Fibrinogen Oxidation and Thrombosis: Shaping Structure and Function
Abstract
:1. Introduction
2. Mechanisms of Fibrinogen Oxidation
3. Impact of Oxidation on Fibrinogen Structure
4. Impact of Oxidation on Fibrin Clot Architecture
5. Impact of Oxidation on Clot Formation
6. Impact of Oxidation on Clot Lysis
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AAs | amino acids |
AD | Alzheimer’s disease |
CD | circular dichroism |
CV | cardiovascular |
diTyr | diTyrosine |
ESRD | end-stage renal disease |
FPA | fibrinopeptide A |
FPB | fibrinopeptide B |
FXIII | Factor XIII |
GCA | Giant Cell Arteritis |
MGUS | monoclonal gammopathy of undetermined significance |
MI | myocardial infarction |
MM | multiple myeloma |
PC | protein carbonyl |
Phe | Phenylalanine |
PTMs | post-translational modifications |
RA | Rheumatoid Arthritis |
ROS | reactive oxygen species |
TAFI | Thrombin Activatable Fibrinolysis Inhibitor |
Trp | Tryptophan |
Tyr | Tyrosine |
T2DM | type 2 diabetes mellitus |
References
- Kaufmanova, J.; Stikarova, J.; Hlavackova, A.; Chrastinova, L.; Maly, M.; Suttnar, J.; Dyr, J.E. Fibrin clot formation under oxidative stress conditions. Antioxidants 2021, 10, 923. [Google Scholar] [CrossRef] [PubMed]
- Undas, A.; Ariëns, R.A. Fibrin clot structure and function: A role in the pathophysiology of arterial and venous thromboembolic diseases. Arterioscler. Thromb. Vasc. Biol. 2011, 31, e88–e99. [Google Scholar] [CrossRef] [PubMed]
- Vilar, R.; Fish, R.J.; Casini, A.; Neerman-Arbez, M. Fibrin(ogen) in human disease: Both friend and foe. Haematologica 2020, 105, 284–296. [Google Scholar] [CrossRef] [PubMed]
- Weisel, J.W. The mechanical properties of fibrin for basic scientists and clinicians. Biophys. Chem. 2004, 112, 267–276. [Google Scholar] [CrossRef] [PubMed]
- Luyendyk, J.P.; Schoenecker, J.G.; Flick, M.J. The multifaceted role of fibrinogen in tissue injury and inflammation. Blood 2019, 133, 511–520. [Google Scholar] [CrossRef] [PubMed]
- Kattula, S.; Byrnes, J.R.; Wolberg, A.S. Fibrinogen and fibrin in hemostasis and thrombosis. Arterioscler. Thromb. Vasc. Biol. 2017, 37, e13–e21. [Google Scholar] [CrossRef] [PubMed]
- Kearney, K.J.; Ariëns, R.A.S.; Macrae, F.L. The role of fibrin(ogen) in wound healing and infection control. Semin. Thromb. Hemost. 2022, 48, 174–187. [Google Scholar] [CrossRef] [PubMed]
- Weisel, J.W.; Litvinov, R.I. Fibrin formation, structure and properties. Subcell. Biochem. 2017, 82, 405–456. [Google Scholar] [CrossRef] [PubMed]
- Macrae, F.L.; Duval, C.; Papareddy, P.; Baker, S.R.; Yuldasheva, N.; Kearney, K.J.; McPherson, H.R.; Asquith, N.; Konings, J.; Casini, A.; et al. A fibrin biofilm covers blood clots and protects from microbial invasion. J. Clin. Investig. 2018, 128, 3356–3368. [Google Scholar] [CrossRef] [PubMed]
- Ko, Y.P.; Flick, M.J. Fibrinogen is at the interface of host defense and pathogen virulence in staphylococcus aureus infection. Semin. Thromb. Hemost. 2016, 42, 408–421. [Google Scholar] [CrossRef] [PubMed]
- Laurens, N.; Koolwijk, P.; de Maat, M.P. Fibrin structure and wound healing. J. Thromb. Haemost. 2006, 4, 932–939. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, H.N.; Hardman, M.J. Wound healing: Cellular mechanisms and pathological outcomes. Open Biol. 2020, 10, 200223. [Google Scholar] [CrossRef] [PubMed]
- Chandrashekar, A.; Singh, G.; Garry, J.; Sikalas, N.; Labropoulos, N. Mechanical and biochemical role of fibrin within a venous thrombus. Eur. J. Vasc. Endovasc. Surg. 2018, 55, 417–424. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, M.; Kosaric, N.; Bonham, C.A.; Gurtner, G.C. Wound healing: A cellular perspective. Physiol. Rev. 2019, 99, 665–706. [Google Scholar] [CrossRef] [PubMed]
- Azizova, O.A.; Aseichev, A.V.; Piryazev, A.P.; Roitman, E.V.; Shcheglovitova, O.N. Effects of oxidized fibrinogen on the functions of blood cells, blood clotting, and rheology. Bull. Exp. Biol. Med. 2007, 144, 397–407. [Google Scholar] [CrossRef] [PubMed]
- Aman, J.; Margadant, C. Integrin-dependent cell-matrix adhesion in endothelial health and disease. Circ. Res. 2023, 132, 355–378. [Google Scholar] [CrossRef] [PubMed]
- Salsmann, A.; Schaffner-Reckinger, E.; Kabile, F.; Plançon, S.; Kieffer, N. A new functional role of the fibrinogen rgd motif as the molecular switch that selectively triggers integrin alphaiibbeta3-dependent rhoa activation during cell spreading. J. Biol. Chem. 2005, 280, 33610–33619. [Google Scholar] [CrossRef] [PubMed]
- Shcheglovitova, O.N.; Azizova, O.A.; Romanov, Y.A.; Aseichev, A.V.; Litvina, M.M.; Polosukhina, E.R.; Mironchenkova, E.V. Oxidized forms of fibrinogen induce expression of cell adhesion molecules by cultured endothelial cells from human blood vessels. Bull. Exp. Biol. Med. 2006, 142, 308–312. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, J.Y.; Smith, T.D.; Meli, V.S.; Tran, T.N.; Botvinick, E.L.; Liu, W.F. Differential regulation of macrophage inflammatory activation by fibrin and fibrinogen. Acta Biomater. 2017, 47, 14–24. [Google Scholar] [CrossRef] [PubMed]
- Davalos, D.; Akassoglou, K. Fibrinogen as a key regulator of inflammation in disease. Semin. Immunopathol. 2012, 34, 43–62. [Google Scholar] [CrossRef] [PubMed]
- Yakovlev, S.; Medved, L. Effect of fibrinogen, fibrin, and fibrin degradation products on transendothelial migration of leukocytes. Thromb. Res. 2018, 162, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Mittal, M.; Siddiqui, M.R.; Tran, K.; Reddy, S.P.; Malik, A.B. Reactive oxygen species in inflammation and tissue injury. Antioxid. Redox. Signal. 2014, 20, 1126–1167. [Google Scholar] [CrossRef] [PubMed]
- Martinez, M.; Weisel, J.W.; Ischiropoulos, H. Functional impact of oxidative posttranslational modifications on fibrinogen and fibrin clots. Free Radic. Biol. Med. 2013, 65, 411–418. [Google Scholar] [CrossRef] [PubMed]
- DeLeon-Pennell, K.Y.; Barker, T.H.; Lindsey, M.L. Fibroblasts: The arbiters of extracellular matrix remodeling. Matrix Biol. 2020, 91–92, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Younesi, F.S.; Miller, A.E.; Barker, T.H.; Rossi, F.M.V.; Hinz, B. Fibroblast and myofibroblast activation in normal tissue repair and fibrosis. Nat. Rev. Mol. Cell Biol. 2024, 25, 617–638. [Google Scholar] [CrossRef] [PubMed]
- Makogonenko, E.; Tsurupa, G.; Ingham, K.; Medved, L. Interaction of fibrin(ogen) with fibronectin: Further characterization and localization of the fibronectin-binding site. Biochemistry 2002, 41, 7907–7913. [Google Scholar] [CrossRef] [PubMed]
- Greiling, D.; Clark, R.A. Fibronectin provides a conduit for fibroblast transmigration from collagenous stroma into fibrin clot provisional matrix. J. Cell Sci. 1997, 110 Pt 7, 861–870. [Google Scholar] [CrossRef] [PubMed]
- Xie, M.; Li, X.; Chen, L.; Zhang, Y.; Hua, H.; Qi, J. The crosstalks between vascular endothelial cells, vascular smooth muscle cells, and adventitial fibroblasts in vascular remodeling. Life Sci. 2025, 361, 123319. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Jacquet, L.; Karamariti, E.; Xu, Q. Origin and differentiation of vascular smooth muscle cells. J. Physiol. 2015, 593, 3013–3030. [Google Scholar] [CrossRef] [PubMed]
- Surma, S.; Banach, M. Fibrinogen and atherosclerotic cardiovascular diseases-review of the literature and clinical studies. Int. J. Mol. Sci. 2021, 23, 193. [Google Scholar] [CrossRef]
- Wolberg, A.S. Fibrinogen and fibrin: Synthesis, structure, and function in health and disease. J. Thromb. Haemost. 2023, 21, 3005–3015. [Google Scholar] [CrossRef] [PubMed]
- Danesh, J.; Lewington, S.; Thompson, S.G.; Lowe, G.D.; Collins, R.; Kostis, J.B.; Wilson, A.C.; Folsom, A.R.; Wu, K.; Benderly, M.; et al. Plasma fibrinogen level and the risk of major cardiovascular diseases and nonvascular mortality: An individual participant meta-analysis. JAMA 2005, 294, 1799–1809. [Google Scholar] [CrossRef] [PubMed]
- Machlus, K.R.; Cardenas, J.C.; Church, F.C.; Wolberg, A.S. Causal relationship between hyperfibrinogenemia, thrombosis, and resistance to thrombolysis in mice. Blood 2011, 117, 4953–4963. [Google Scholar] [CrossRef] [PubMed]
- Casini, A.; Moerloose, P.; Neerman-Arbez, M. One hundred years of congenital fibrinogen disorders. Semin. Thromb. Hemost. 2022, 48, 880–888. [Google Scholar] [CrossRef] [PubMed]
- May, J.E.; Wolberg, A.S.; Lim, M.Y. Disorders of fibrinogen and fibrinolysis. Hematol. Oncol. Clin. N. Am. 2021, 35, 1197–1217. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Ding, B.; Wang, X.; Ding, Q. Congenital (hypo-)dysfibrinogenemia and bleeding: A systematic literature review. Thromb. Res. 2022, 217, 36–47. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, Z.; Zhang, J.; Mafa, T.; Zhu, H.; Chen, L.; Zong, Z.; Yang, L. Fibrinogen: A new player and target on the formation of pre-metastatic niche in tumor metastasis. Crit. Rev. Oncol. Hematol. 2025, 207, 104625. [Google Scholar] [CrossRef] [PubMed]
- Simpson-Haidaris, P.J.; Rybarczyk, B. Tumors and fibrinogen. The role of fibrinogen as an extracellular matrix protein. Ann. N. Y. Acad. Sci. 2001, 936, 406–425. [Google Scholar] [PubMed]
- Dvorak, H.F. Tumors: Wounds that do not heal-a historical perspective with a focus on the fundamental roles of increased vascular permeability and clotting. Semin. Thromb. Hemost. 2019, 45, 576–592. [Google Scholar] [CrossRef] [PubMed]
- Perisanidis, C.; Psyrri, A.; Cohen, E.E.; Engelmann, J.; Heinze, G.; Perisanidis, B.; Stift, A.; Filipits, M.; Kornek, G.; Nkenke, E. Prognostic role of pretreatment plasma fibrinogen in patients with solid tumors: A systematic review and meta-analysis. Cancer Treat. Rev. 2015, 41, 960–970. [Google Scholar] [CrossRef] [PubMed]
- Dai, K.; Zhang, Q.; Li, Y.; Wu, L.; Zhang, S.; Yu, K. Plasma fibrinogen levels correlate with prognosis and treatment outcome in patients with non-m3 acute myeloid leukemia. Leuk Lymphoma 2019, 60, 1503–1511. [Google Scholar] [CrossRef] [PubMed]
- Elmoamly, S.; Afif, A. Can biomarkers of coagulation, platelet activation, and inflammation predict mortality in patients with hematological malignancies? Hematology 2018, 23, 89–95. [Google Scholar] [CrossRef] [PubMed]
- Palumbo, J.S.; Kombrinck, K.W.; Drew, A.F.; Grimes, T.S.; Kiser, J.H.; Degen, J.L.; Bugge, T.H. Fibrinogen is an important determinant of the metastatic potential of circulating tumor cells. Blood 2000, 96, 3302–3309. [Google Scholar] [PubMed]
- Kwaan, H.C.; Lindholm, P.F. Fibrin and fibrinolysis in cancer. Semin. Thromb. Hemost. 2019, 45, 413–422. [Google Scholar] [CrossRef] [PubMed]
- Dvorak, H.F. Tumors: Wounds that do not heal-redux. Cancer Immunol. Res. 2015, 3, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Rybarczyk, B.J.; Simpson-Haidaris, P.J. Fibrinogen assembly, secretion, and deposition into extracellular matrix by mcf-7 human breast carcinoma cells. Cancer Res. 2000, 60, 2033–2039. [Google Scholar] [PubMed]
- Lee, S.Y.; Lee, K.P.; Lim, J.W. Identification and biosynthesis of fibrinogen in human uterine cervix carcinoma cells. Thromb. Haemost. 1996, 75, 466–470. [Google Scholar] [PubMed]
- Molmenti, E.P.; Ziambaras, T.; Perlmutter, D.H. Evidence for an acute phase response in human intestinal epithelial cells. J. Biol. Chem. 1993, 268, 14116–14124. [Google Scholar] [PubMed]
- Pentecost, B.T.; Bradley, L.M.; Gierthy, J.F.; Ding, Y.; Fasco, M.J. Gene regulation in an mcf-7 cell line that naturally expresses an estrogen receptor unable to directly bind dna. Mol. Cell. Endocrinol. 2005, 238, 9–25. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.J.; Tham, P.Y.; Chan, D.Z.; Chou, C.F.; Shen, S.; Fielding, B.C.; Tan, T.H.; Lim, S.G.; Hong, W. The severe acute respiratory syndrome coronavirus 3a protein up-regulates expression of fibrinogen in lung epithelial cells. J. Virol. 2005, 79, 10083–10087. [Google Scholar] [CrossRef] [PubMed]
- Sahni, A.; Simpson-Haidaris, P.J.; Sahni, S.K.; Vaday, G.G.; Francis, C.W. Fibrinogen synthesized by cancer cells augments the proliferative effect of fibroblast growth factor-2 (fgf-2). J. Thromb. Haemost. 2008, 6, 176–183. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Yu, X.; Chen, C.; Wang, Y.; Su, D.; Zhu, L. Fibrinogen and tumors. Front. Oncol. 2024, 14, 1393599. [Google Scholar] [CrossRef] [PubMed]
- Posch, F.; Hofer, S.; Thaler, J.; Hell, L.; Königsbrügge, O.; Grilz, E.; Mauracher, L.M.; Gebhart, J.; Marosi, C.; Jilma, B.; et al. Ex vivo properties of plasma clot formation and lysis in patients with cancer at risk for venous thromboembolism, arterial thrombosis, and death. Transl. Res. 2020, 215, 41–56. [Google Scholar] [CrossRef] [PubMed]
- Petersen, M.A.; Ryu, J.K.; Akassoglou, K. Fibrinogen in neurological diseases: Mechanisms, imaging and therapeutics. Nat. Rev. Neurosci. 2018, 19, 283–301. [Google Scholar] [CrossRef] [PubMed]
- Cortes-Canteli, M.; Mattei, L.; Richards, A.T.; Norris, E.H.; Strickland, S. Fibrin deposited in the alzheimer’s disease brain promotes neuronal degeneration. Neurobiol. Aging 2015, 36, 608–617. [Google Scholar] [CrossRef] [PubMed]
- Tiscia, G.L.; Margaglione, M. Human fibrinogen: Molecular and genetic aspects of congenital disorders. Int. J. Mol. Sci. 2018, 19, 1597. [Google Scholar] [CrossRef]
- Piechocka, I.K.; Kurniawan, N.A.; Grimbergen, J.; Koopman, J.; Koenderink, G.H. Recombinant fibrinogen reveals the differential roles of α- and γ-chain cross-linking and molecular heterogeneity in fibrin clot strain-stiffening. J. Thromb. Haemost. 2017, 15, 938–949. [Google Scholar] [CrossRef] [PubMed]
- Cooper, A.V.; Standeven, K.F.; Ariëns, R.A. Fibrinogen gamma-chain splice variant gamma’ alters fibrin formation and structure. Blood 2003, 102, 535–540. [Google Scholar] [CrossRef] [PubMed]
- Brunclikova, M.; Simurda, T.; Zolkova, J.; Sterankova, M.; Skornova, I.; Dobrotova, M.; Kolkova, Z.; Loderer, D.; Grendar, M.; Hudecek, J.; et al. Heterogeneity of genotype-phenotype in congenital hypofibrinogenemia-a review of case reports associated with bleeding and thrombosis. J. Clin. Med. 2022, 11, 1083. [Google Scholar] [CrossRef]
- Simurda, T.; Brunclikova, M.; Asselta, R.; Caccia, S.; Zolkova, J.; Kolkova, Z.; Loderer, D.; Skornova, I.; Hudecek, J.; Lasabova, Z.; et al. Genetic variants in the. Int. J. Mol. Sci. 2020, 21, 4616. [Google Scholar] [CrossRef] [PubMed]
- Tenopoulou, M. Fibrinogen post-translational modifications are biochemical determinants of fibrin clot properties and interactions. FEBS J. 2024, 292, 11–27. [Google Scholar] [CrossRef] [PubMed]
- González, P.; Lozano, P.; Ros, G.; Solano, F. Hyperglycemia and oxidative stress: An integral, updated and critical overview of their metabolic interconnections. Int. J. Mol. Sci. 2023, 24, 9352. [Google Scholar] [CrossRef] [PubMed]
- Niemann, B.; Rohrbach, S.; Miller, M.R.; Newby, D.E.; Fuster, V.; Kovacic, J.C. Oxidative stress and cardiovascular risk: Obesity, diabetes, smoking, and pollution: Part 3 of a 3-part series. J. Am. Coll. Cardiol. 2017, 70, 230–251. [Google Scholar] [CrossRef] [PubMed]
- Pizzino, G.; Irrera, N.; Cucinotta, M.; Pallio, G.; Mannino, F.; Arcoraci, V.; Squadrito, F.; Altavilla, D.; Bitto, A. Oxidative stress: Harms and benefits for human health. Oxid. Med. Cell Longev. 2017, 2017, 8416763. [Google Scholar] [CrossRef] [PubMed]
- Cellai, A.P.; Lami, D.; Antonucci, E.; Liotta, A.A.; Rogolino, A.; Fedi, S.; Fiorillo, C.; Becatti, M.; Cenci, C.; Marcucci, R.; et al. Hyperhomocysteinemia in patients with pulmonary embolism is associated with impaired plasma fibrinolytic capacity. J. Thromb. Thrombolysis 2014, 38, 45–49. [Google Scholar] [CrossRef] [PubMed]
- Gaule, T.G.; Ajjan, R.A. Fibrin(ogen) as a therapeutic target: Opportunities and challenges. Int. J. Mol. Sci. 2021, 22, 6916. [Google Scholar] [CrossRef] [PubMed]
- Mann, M.; Jensen, O.N. Proteomic analysis of post-translational modifications. Nat. Biotechnol. 2003, 21, 255–261. [Google Scholar] [CrossRef] [PubMed]
- Witze, E.S.; Old, W.M.; Resing, K.A.; Ahn, N.G. Mapping protein post-translational modifications with mass spectrometry. Nat. Methods 2007, 4, 798–806. [Google Scholar] [CrossRef] [PubMed]
- Henschen-Edman, A.H. Fibrinogen non-inherited heterogeneity and its relationship to function in health and disease. Ann. N. Y. Acad. Sci. 2001, 936, 580–593. [Google Scholar] [CrossRef] [PubMed]
- Ząbczyk, M.; Ariëns, R.A.S.; Undas, A. Fibrin clot properties in cardiovascular disease: From basic mechanisms to clinical practice. Cardiovasc. Res. 2023, 119, 94–111. [Google Scholar] [CrossRef] [PubMed]
- Nencini, F.; Bettiol, A.; Argento, F.R.; Borghi, S.; Giurranna, E.; Emmi, G.; Prisco, D.; Taddei, N.; Fiorillo, C.; Becatti, M. Post-translational modifications of fibrinogen: Implications for clotting, fibrin structure and degradation. Mol. Biomed. 2024, 5, 45. [Google Scholar] [CrossRef] [PubMed]
- de Vries, J.J.; Snoek, C.J.M.; Rijken, D.C.; de Maat, M.P.M. Effects of post-translational modifications of fibrinogen on clot formation, clot structure, and fibrinolysis: A systematic review. Arterioscler. Thromb. Vasc. Biol. 2020, 40, 554–569. [Google Scholar] [CrossRef] [PubMed]
- Shacter, E.; Williams, J.A.; Lim, M.; Levine, R.L. Differential susceptibility of plasma proteins to oxidative modification: Examination by western blot immunoassay. Free Radic. Biol. Med. 1994, 17, 429–437. [Google Scholar] [CrossRef] [PubMed]
- Galanakis, D.K.; Henschen, A.; Peerschke, E.I.; Kehl, M. Fibrinogen stony brook, a heterozygous a alpha 16arg----cys dysfibrinogenemia. Evaluation of diminished platelet aggregation support and of enhanced inhibition of fibrin assembly. J. Clin. Investig. 1989, 84, 295–304. [Google Scholar] [CrossRef] [PubMed]
- Flood, V.H.; Al-Mondhiry, H.A.; Farrell, D.H. The fibrinogen aalpha r16c mutation results in fibrinolytic resistance. Br. J. Haematol. 2006, 134, 220–226. [Google Scholar] [CrossRef] [PubMed]
- Tarumi, T.; Martincic, D.; Thomas, A.; Janco, R.; Hudson, M.; Baxter, P.; Gailani, D. Familial thrombophilia associated with fibrinogen paris v: Dusart syndrome. Blood 2000, 96, 1191–1193. [Google Scholar] [PubMed]
- Meh, D.A.; Mosesson, M.W.; Siebenlist, K.R.; Simpson-Haidaris, P.J.; Brennan, S.O.; DiOrio, J.P.; Thompson, K.; Di Minno, G. Fibrinogen naples i (b beta a68t) nonsubstrate thrombin-binding capacities. Thromb. Res. 2001, 103, 63–73. [Google Scholar] [CrossRef] [PubMed]
- Ajjan, R.; Lim, B.C.; Standeven, K.F.; Harrand, R.; Dolling, S.; Phoenix, F.; Greaves, R.; Abou-Saleh, R.H.; Connell, S.; Smith, D.A.; et al. Common variation in the c-terminal region of the fibrinogen beta-chain: Effects on fibrin structure, fibrinolysis and clot rigidity. Blood 2008, 111, 643–650. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, S.; Hirota-Kawadobora, M.; Tozuka, M.; Ishii, K.; Terasawa, F.; Okumura, N. Recombinant fibrinogen, gamma275arg-->cys, exhibits formation of disulfide bond with cysteine and severely impaired d:D interactions. J. Thromb. Haemost. 2004, 2, 468–475. [Google Scholar] [CrossRef] [PubMed]
- Standeven, K.F.; Grant, P.J.; Carter, A.M.; Scheiner, T.; Weisel, J.W.; Ariëns, R.A. Functional analysis of the fibrinogen aalpha thr312ala polymorphism: Effects on fibrin structure and function. Circulation 2003, 107, 2326–2330. [Google Scholar] [CrossRef] [PubMed]
- Nagel, T.; Meyer, B. Simultaneous characterization of sequence polymorphisms, glycosylation and phosphorylation of fibrinogen in a direct analysis by lc-ms. Biochim. Biophys. Acta 2014, 1844, 2284–2289. [Google Scholar] [CrossRef] [PubMed]
- Juan, C.A.; de la Lastra, J.M.P.; Plou, F.J.; Pérez-Lebeña, E. The chemistry of reactive oxygen species (ros) revisited: Outlining their role in biological macromolecules (dna, lipids and proteins) and induced pathologies. Int. J. Mol. Sci. 2021, 22, 4642. [Google Scholar] [CrossRef]
- Hong, Y.; Boiti, A.; Vallone, D.; Foulkes, N.S. Reactive oxygen species signaling and oxidative stress: Transcriptional regulation and evolution. Antioxidants 2024, 13, 312. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Huang, B.; Cao, J.; Wang, Y.; Xiao, H.; Zhu, Y.; Zhang, H. Ros fine-tunes the function and fate of immune cells. Int. Immunopharmacol. 2023, 119, 110069. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Xu, X.; Leng, X.; He, M.; Wang, J.; Cheng, S.; Wu, H. Roles of reactive oxygen species in cell signaling pathways and immune responses to viral infections. Arch. Virol. 2017, 162, 603–610. [Google Scholar] [CrossRef] [PubMed]
- Kozlov, A.V.; Javadov, S.; Sommer, N. Cellular ros and antioxidants: Physiological and pathological role. Antioxidants 2024, 13, 602. [Google Scholar] [CrossRef] [PubMed]
- Kehm, R.; Baldensperger, T.; Raupbach, J.; Höhn, A. Protein oxidation—Formation mechanisms, detection and relevance as biomarkers in human diseases. Redox. Biol. 2021, 42, 101901. [Google Scholar] [CrossRef] [PubMed]
- Suskiewicz, M.J. The logic of protein post-translational modifications (ptms): Chemistry, mechanisms and evolution of protein regulation through covalent attachments. Bioessays 2024, 46, e2300178. [Google Scholar] [CrossRef] [PubMed]
- Davies, M.J. Protein oxidation and peroxidation. Biochem. J. 2016, 473, 805–825. [Google Scholar] [CrossRef] [PubMed]
- Sovova, Z.; Suttnar, J.; Dyr, J.E. Molecular dynamic simulations suggest that metabolite-induced post-translational modifications alter the behavior of the fibrinogen coiled-coil domain. Metabolites 2021, 11, 307. [Google Scholar] [CrossRef] [PubMed]
- Hougland, J.L.; Darling, J.; Flynn, S. Protein Posttranslational Modification. In Molecular Basis of Oxidative Stress–Chemistry, Mechanism, and Disease Pathogenesis; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2013; pp. 71–92. [Google Scholar]
- Nowak, P.; Zbikowska, H.M.; Ponczek, M.; Kolodziejczyk, J.; Wachowicz, B. Different vulnerability of fibrinogen subunits to oxidative/nitrative modifications induced by peroxynitrite: Functional consequences. Thromb. Res. 2007, 121, 163–174. [Google Scholar] [CrossRef] [PubMed]
- Yurina, L.V.; Vasilyeva, A.D.; Bugrova, A.E.; Indeykina, M.I.; Kononikhin, A.S.; Nikolaev, E.N.; Rosenfeld, M.A. Hypochlorite-induced oxidative modification of fibrinogen. Dokl. Biochem. Biophys. 2019, 484, 37–41. [Google Scholar] [CrossRef] [PubMed]
- Bychkova, A.V.; Vasilyeva, A.D.; Bugrova, A.E.; Indeykina, M.I.; Kononikhin, A.S.; Nikolaev, E.N.; Konstantinova, M.L.; Rosenfeld, M.A. Oxidation-induced modification of the fibrinogen polypeptide chains. Dokl. Biochem. Biophys. 2017, 474, 173–177. [Google Scholar] [CrossRef] [PubMed]
- Yurina, L.; Vasilyeva, A.; Indeykina, M.; Bugrova, A.; Biryukova, M.; Kononikhin, A.; Nikolaev, E.; Rosenfeld, M. Ozone-induced damage of fibrinogen molecules: Identification of oxidation sites by high-resolution mass spectrometry. Free Radic. Res. 2019, 53, 430–455. [Google Scholar] [CrossRef] [PubMed]
- Yurina, L.V.; Vasilyeva, A.D.; Gavrilina, E.S.; Ivanov, V.S.; Obydennyi, S.I.; Chabin, I.A.; Indeykina, M.I.; Kononikhin, A.S.; Nikolaev, E.N.; Rosenfeld, M.A. A role of methionines in the functioning of oxidatively modified fibrinogen. Biochim. Biophys. Acta Proteins. Proteom. 2024, 1872, 141013. [Google Scholar] [CrossRef] [PubMed]
- Weigandt, K.M.; White, N.; Chung, D.; Ellingson, E.; Wang, Y.; Fu, X.; Pozzo, D.C. Fibrin clot structure and mechanics associated with specific oxidation of methionine residues in fibrinogen. Biophys. J. 2012, 103, 2399–2407. [Google Scholar] [CrossRef] [PubMed]
- Burney, P.R.; White, N.; Pfaendtner, J. Structural effects of methionine oxidation on isolated subdomains of human fibrin d and αc regions. PLoS ONE 2014, 9, e86981. [Google Scholar] [CrossRef] [PubMed]
- Pederson, E.N.; Interlandi, G. Oxidation-induced destabilization of the fibrinogen αc-domain dimer investigated by molecular dynamics simulations. Proteins 2019, 87, 826–836. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Li, L.; Wang, H.; Liu, J. Study on the influence of oxidative stress on the fibrillization of fibrinogen. Biochem. J. 2016, 473, 4373–4384. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Cui, C.; Li, R.; Xu, S.; Li, H.; Li, L.; Liu, J. Study on the oxidation of fibrinogen using fe. J. Inorg. Biochem. 2018, 189, 58–68. [Google Scholar] [CrossRef] [PubMed]
- Becatti, M.; Mannucci, A.; Argento, F.R.; Gitto, S.; Vizzutti, F.; Marra, F.; Taddei, N.; Fiorillo, C.; Laffi, G. Super-resolution microscopy reveals an altered fibrin network in cirrhosis: The key role of oxidative stress in fibrinogen structural modifications. Antioxidants 2020, 9, 737. [Google Scholar] [CrossRef] [PubMed]
- Rosenfeld, M.A.; Wasserman, L.A.; Vasilyeva, A.D.; Podoplelova, N.A.; Panteleev, M.A.; Yurina, L.V. Hypochlorite-induced oxidation of fibrinogen: Effects on its thermal denaturation and fibrin structure. Biochim. Biophys. Acta Gen. Subj. 2021, 1865, 129970. [Google Scholar] [CrossRef] [PubMed]
- Lau, W.H.; White, N.J.; Yeo, T.W.; Gruen, R.L.; Pervushin, K. Tracking oxidation-induced alterations in fibrin clot formation by nmr-based methods. Sci. Rep. 2021, 11, 15691. [Google Scholar] [CrossRef] [PubMed]
- Becatti, M.; Marcucci, R.; Bruschi, G.; Taddei, N.; Bani, D.; Gori, A.M.; Giusti, B.; Gensini, G.F.; Abbate, R.; Fiorillo, C. Oxidative modification of fibrinogen is associated with altered function and structure in the subacute phase of myocardial infarction. Arterioscler. Thromb. Vasc. Biol. 2014, 34, 1355–1361. [Google Scholar] [CrossRef] [PubMed]
- Bettiol, A.; Argento, F.R.; Fini, E.; Bello, F.; Di Scala, G.; Taddei, N.; Emmi, G.; Prisco, D.; Becatti, M.; Fiorillo, C. Ros-driven structural and functional fibrinogen modifications are reverted by interleukin-6 inhibition in giant cell arteritis. Thromb. Res. 2023, 230, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Tetik, S.; Kaya, K.; Yardimci, T. Effect of oxidized fibrinogen on hemostatic system: In vitro study. Clin. Appl. Thromb. Hemost. 2011, 17, 259–263. [Google Scholar] [CrossRef] [PubMed]
- Misztal, T.; Golaszewska, A.; Tomasiak-Lozowska, M.M.; Iwanicka, M.; Marcinczyk, N.; Leszczynska, A.; Chabielska, E.; Rusak, T. The myeloperoxidase product, hypochlorous acid, reduces thrombus formation under flow and attenuates clot retraction and fibrinolysis in human blood. Free Radic. Biol. Med. 2019, 141, 426–437. [Google Scholar] [CrossRef] [PubMed]
- Gligorijević, N.; Radomirović, M.; Rajković, A.; Nedić, O.; Veličković, T.Ć. Fibrinogen increases resveratrol solubility and prevents it from oxidation. Foods 2020, 9, 780. [Google Scholar] [CrossRef]
- Andrades, M.E.; Lorenzi, R.; Berger, M.; Guimarães, J.A.; Moreira, J.C.; Dal-Pizzol, F. Glycolaldehyde induces fibrinogen post-translational modification, delay in clotting and resistance to enzymatic digestion. Chem. Biol. Interact. 2009, 180, 478–484. [Google Scholar] [CrossRef] [PubMed]
- Rosenfeld, M.A.; Leonova, V.B.; Konstantinova, M.L.; Razumovskii, S.D. Self-assembly of fibrin monomers and fibrinogen aggregation during ozone oxidation. Biochemistry 2009, 74, 41–46. [Google Scholar] [CrossRef] [PubMed]
- Štikarová, J.; Kotlín, R.; Riedel, T.; Suttnar, J.; Pimková, K.; Chrastinová, L.; Dyr, J.E. The effect of reagents mimicking oxidative stress on fibrinogen function. Sci. World J. 2013, 2013, 359621. [Google Scholar] [CrossRef] [PubMed]
- Yurina, L.V.; Vasilyeva, A.D.; Vasserman, L.A.; Podoplelova, N.A.; Panteleev, M.A.; Rosenfeld, M.A. Effect of hypochlorite- and peroxide-induced oxidation of fibrinogen on the fibrin structure. Dokl Biochem. Biophys. 2021, 499, 242–246. [Google Scholar] [CrossRef] [PubMed]
- Roitman, E.V.; Azizova, O.A.; Morozov, Y.A.; Aseichev, A.V. Effect of oxidized fibrinogens on blood coagulation. Bull. Exp. Biol. Med. 2004, 138, 245–247. [Google Scholar] [CrossRef] [PubMed]
- Azizova, O.A.; Piryazev, A.P.; Aseychev, A.V.; Shvachko, A.G. Oxidative modification of fibrinogen inhibits its transformation into fibrin under the effect of thrombin. Bull. Exp. Biol. Med. 2009, 147, 201–203. [Google Scholar] [CrossRef] [PubMed]
- Piryazev, A.P.; Aseichev, A.V.; Azizova, O.A. Effect of oxidation-modified fibrinogen on the formation and lysis of fibrin clot in the plasma. Bull. Exp. Biol. Med. 2009, 148, 881–885. [Google Scholar] [CrossRef] [PubMed]
- Torbitz, V.D.; Bochi, G.V.; de Carvalho, J.A.M.; Vaucher, R.d.A.; da Silva, J.E.P.; Moresco, R.N. In vitro oxidation of fibrinogen promotes functional alterations and formation of advanced oxidation protein products, an inflammation mediator. Inflammation 2015, 38, 1201–1206. [Google Scholar] [CrossRef] [PubMed]
- Paton, L.N.; Mocatta, T.J.; Richards, A.M.; Winterbourn, C.C. Increased thrombin-induced polymerization of fibrinogen associated with high protein carbonyl levels in plasma from patients post myocardial infarction. Free Radic. Biol. Med. 2010, 48, 223–229. [Google Scholar] [CrossRef] [PubMed]
- Błaż, M.; Natorska, J.; Bembenek, J.P.; Członkowska, A.; Ząbczyk, M.; Polak, M.; Undas, A. Protein carbonylation contributes to prothrombotic fibrin clot phenotype in acute ischemic stroke: Clinical associations. Stroke 2023, 54, 2804–2813. [Google Scholar] [CrossRef] [PubMed]
- Nowak, K.; Zabczyk, M.; Natorska, J.; Zalewski, J.; Undas, A. Elevated plasma protein carbonylation increases the risk of ischemic cerebrovascular events in patients with atrial fibrillation: Association with a prothrombotic state. J. Thromb. Thrombolysis 2024, 57, 1206–1215. [Google Scholar] [CrossRef] [PubMed]
- Ceznerová, E.; Kaufmanová, J.; Stikarová, J.; Pastva, O.; Loužil, J.; Chrastinová, L.; Suttnar, J.; Kotlín, R.; Dyr, J.E. Thrombosis-associated hypofibrinogenemia: Novel abnormal fibrinogen variant fgg c.8g>a with oxidative posttranslational modifications. Blood Coagul. Fibrinolysis 2022, 33, 228–237. [Google Scholar] [CrossRef] [PubMed]
- Siudut, J.; Ząbczyk, M.; Wołkow, P.; Polak, M.; Undas, A.; Jawień, J. Intensive low-density lipoprotein cholesterol lowering improves fibrin clot properties: Association with lipoproteins and c-reactive protein. Vascul. Pharmacol. 2022, 144, 106977. [Google Scholar] [CrossRef] [PubMed]
- Słaboszewski, M.; Kolec, R.; Paszek, E.; Baran, M.; Undas, A. Prothrombotic plasma fibrin clot phenotype is associated with spontaneous echo contrast in atrial fibrillation: The role of protein carbonylation. Thromb. Res. 2024, 240, 109065. [Google Scholar] [CrossRef] [PubMed]
- Sumaya, W.; Wallentin, L.; James, S.K.; Siegbahn, A.; Gabrysch, K.; Bertilsson, M.; Himmelmann, A.; Ajjan, R.A.; Storey, R.F. Fibrin clot properties independently predict adverse clinical outcome following acute coronary syndrome: A plato substudy. Eur. Heart J. 2018, 39, 1078–1085. [Google Scholar] [CrossRef] [PubMed]
- Baralić, M.; Robajac, D.; Penezić, A.; Miljuš, G.; Šunderić, M.; Gligorijević, N.; Nedić, O. Fibrinogen modification and fibrin formation in patients with an end-stage renal disease subjected to peritoneal dialysis. Biochemistry 2020, 85, 947–954. [Google Scholar] [CrossRef] [PubMed]
- Undas, A.; Kolarz, M.; Kopeć, G.; Tracz, W. Altered fibrin clot properties in patients on long-term haemodialysis: Relation to cardiovascular mortality. Nephrol. Dial. Transplant. 2008, 23, 2010–2015. [Google Scholar] [CrossRef] [PubMed]
- Bryk, A.H.; Konieczynska, M.; Rostoff, P.; Broniatowska, E.; Hohendorff, J.; Malecki, M.T.; Undas, A. Plasma protein oxidation as a determinant of impaired fibrinolysis in type 2 diabetes. Thromb. Haemost. 2019, 119, 213–222. [Google Scholar] [CrossRef] [PubMed]
- Lados-Krupa, A.; Konieczynska, M.; Chmiel, A.; Undas, A. Increased oxidation as an additional mechanism underlying reduced clot permeability and impaired fibrinolysis in type 2 diabetes. J. Diabetes Res. 2015, 2015, 456189. [Google Scholar] [CrossRef] [PubMed]
- Becatti, M.; Emmi, G.; Silvestri, E.; Bruschi, G.; Ciucciarelli, L.; Squatrito, D.; Vaglio, A.; Taddei, N.; Abbate, R.; Emmi, L.; et al. Neutrophil activation promotes fibrinogen oxidation and thrombus formation in behçet disease. Circulation 2016, 133, 302–311. [Google Scholar] [CrossRef] [PubMed]
- Becatti, M.; Emmi, G.; Bettiol, A.; Silvestri, E.; Di Scala, G.; Taddei, N.; Prisco, D.; Fiorillo, C. Behçet’s syndrome as a tool to dissect the mechanisms of thrombo-inflammation: Clinical and pathogenetic aspects. Clin. Exp. Immunol. 2019, 195, 322–333. [Google Scholar] [CrossRef] [PubMed]
- Gligorijević, N.; Minić, S.; Križáková, M.; Katrlík, J.; Nedić, O. Structural changes of fibrinogen as a consequence of cirrhosis. Thromb. Res. 2018, 166, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Gitto, S.; Fiorillo, C.; Argento, F.; Fini, E.; Borghi, S.; Falcini, M.; Roccarina, D.; Delfa, R.; Lillo, L.; Zurli, T.; et al. Oxidative stress-induced fibrinogen modifications in liver transplant recipients: Unraveling a novel potential mechanism for cardiovascular risk. Res. Pract. Thromb. Haemost. 2024, 8, 102555. [Google Scholar] [CrossRef]
- Hugenholtz, G.C.; Macrae, F.; Adelmeijer, J.; Dulfer, S.; Porte, R.J.; Lisman, T.; Ariëns, R.A.S. Procoagulant changes in fibrin clot structure in patients with cirrhosis are associated with oxidative modifications of fibrinogen. J. Thromb. Haemost. 2016, 14, 1054–1066. [Google Scholar] [CrossRef] [PubMed]
- White, N.J.; Wang, Y.; Fu, X.; Cardenas, J.C.; Martin, E.J.; Brophy, D.F.; Wade, C.E.; Wang, X.; John, A.E.S.; Lim, E.B.; et al. Post-translational oxidative modification of fibrinogen is associated with coagulopathy after traumatic injury. Free Radic. Biol. Med. 2016, 96, 181–189. [Google Scholar] [CrossRef] [PubMed]
- Nowak, W.; Treliński, J.; Chojnowski, K.; Matczak, J.; Robak, M.; Misiewicz, M.; Nowak, P. Assessment of oxidative/nitrative modifications of plasma proteins, selected rotem parameters and kinetics of fibrinogen polymerization in patients with multiple myeloma at diagnosis. Med. Oncol. 2017, 34, 4. [Google Scholar] [CrossRef] [PubMed]
- Ząbczyk, M.; Królczyk, G.; Czyżewicz, G.; Plens, K.; Prior, S.; Butenas, S.; Undas, A. Altered fibrin clot properties in advanced lung cancer: Strong impact of cigarette smoking. Med. Oncol. 2019, 36, 37. [Google Scholar] [CrossRef] [PubMed]
- Ullah, M.; Mirshahi, S.; Omran, A.V.; Aldybiat, I.; Crepaux, S.; Soria, J.; Contant, G.; Pocard, M.; Mirshahi, M. Blood clot dynamics and fibrinolysis impairment in cancer: The role of plasma histones and dna. Cancers 2024, 16, 928. [Google Scholar] [CrossRef]
- Gronostaj, K.; Richter, P.; Nowak, W.; Undas, A. Altered plasma fibrin clot properties in patients with digestive tract cancers: Links with the increased thrombin generation. Thromb. Res. 2013, 131, 262–267. [Google Scholar] [CrossRef] [PubMed]
- Małecki, R.; Gacka, M.; Kuliszkiewicz-Janus, M.; Jakobsche-Policht, U.; Kwiatkowski, J.; Adamiec, R.; Undas, A. Altered plasma fibrin clot properties in essential thrombocythemia. Platelets 2016, 27, 110–116. [Google Scholar] [CrossRef] [PubMed]
- Undas, A.; Zubkiewicz-Usnarska, L.; Helbig, G.; Woszczyk, D.; Kozińska, J.; Dmoszyńska, A.; Podolak-Dawidziak, M.; Kuliczkowski, K. Altered plasma fibrin clot properties and fibrinolysis in patients with multiple myeloma. Eur. J. Clin. Investig. 2014, 44, 557–566. [Google Scholar] [CrossRef] [PubMed]
- Mrozinska, S.; Cieslik, J.; Broniatowska, E.; Malinowski, K.P.; Undas, A. Prothrombotic fibrin clot properties associated with increased endogenous thrombin potential and soluble p-selectin predict occult cancer after unprovoked venous thromboembolism. J. Thromb. Haemost. 2019, 17, 1912–1922. [Google Scholar] [CrossRef] [PubMed]
- de Waal, G.M.; de Villiers, W.J.S.; Forgan, T.; Roberts, T.; Pretorius, E. Colorectal cancer is associated with increased circulating lipopolysaccharide, inflammation and hypercoagulability. Sci. Rep. 2020, 10, 8777. [Google Scholar] [CrossRef] [PubMed]
- Goncalves, J.P.N.; de Waal, G.M.; Page, M.J.; Venter, C.; Roberts, T.; Holst, F.; Pretorius, E.; Bester, J. The value of detecting pathological changes during clot formation in early disease treatment-naïve breast cancer patients. Microsc. Microanal. 2021, 27, 425–436. [Google Scholar] [CrossRef] [PubMed]
- Ghansah, H.; Orbán-Kálmándi, R.; Debreceni, I.B.; Katona, É.; Rejtő, L.; Váróczy, L.; Lóczi, L.; de Laat, B.; Huskens, D.; Kappelmayer, J.; et al. Low factor xiii levels and altered fibrinolysis in patients with multiple myeloma. Thromb. Res. 2024, 234, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Bønløkke, S.T.; Fenger-Eriksen, C.; Ommen, H.B.; Hvas, A.M. Impaired fibrinolysis and increased clot strength are potential risk factors for thrombosis in lymphoma. Blood Adv. 2023, 7, 7056–7066. [Google Scholar] [CrossRef] [PubMed]
- Okazaki, E.; Barion, B.G.; da Rocha, T.R.F.; Di Giacomo, G.; Ho, Y.-L.; Rothschild, C.; Fatobene, G.; Moraes, B.d.G.d.C.; Stefanello, B.; Villaça, P.R.; et al. Persistent hypofibrinolysis in severe COVID-19 associated with elevated fibrinolysis inhibitors activity. J. Thromb. Thrombolysis 2024, 57, 721–729. [Google Scholar] [CrossRef] [PubMed]
- Davies, G.R.; Lawrence, M.; Pillai, S.; Mills, G.M.; Aubrey, R.; Thomas, D.; Williams, R.; Morris, K.; Evans, P.A. The effect of sepsis and septic shock on the viscoelastic properties of clot quality and mass using rotational thromboelastometry: A prospective observational study. J. Crit. Care 2018, 44, 7–11. [Google Scholar] [CrossRef] [PubMed]
- Hammer, S.; Häberle, H.; Schlensak, C.; Bitzer, M.; Malek, N.P.; Handgretinger, R.; Lang, P.; Hörber, S.; Peter, A.; Martus, P.; et al. Severe SARS-CoV-2 infection inhibits fibrinolysis leading to changes in viscoelastic properties of blood clot: A descriptive study of fibrinolysis in COVID-19. Thromb. Haemost. 2021, 121, 1417–1426. [Google Scholar] [CrossRef] [PubMed]
- Larsen, J.B.; Aggerbeck, M.A.; Larsen, K.M.; Hvas, C.L.; Hvas, A.-M. Fibrin network formation and lysis in septic shock patients. Int. J. Mol. Sci. 2021, 22, 9540. [Google Scholar] [CrossRef] [PubMed]
- Watson, O.; Pillai, S.; Howard, M.; Zaldua, J.-C.; Whitley, J.; Burgess, B.; Lawrence, M.; Hawkins, K.; Morris, K.; Evans, P.A. Impaired fibrinolysis in severe COVID-19 infection is detectable in early stages of the disease. Clin. Hemorheol. Microcirc. 2022, 82, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.; Malakowsky, C.A.; Talent, J.M.; Conrad, C.C.; Gracy, R.W. Identification of oxidized plasma proteins in alzheimer’s disease. Biochem. Biophys. Res. Commun. 2002, 293, 1566–1570. [Google Scholar] [CrossRef] [PubMed]
- Zamolodchikov, D.; Strickland, S. Aβ delays fibrin clot lysis by altering fibrin structure and attenuating plasminogen binding to fibrin. Blood 2012, 119, 3342–3351. [Google Scholar] [CrossRef] [PubMed]
- Cortes-Canteli, M.; Paul, J.; Norris, E.H.; Bronstein, R.; Ahn, H.J.; Zamolodchikov, D.; Bhuvanendran, S.; Fenz, K.M.; Strickland, S. Fibrinogen and beta-amyloid association alters thrombosis and fibrinolysis: A possible contributing factor to alzheimer’s disease. Neuron 2010, 66, 695–709. [Google Scholar] [CrossRef] [PubMed]
- Paul, J.; Strickland, S.; Melchor, J.P. Fibrin deposition accelerates neurovascular damage and neuroinflammation in mouse models of alzheimer’s disease. J. Exp. Med. 2007, 204, 1999–2008. [Google Scholar] [CrossRef] [PubMed]
- Gligorijević, N.; Križáková, M.Z.; Penezić, A.; Katrlík, J.; Nedić, O. Structural and functional changes of fibrinogen due to aging. Int. J. Biol. Macromol. 2018, 108, 1028–1034. [Google Scholar] [CrossRef] [PubMed]
- Fini, E.; Argento, F.R.; Borghi, S.; Giurranna, E.; Nencini, F.; Cirillo, M.; Fatini, C.; Taddei, N.; Coccia, M.E.; Fiorillo, C.; et al. Fibrinogen structural changes and their potential role in endometriosis-related thrombosis. Antioxidants 2024, 13, 1456. [Google Scholar] [CrossRef] [PubMed]
- Ghisaidoobe, A.B.; Chung, S.J. Intrinsic tryptophan fluorescence in the detection and analysis of proteins: A focus on förster resonance energy transfer techniques. Int. J. Mol. Sci. 2014, 15, 22518–22538. [Google Scholar] [CrossRef] [PubMed]
- Hellmann, N.; Schneider, D. Hands on: Using tryptophan fluorescence spectroscopy to study protein structure. Methods Mol. Biol. 2019, 1958, 379–401. [Google Scholar] [CrossRef] [PubMed]
- Akagawa, M. Protein carbonylation: Molecular mechanisms, biological implications, and analytical approaches. Free Radic. Res. 2021, 55, 307–320. [Google Scholar] [CrossRef] [PubMed]
- Gatin, A.; Billault, I.; Duchambon, P.; Van der Rest, G.; Sicard-Roselli, C. Oxidative radicals (HO• or N3•) induce several di-tyrosine bridge isomers at the protein scale. Free Radic. Biol. Med. 2021, 162, 461–470. [Google Scholar] [CrossRef] [PubMed]
- Maina, M.B.; Al-Hilaly, Y.K.; Serpell, L.C. Dityrosine cross-linking and its potential roles in alzheimer’s disease. Front. Neurosci. 2023, 17, 1132670. [Google Scholar] [CrossRef] [PubMed]
- Rosenfeld, M.A.; Yurina, L.V.; Vasilyeva, A.D. Antioxidant role of methionine-containing intra- and extracellular proteins. Biophys. Rev. 2023, 15, 367–383. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.M.; Kim, G.; Levine, R.L. Methionine in proteins: It’s not just for protein initiation anymore. Neurochem. Res. 2019, 44, 247–257. [Google Scholar] [CrossRef] [PubMed]
- Gu, S.X.; Stevens, J.W.; Lentz, S.R. Regulation of thrombosis and vascular function by protein methionine oxidation. Blood 2015, 125, 3851–3859. [Google Scholar] [CrossRef] [PubMed]
- Undas, A. Fibrin clot properties and their modulation in thrombotic disorders. Thromb. Haemost. 2014, 112, 32–42. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Y.; Tian, X.; Ai, H.W. Molecular tools to generate reactive oxygen species in biological systems. Bioconjug Chem. 2019, 30, 1297–1303. [Google Scholar] [CrossRef] [PubMed]
- Sies, H.; Berndt, C.; Jones, D.P. Oxidative stress. Annu. Rev. Biochem. 2017, 86, 715–748. [Google Scholar] [CrossRef] [PubMed]
- Sies, H.; Belousov, V.V.; Chandel, N.S.; Davies, M.J.; Jones, D.P.; Mann, G.E.; Murphy, M.P.; Yamamoto, M.; Winterbourn, C. Defining roles of specific reactive oxygen species (ros) in cell biology and physiology. Nat. Rev. Mol. Cell Biol. 2022, 23, 499–515. [Google Scholar] [CrossRef] [PubMed]
- Litvinov, R.I.; Pieters, M.; de Lange-Loots, Z.; Weisel, J.W. Fibrinogen and fibrin. Subcell. Biochem. 2021, 96, 471–501. [Google Scholar] [CrossRef] [PubMed]
- Litvinov, R.I.; Weisel, J.W. Fibrin mechanical properties and their structural origins. Matrix Biol. 2017, 60–61, 110–123. [Google Scholar] [CrossRef] [PubMed]
- Undas, A. How to assess fibrinogen levels and fibrin clot properties in clinical practice? Semin. Thromb. Hemost. 2016, 42, 381–388. [Google Scholar] [CrossRef] [PubMed]
- Landi, E.; Mugnaini, M.; Vatansever, T.; Fort, A.; Vignoli, V.; Giurranna, E.; Argento, F.R.; Fini, E.; Emmi, G.; Fiorillo, C.; et al. Advancing thrombosis research: A novel device for measuring clot permeability. Sensors 2024, 24, 3764. [Google Scholar] [CrossRef] [PubMed]
- Winterbourn, C.C. Biological reactivity and biomarkers of the neutrophil oxidant, hypochlorous acid. Toxicology 2002, 182, 223–227. [Google Scholar] [CrossRef] [PubMed]
- Kaur, R.; Kaur, M.; Singh, J. Endothelial dysfunction and platelet hyperactivity in type 2 diabetes mellitus: Molecular insights and therapeutic strategies. Cardiovasc. Diabetol. 2018, 17, 121. [Google Scholar] [CrossRef] [PubMed]
- Bryk-Wiązania, A.H.; Undas, A. Hypofibrinolysis in type 2 diabetes and its clinical implications: From mechanisms to pharmacological modulation. Cardiovasc. Diabetol. 2021, 20, 191. [Google Scholar] [CrossRef] [PubMed]
- Dunn, E.J.; Arieëns, R.A.; de Lange, M.; Snieder, H.; Turney, J.H.; Spector, T.D.; Grant, P.J. Genetics of fibrin clot structure: A twin study. Blood 2004, 103, 1735–1740. [Google Scholar] [CrossRef] [PubMed]
- Dunn, E.J.; Ariëns, R.A.S.; Grant, P.J. The influence of type 2 diabetes on fibrin structure and function. Diabetologia 2005, 48, 1198–1206. [Google Scholar] [CrossRef] [PubMed]
- Dunn, E.J.; Philippou, H.; Ariëns, R.A.S.; Grant, P.J. Molecular mechanisms involved in the resistance of fibrin to clot lysis by plasmin in subjects with type 2 diabetes mellitus. Diabetologia 2006, 49, 1071–1080. [Google Scholar] [CrossRef] [PubMed]
- Mihalko, E.; Brown, A.C. Clot structure and implications for bleeding and thrombosis. Semin. Thromb. Hemost. 2020, 46, 96–104. [Google Scholar] [CrossRef] [PubMed]
- Okumura, N.; Haneishi, A.; Terasawa, F. Citrullinated fibrinogen shows defects in fpa and fpb release and fibrin polymerization catalyzed by thrombin. Clin. Chim. Acta 2009, 401, 119–123. [Google Scholar] [CrossRef] [PubMed]
- Weisel, J.W.; Litvinov, R.I. Mechanisms of fibrin polymerization and clinical implications. Blood 2013, 121, 1712–1719. [Google Scholar] [CrossRef] [PubMed]
- Lord, S.T. Molecular mechanisms affecting fibrin structure and stability. Arterioscler. Thromb. Vasc. Biol. 2011, 31, 494–499. [Google Scholar] [CrossRef] [PubMed]
- Ariëns, R.A. Fibrin(ogen) and thrombotic disease. J. Thromb. Haemost. 2013, 11 (Suppl. S1), 294–305. [Google Scholar] [CrossRef] [PubMed]
- Cortes-Canteli, M.; Zamolodchikov, D.; Ahn, H.J.; Strickland, S.; Norris, E.H. Fibrinogen and altered hemostasis in alzheimer’s disease. J. Alzheimers. Dis. 2012, 32, 599–608. [Google Scholar] [CrossRef] [PubMed]
- Siudut, J.; Grela, M.; Wypasek, E.; Plens, K.; Undas, A. Reduced plasma fibrin clot permeability and susceptibility to lysis are associated with increased risk of postthrombotic syndrome. J. Thromb. Haemost. 2016, 14, 784–793. [Google Scholar] [CrossRef] [PubMed]
- Miniati, M.; Fiorillo, C.; Becatti, M.; Monti, S.; Bottai, M.; Marini, C.; Grifoni, E.; Formichi, B.; Bauleo, C.; Arcangeli, C.; et al. Fibrin resistance to lysis in patients with pulmonary hypertension other than thromboembolic. Am. J. Respir. Crit. Care Med. 2010, 181, 992–996. [Google Scholar] [CrossRef] [PubMed]
- Lami, D.; Cellai, A.P.; Antonucci, E.; Fiorillo, C.; Becatti, M.; Grifoni, E.; Cenci, C.; Marcucci, R.; Mannini, L.; Miniati, M.; et al. Residual perfusion defects in patients with pulmonary embolism are related to impaired fibrinolytic capacity. Thromb. Res. 2014, 134, 737–741. [Google Scholar] [CrossRef] [PubMed]
- Cellai, A.P.; Lami, D.; Antonucci, E.; Fiorillo, C.; Becatti, M.; Olimpieri, B.; Bani, D.; Grifoni, E.; Cenci, C.; Marcucci, R.; et al. Fibrinolytic inhibitors and fibrin characteristics determine a hypofibrinolytic state in patients with pulmonary embolism. Thromb. Haemost. 2013, 109, 565–567. [Google Scholar] [CrossRef] [PubMed]
- Emmi, G.; Becatti, M.; Bettiol, A.; Hatemi, G.; Prisco, D.; Fiorillo, C. Behçet’s syndrome as a model of thrombo-inflammation: The role of neutrophils. Front. Immunol. 2019, 10, 1085. [Google Scholar] [CrossRef] [PubMed]
- Emmi, G.; Bettiol, A.; Silvestri, E.; Di Scala, G.; Becatti, M.; Fiorillo, C.; Prisco, D. Vascular behçet’s syndrome: An update. Intern. Emerg. Med. 2019, 14, 645–652. [Google Scholar] [CrossRef] [PubMed]
- Madhwal, S.; Atreja, A.; Albeldawdi, M.; Lopez, R.; Post, A.; Costa, M.A. Is liver transplantation a risk factor for cardiovascular disease? A meta-analysis of observational studies. Liver Transpl. 2012, 18, 1140–1146. [Google Scholar] [CrossRef] [PubMed]
- Kasiske, B.L.; Chakkera, H.A.; Roel, J. Explained and unexplained ischemic heart disease risk after renal transplantation. J. Am. Soc. Nephrol. 2000, 11, 1735–1743. [Google Scholar] [CrossRef] [PubMed]
- Miller, L.W. Cardiovascular toxicities of immunosuppressive agents. Am. J. Transpl. 2002, 2, 807–818. [Google Scholar] [CrossRef] [PubMed]
- Mota, A.P.L.; Vilaça, S.S.; das Mercês, F.L.; Pinheiro, M.d.B.; Teixeira-Carvalho, A.; Silveira, A.C.O.; Martins-Filho, O.A.; Gomes, K.B.; Dusse, L.M. Cytokines signatures in short and long-term stable renal transplanted patients. Cytokine 2013, 62, 302–309. [Google Scholar] [CrossRef] [PubMed]
- Ravindranath, M.H.; El Hilali, F.; Filippone, E.J. The impact of inflammation on the immune responses to transplantation: Tolerance or rejection? Front. Immunol. 2021, 12, 667834. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; Bester, J.; Pretorius, E. The inflammatory effects of tnf-α and complement component 3 on coagulation. Sci. Rep. 2018, 8, 1812. [Google Scholar] [CrossRef] [PubMed]
- Isik, B.; Ceylan, A.; Isik, R. Oxidative stress in smokers and non-smokers. Inhal. Toxicol. 2007, 19, 767–769. [Google Scholar] [CrossRef] [PubMed]
- Robertson, M.; Chung, W.; Liu, D.; Seagar, R.; O’halloran, T.; Koshy, A.N.; Horrigan, M.; Farouque, O.; Gow, P.; Angus, P. Cardiac risk stratification in liver transplantation: Results of a tiered assessment protocol based on traditional cardiovascular risk factors. Liver. Transpl. 2021, 27, 1007–1018. [Google Scholar] [CrossRef] [PubMed]
- Chu, M.J.; Dare, A.J.; Phillips, A.R.; Bartlett, A.S. Donor hepatic steatosis and outcome after liver transplantation: A systematic review. J. Gastrointest. Surg. 2015, 19, 1713–1724. [Google Scholar] [CrossRef] [PubMed]
- Rubio-Jurado, B.; Sosa-Quintero, L.S.; Guzmán-Silahua, S.; García-Luna, E.; Riebeling-Navarro, C.; Nava-Zavala, A.H. The prothrombotic state in cancer. Adv. Clin. Chem. 2021, 105, 213–242. [Google Scholar] [CrossRef] [PubMed]
- Razak, N.B.A.; Jones, G.; Bhandari, M.; Berndt, M.C.; Metharom, P. Cancer-associated thrombosis: An overview of mechanisms, risk factors, and treatment. Cancers 2018, 10, 380. [Google Scholar] [CrossRef]
- Kwaan, H.C. The role of fibrinolytic system in health and disease. Int. J. Mol. Sci. 2022, 23, 5262. [Google Scholar] [CrossRef]
- Larsen, J.B.; Hvas, A.M. Fibrinolytic alterations in sepsis: Biomarkers and future treatment targets. Semin. Thromb. Hemost. 2021, 47, 589–600. [Google Scholar] [CrossRef] [PubMed]
- Meizoso, J.P.; Moore, H.B.; Moore, E.E. Fibrinolysis shutdown in COVID-19: Clinical manifestations, molecular mechanisms, and therapeutic implications. J. Am. Coll. Surg. 2021, 232, 995–1003. [Google Scholar] [CrossRef] [PubMed]
- Obeagu, E.I.; Obeagu, G.U. Thromboinflammation in COVID-19: Unraveling the interplay of coagulation and inflammation. Medicine 2024, 103, e38922. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Pan, X.; Li, Y.; An, N.; Xing, Y.; Yang, F.; Tian, L.; Sun, J.; Gao, Y.; Shang, H. Cardiac injury associated with severe disease or icu admission and death in hospitalized patients with COVID-19: A meta-analysis and systematic review. Crit. Care 2020, 24, 468. [Google Scholar] [CrossRef] [PubMed]
- Zanella, A.; Florio, G.; Antonelli, M.; Bellani, G.; Berselli, A.; Bove, T.; Cabrini, L.; Carlesso, E.; Castelli, G.P.; Cecconi, M.; et al. Time course of risk factors associated with mortality of 1260 critically ill patients with COVID-19 admitted to 24 italian intensive care units. Intensive Care Med. 2021, 47, 995–1008. [Google Scholar] [PubMed]
- Gando, S. Role of fibrinolysis in sepsis. Semin. Thromb. Hemost. 2013, 39, 392–399. [Google Scholar] [CrossRef] [PubMed]
- van Oijen, M.; Witteman, J.C.; Hofman, A.; Koudstaal, P.J.; Breteler, M.M. Fibrinogen is associated with an increased risk of alzheimer disease and vascular dementia. Stroke 2005, 36, 2637–2641. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.; Zhang, H.; Zhang, S.; Fan, X.; Liu, X. Plasma fibrinogen is associated with cognitive decline and risk for dementia in patients with mild cognitive impairment. Int. J. Clin. Pract. 2008, 62, 1070–1075. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Li, W.; Zhao, X.; Hu, N.; Wang, X.; Xiao, X.; Yang, K.; Sun, T. Dysregulated coagulation in parkinson’s disease. Cells 2024, 13, 1874. [Google Scholar] [CrossRef]
- Gverić, D.; Herrera, B.; Petzold, A.; Lawrence, D.A.; Cuzner, M.L. Impaired fibrinolysis in multiple sclerosis: A role for tissue plasminogen activator inhibitors. Brain 2003, 126, 1590–1598. [Google Scholar] [CrossRef] [PubMed]
- Wen, T.; Zhang, Z. Cellular mechanisms of fibrin (ogen): Insight from neurodegenerative diseases. Front. Neurosci. 2023, 17, 1197094. [Google Scholar] [CrossRef] [PubMed]
Fibrinogen Analysis | Clot Analysis | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Polymerization Kinetics | |||||||||||
Author | Method | Fibrinogen Polymerization | Lag Phase | Max Abs | Vmax | Fibrinogen Structural Alterations | Fiber Diameter | Stiffness | Permeability | Density | Fibrin Lysis |
Nowak et al. [92] (2007) | Fibrinogen + 10 μmol peroxynitrite | = | = | = | Dityr-PC | ||||||
Nowak et al. [92] (2007) | Fibrinogen + 100–1000 μmol peroxynitrite | − | + | − | Dityr-PC | ||||||
Yurina et al. [95] (2019) | Fibrinogen + 50, 500 or 1500 μmol HOCl/mg fibrinogen | − | − | ||||||||
Yurina et al. [96] (2024) | Fibrinogen +10 μM HOCl | = | = | = | = | ||||||
Yurina et al. [96] (2024) | Fibrinogen +25 μM HOCl | − | − | − | − | + | − | ||||
Weigandt et al. [97] (2012) | Fibrinogen + 50–150 μmol HOCl/g fibrinogen | = | − | − | − | + | − | ||||
Pederson et al. [99] (2019) | Met476 unoxidized and oxidized αCdomain dimer | − | − | + | |||||||
Wang et al. [100] (2016) | Fibrinogen + H2O2 | CD-Dityr-IF | − | + | |||||||
Wang et al. [101] (2018) | Fibrinogen + 0.5 mM H2O2 + 3 mg/mL Fe3O4 | − | CD-IF | − | + | ||||||
Becatti et al. [102] (2020) | Fibrinogen + 1–4 mM AAPH | CD-IF | |||||||||
Rosenfeld et al. [103] (2021) | Fibrinogen + 25–300 μM HOCl | − | − | CD | − | − | + | ||||
Lau et al. [104] (2021) | Fibrinogen + 10–150 μmol HOCl/L | − | CD | − | − | − | |||||
Becatti et al. [105] (2014) | Fibrinogen + 0.01–1 mM AAPH | − | + | − | − | PC | − | ||||
Bettiol et al. [106] (2023) | Fibrinogen + 0.01–1 mM AAPH | − | + | − | − | − | |||||
Tetik et al. [107] (2011) | Fibrinogen + 100 μM Fe3+/ascorbate | − | − | Dityr | − | − | |||||
Misztal et al. [108] (2019) | fibrinogen + 0–1000 μM HOCl from controls | Dityr | − | − | + | − | |||||
Gligorijević et al. [109] (2020) | Fibrinogen + 10 mM AAPH | IF | |||||||||
Andrades et al. [110] (2009) | Bovine fibrinogen or human plasma + 1 mM glycolaldehye | − | + | − | − | PC | − | − | |||
Rosenfeld et al. [111] (2009) | Fibrinogen + 200–600 nmol ozone | − | + | PC | + | ||||||
Stikarova et al. [112] (2013) | Fibrinogen + 1.25 mM NaOCl | − | − | PC | − | + | |||||
Stikarova et al. [112] (2013) | Fibrinogen + 100 μmol SIN-1 | − | PC | − | + | ||||||
Yurina et al. [113] (2021) | Fibrinogen +25–50–300 μmol hydrogen peroxide | − | − | = | = | = | |||||
Yurina et al. [113] (2021) | Fibrinogen +25–50–300 μmol HOCl | − | − | − | − | ||||||
Roitman et al. [114] (2004) | UV irradiation of fibrinogen | − | − | − | = | ||||||
Azizova et al. [115] (2009) | Fibrinogen + 50–500 μmol FeSO4 + 10–250 μmol H2O2 | − | + | − | |||||||
Piryazev et al. [116] (2009) | Fibrinogen + 50–500 μmol FeSO4 H2O2 | − | − | = | |||||||
Torbitz et al. [117] (2015) | Fibrinogen + 1, 2, 4 mM HOCl | + |
Fibrinogen Analysis | Clot Analysis | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Polymerization Kinetics | |||||||||||
Author | Method | Fibrinogen Polymerization | Lag Phase | Max Abs | Vmax | Fibrinogen Structural Alterations | Fiber Diameter | Stiffness | Permeability | Density | Fibrin Lysis |
CARDIOVASCULAR DISEASES | |||||||||||
Kaufmanova et al. [1] (2021) | Fibrinogen from patients with arterial atherothrombotic disorders | − | − | − | − | − | − | ||||
Becatti et al. [105] (2014) | Fibrinogen from MI patients | − | + | − | − | PC-CD | − | − | |||
Paton et al. [118] (2010) | Fibrinogen from MI patients | + | = | + | + | PC | + | - | |||
Błaż et al. [119] (2023) | Plasma from acute ischemic stroke patients | PC | − | − | + | − | |||||
Nowak et al. [120] (2024) | Plasma from atrial fibrillation patients | PC | |||||||||
Ceznerova et al. [121] (2022) | Fibrinogen from patient with thrombosis-associated hypofibrinogenemia | − | − | − | − | + | − | ||||
Siudut et al. [122] (2022) | Fibrinogen from patients with aortic stenosis | − | − | − | − | ||||||
Słaboszewski et al. [123] (2024) | Plasma from atrial fibrillation patients | + | − | ||||||||
Sumaya et al. [124] (2018) | Plasma from acute coronary syndrome | − | |||||||||
RENAL DISEASES | |||||||||||
Baralic et al. [125] (2020) | Fibrinogen from patients with ESRD (end-stage renal disease) | CD-PC | = | = | = | = | |||||
Undas et al. [126] (2008) | Fibrinogen from haemodialysis patients | + | − | + | − | − | − | ||||
TYPE 2 DIABETES | |||||||||||
Bryk et al. [127] (2019) | Fibrinogen from type 2 diabetic patients | PC | − | − | |||||||
Lados-Krupa et al. [128] (2015) | Fibrinogen from type 2 diabetic patients | − | − | ||||||||
SYSTEMIC INFLAMMATORY DISEASES | |||||||||||
Becatti et al. [129] (2016) | Fibrinogen from patients with Behçet disease | − | + | − | − | PC-CD | − | ||||
Bettiol et al. [106] (2023) | Fibrinogen from GCA patients | − | + | − | − | CD-Dityr-IF | − | − | − | + | − |
Becatti et al. [130] (2019) | Fibrinogen from patients with Behçet disease | − | + | − | − | − | − | + | − | ||
CIRRHOSIS AND LIVER TRANSPLANT RECIPIENTS | |||||||||||
Becatti et al. [102] (2020) | Fibrinogen from cirrhosis patients | − | + | − | − | CD-Dityr-IF-PC | − | − | − | + | − |
Gligorijević et al. [131] (2018) | Plasma from cirrhosis patients | PC-CD-IF | |||||||||
Gitto et al. [132] (2024) | Fibrinogen from liver transplant recipients | − | + | − | − | CD-Dityr-IF | − | − | − | + | − |
Hugenholtz et al. [133] (2016) | Plasma from cirrhosis patients | − | = | PC | = | − | = | ||||
TRAUMA | |||||||||||
White et al. [134] (2016) | Plasma from trauma patients | − | − | + | |||||||
CANCER | |||||||||||
Posch et al. [53] (2021) | Plasma from patients with newly diagnosed or recurrent cancer | + | − | ||||||||
Nowak et al. [135] (2017) | Plasma from MM patients | + | = | = | PC | + | |||||
Ząbczyk et al. [136] (2019) | Plasma from patients with lung cancer | + | − | − | + | − | |||||
Ullah et al. [137] (2024) | Plasma from patients with peritoneal cancer patients | + | − | + | − | ||||||
Gronostaj et al. [138] (2013) | Plasma from patients with digestive tract cancers | − | = | − | − | ||||||
Małecki et al. [139] (2015) | Plasma from essential thrombocythemia patients | + | − | − | |||||||
Undas et al. [140] (2014) | Plasma from MM patients | + | − | − | + | − | |||||
Mrozinska et al. [141] (2019) | Plasma from patients after unprovoked venous thromboembolism with malignancy diagnosed during follow-up | − | − | ||||||||
de Waal et al. [142] (2020) | Plasma from colorectal cancer patients | + | + | + | |||||||
Goncalves et al. [143] (2021) | Plasma from breast cancer patients | = | + | ||||||||
Ghansah et al. [144] (2024) | Plasma from MM and MGUS patients | + | − | ||||||||
Bønløkke et al. [145] (2023) | Plasma from patients with lymphoma | − | |||||||||
INFECTIONS | |||||||||||
Okazaki et al. [146] (2024) | Plasma from severe COVID-19 patients | + | − | ||||||||
Davies et al. [147] (2018) | Plasma from septic shock patients | − | |||||||||
Hammer et al. [148] (2021) | Plasma from COVID-19 patients | − | |||||||||
Larsen et al. [149] (2021) | Plasma from septic shock patients | − | |||||||||
Watson et al. [150] (2022) | Plasma from severe COVID-19 patients | − | |||||||||
ALZHEIMER’S DISEASE | |||||||||||
Choi et al. [151] (2002) | Plasma from Alzheimer’s disease patients | PC | |||||||||
ALZHEIMER’S DISEASE | |||||||||||
Zamolodchikov et al. [152] (2012) | Plasminogen-free Fg + amyloid peptides | − | + | − | |||||||
Cortes-Canteli et al. [153] (2010) | Transgenic mouse models of AD and plasma from healthy donors + Aβ42 peptide | + | − | ||||||||
Paul et al. [154] (2007) | Transgenic mouse models of AD | − |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nencini, F.; Giurranna, E.; Borghi, S.; Taddei, N.; Fiorillo, C.; Becatti, M. Fibrinogen Oxidation and Thrombosis: Shaping Structure and Function. Antioxidants 2025, 14, 390. https://doi.org/10.3390/antiox14040390
Nencini F, Giurranna E, Borghi S, Taddei N, Fiorillo C, Becatti M. Fibrinogen Oxidation and Thrombosis: Shaping Structure and Function. Antioxidants. 2025; 14(4):390. https://doi.org/10.3390/antiox14040390
Chicago/Turabian StyleNencini, Francesca, Elvira Giurranna, Serena Borghi, Niccolò Taddei, Claudia Fiorillo, and Matteo Becatti. 2025. "Fibrinogen Oxidation and Thrombosis: Shaping Structure and Function" Antioxidants 14, no. 4: 390. https://doi.org/10.3390/antiox14040390
APA StyleNencini, F., Giurranna, E., Borghi, S., Taddei, N., Fiorillo, C., & Becatti, M. (2025). Fibrinogen Oxidation and Thrombosis: Shaping Structure and Function. Antioxidants, 14(4), 390. https://doi.org/10.3390/antiox14040390