19.8 b | 20.1 b | 69.0 Aa | 71.8 Aa | 45.2 | |||||
Mean | 18.9 | 19.7 | 43.0 | 43.8 | ||||||
OH free radical scavenging rates (%) | Day1 | 64.6 Bb | 72.1 a | 71.0 ab | 77.8 Aa | 71.4 | 0.99 | 0.067 | 0.201 | <0.001 |
Day90 | 73.9 A | 69.9 | 64.7 | 69.3 B | 69.4 | |||||
Mean | 69.3 | 71.0 | 67.8 | 73.5 | ||||||
ABTS free radical scavenging rates (%) | Day1 | 75.6 | 64.4 | 47.1 | 66.2 | 63.3 B | 3.01 | 0.052 | <0.001 | 0.336 |
D90 | 87.6 | 87.3 | 79.2 | 77.8 | 83.0 A | |||||
Mean | 81.6 | 75.9 | 63.1 | 72.0 | ||||||
T-AOC ability (U/mL) | Day1 | 9.68 | 11.7 | 10.5 | 7.39 | 9.80 B | 0.82 | 0.543 | <0.001 | 0.548 |
Day90 | 17.3 | 17.1 | 16.1 | 16.8 | 16.8 A | |||||
Mean | 13.5 | 14.4 | 13.3 | 12.1 | ||||||
SOD activity (U/mL) | Day1 | 12.5 Bb | 8.33 b | 20.0 Aa | 12.2 Ab | 13.3 | 1.47 | <0.001 | 0.705 | <0.001 |
D90 | 25.6 Aa | 14.2 ab | 9.85 Bbc | 0.781 Bcd | 12.6 | |||||
Mean | 19.0 | 11.3 | 14.9 | 6.48 | ||||||
GSH-Px activity (U/mL) | Day1 | 56.5 | 54.4 | 55.8 | 56.6 | 55.8 A | 0.59 | 0.697 | <0.001 | 0.414 |
Day90 | 52.3 | 53.0 | 49.9 | 51.6 | 51.7 B | |||||
Mean | 54.4 | 53.7 | 52.8 | 54.1 | ||||||
Flavonoid content (mg/g DM) | Day1 | 3.68 | 4.89 | 5.07 | 5.03 | 4.67 B | 0.337 | 0.663 | 0.003 | 0.533 |
Day90 | 6.84 | 6.29 | 5.92 | 7.54 | 6.65 A | |||||
Mean | 5.26 | 5.59 | 5.50 | 6.29 | ||||||
Total phenol content (mg/g DM) | Day1 | 0.0142 | 0.0243 | 0.0235 | 0.0196 | 0.0204 B | 0.00219 | 0.328 | 0.009 | 0.409 |
Day90 | 0.0350 | 0.0339 | 0.0359 | 0.0213 | 0.0315 A | |||||
Mean | 0.0246 | 0.0291 | 0.0297 | 0.0204 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, B.; Cai, X.; Wang, W.; Ma, P.; Yuan, X.; Tan, X. Impact of Potentially Antioxidant Probiotic Strains on Fermentation Quality and Antioxidant Status in Alfalfa Silage. Antioxidants 2025, 14, 380. https://doi.org/10.3390/antiox14040380
Qi B, Cai X, Wang W, Ma P, Yuan X, Tan X. Impact of Potentially Antioxidant Probiotic Strains on Fermentation Quality and Antioxidant Status in Alfalfa Silage. Antioxidants. 2025; 14(4):380. https://doi.org/10.3390/antiox14040380
Chicago/Turabian StyleQi, Bokang, Xinyu Cai, Wenkang Wang, Pengfei Ma, Xianjun Yuan, and Xiang Tan. 2025. "Impact of Potentially Antioxidant Probiotic Strains on Fermentation Quality and Antioxidant Status in Alfalfa Silage" Antioxidants 14, no. 4: 380. https://doi.org/10.3390/antiox14040380
APA StyleQi, B., Cai, X., Wang, W., Ma, P., Yuan, X., & Tan, X. (2025). Impact of Potentially Antioxidant Probiotic Strains on Fermentation Quality and Antioxidant Status in Alfalfa Silage. Antioxidants, 14(4), 380. https://doi.org/10.3390/antiox14040380