Ganoderma lucidum and Robinia pseudoacacia Flower Extract Complex Alleviates Kidney Inflammation and Fibrosis by Modulating Oxidative Stress
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of NEPROBIN Complex
2.2. High-Performance Liquid Chromatography (HPLC) Analysis
2.3. Animal Experiments
2.4. Determination of Nephrotoxicity
2.5. Cell Culture Experiments and Cytotoxicity Assessment of NEPROBIN
2.6. Determination of Antioxidant Effect
2.7. Total RNA Extraction and qPCR
2.8. Protein Extraction and Western Blotting
2.9. Determination of Transcriptional Activity
2.10. Histological Analysis
2.11. Quantification and Statistical Analysis
3. Results
3.1. HPLC Analysis of RFE, FFE, and NEPROBIN
3.2. G. lucidum and R. pseudoacacia Flower Extract Complex (NEPROBIN) Attenuate H2O2-Induced Oxidative Stress and Lipopolysaccharide-Induced Inflammation in NRK52E Cells
3.3. NEPROBIN Attenuates the Decline in Renal Function in a Mouse Model Fed an Adenine Diet (AD)
3.4. NEPROBIN Reduces Oxidative Stress and Prevents Renal Structural Damage in a Mouse Model Fed an AD
3.5. NEPROBIN Suppresses the MAPK and NF-κB Signaling Pathways in a Mouse Model Fed an AD, Resulting in Reduced Cytokine and Chemokine Expression in the Kidney
3.6. NEPROBIN Mitigates Fibrosis Development in a Mouse Model Fed an AD
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Francis, A.; Harhay, M.N.; Ong, A.C.M.; Tummalapalli, S.L.; Ortiz, A.; Fogo, A.B.; Fliser, D.; Roy-Chaudhury, P.; Fontana, M.; Nangaku, M.; et al. Chronic kidney disease and the global public health agenda: An international consensus. Nat. Rev. Nephrol. 2024, 20, 473–485. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.; Fu, P.; Ma, L. Kidney fibrosis: From mechanisms to therapeutic medicines. Signal Transduct. Target. Ther. 2023, 8, 129. [Google Scholar] [CrossRef]
- Wynn, T.A.; Ramalingam, T.R. Mechanisms of fibrosis: Therapeutic translation for fibrotic disease. Nat. Med. 2012, 18, 1028–1040. [Google Scholar] [CrossRef]
- Duni, A.; Liakopoulos, V.; Roumeliotis, S.; Peschos, D.; Dounousi, E. Oxidative Stress in the Pathogenesis and Evolution of Chronic Kidney Disease: Untangling Ariadne’s Thread. Int. J. Mol. Sci. 2019, 20, 3711. [Google Scholar] [CrossRef] [PubMed]
- Pizzino, G.; Irrera, N.; Cucinotta, M.; Pallio, G.; Mannino, F.; Arcoraci, V.; Squadrito, F.; Altavilla, D.; Bitto, A. Oxidative Stress: Harms and Benefits for Human Health. Oxid. Med. Cell. Longev. 2017, 2017, 8416763. [Google Scholar] [CrossRef] [PubMed]
- Irazabal, M.V.; Torres, V.E. Reactive Oxygen Species and Redox Signaling in Chronic Kidney Disease. Cells 2020, 9, 1342. [Google Scholar] [CrossRef]
- Qi, R.; Yang, C. Renal tubular epithelial cells: The neglected mediator of tubulointerstitial fibrosis after injury. Cell Death Dis. 2018, 9, 1126. [Google Scholar] [CrossRef]
- Zhang, H.; Sun, S.C. NF-kappaB in inflammation and renal diseases. Cell Biosci. 2015, 5, 63. [Google Scholar] [CrossRef]
- Wachtel-Galor, S.; Yuen, J.; Buswell, J.A.; Benzie, I.F.F. Ganoderma lucidum (Lingzhi or Reishi): A Medicinal Mushroom. In Herbal Medicine: Biomolecular and Clinical Aspects, 2nd ed.; Benzie, I.F.F., Wachtel-Galor, S., Eds.; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Wu, S.J.; Zhang, S.Y.; Peng, B.; Tan, D.C.; Wu, M.Y.; Wei, J.C.; Wang, Y.T.; Luo, H. A comprehensive review of phytochemistry, efficacy, safety and clinical study. Food Sci. Hum. Wellness 2024, 13, 568–596. [Google Scholar] [CrossRef]
- Martínez-Montemayor, M.M.; Ling, T.T.; Suárez-Arroyo, I.J.; Ortiz-Soto, G.; Santiago-Negrón, C.L.; Lacourt-Ventura, M.Y.; Valentín-Acevedo, A.; Lang, W.H.; Rivas, F. Identification of Biologically Active Compounds and Synthesis of Improved Derivatives That Confer Anti-cancer Activities. Front. Pharmacol. 2019, 10, 115. [Google Scholar] [CrossRef]
- Vitková, M.; Muellerová, J.; Sádlo, J.; Pergl, J.; Pysek, P. Black locust (Robinia pseudoacacia) beloved and despised: A story of an invasive tree in Central Europe. For. Ecol. Manag. 2017, 384, 287–302. [Google Scholar] [CrossRef] [PubMed]
- Uzelac, M.; Sladonja, B.; Sola, I.; Dudas, S.; Bilic, J.; Famuyide, I.M.; McGaw, L.J.; Eloff, J.N.; Mikulic-Petkovsek, M.; Poljuha, D. Invasive Alien Species as a Potential Source of Phytopharmaceuticals: Phenolic Composition and Antimicrobial and Cytotoxic Activity of L. Leaf and Flower Extracts. Plants 2023, 12, 2715. [Google Scholar] [CrossRef] [PubMed]
- Portnoy, M.; Coon, C.; Barbano, D.M. Performance evaluation of an enzymatic spectrophotometric method for milk urea nitrogen. J. Dairy Sci. 2021, 104, 11422–11431. [Google Scholar] [CrossRef]
- Ng, D.S.K.; Blass, K.G. Jaffe Reaction-Products. J. Clin. Chem. Clin. Bio. 1986, 24, 565–570. [Google Scholar] [CrossRef]
- Lin, Z.B.; Deng, A.Y. Antioxidative and Free Radical Scavenging Activity of Ganoderma (Lingzhi). Adv. Exp. Med. Biol. 2019, 1182, 271–297. [Google Scholar] [CrossRef]
- Johra, F.T.; Hossain, S.; Jain, P.; Bristy, A.T.; Emran, T.; Ahmed, R.; Sharker, S.M.; Bepari, A.K.; Reza, H.M. Amelioration of CCl-induced oxidative stress and hepatotoxicity by in long evans rats. Sci. Rep. 2023, 13, 9909. [Google Scholar] [CrossRef]
- Ozevren, H.; Irtegun, S.; Deveci, E.; Asir, F.; Pektanc, G.; Deveci, S. Ganoderma Lucidum Protects Rat Brain Tissue Against Trauma-Induced Oxidative Stress. Korean J. Neurotrauma 2017, 13, 76–84. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, Y.; Tang, S.; Wang, Y.; Tian, J.; Gu, D.; Yang, Y. Elution-extrusion counter-current chromatographic separation and theoretical mechanism of antioxidant from Robinia pseudoacacia flower. J. Sep. Sci. 2023, 46, e2200958. [Google Scholar] [CrossRef]
- Xie, H.Y.; Yang, N.H.; Yu, C.; Lu, L.M. Uremic toxins mediate kidney diseases: The role of aryl hydrocarbon receptor. Cell. Mol. Biol. Lett. 2024, 29, 38. [Google Scholar] [CrossRef]
- Hamza, E.; Metzinger, L.; Metzinger-Le Meuth, V. Uremic Toxins Affect Erythropoiesis during the Course of Chronic Kidney Disease: A Review. Cells 2020, 9, 2039. [Google Scholar] [CrossRef]
- Lim, Y.J.; Sidor, N.A.; Tonial, N.C.; Che, A.; Urquhart, B.L. Uremic Toxins in the Progression of Chronic Kidney Disease and Cardiovascular Disease: Mechanisms and Therapeutic Targets. Toxins 2021, 13, 142. [Google Scholar] [CrossRef]
- Ratliff, B.B.; Abdulmahdi, W.; Pawar, R.; Wolin, M.S. Oxidant Mechanisms in Renal Injury and Disease. Antioxid. Redox Signal. 2016, 25, 119–146. [Google Scholar] [CrossRef] [PubMed]
- Pieniazek, A.; Bernasinska-Slomczewska, J.; Gwozdzinski, L. Uremic Toxins and Their Relation with Oxidative Stress Induced in Patients with CKD. Int. J. Mol. Sci. 2021, 22, 6196. [Google Scholar] [CrossRef]
- Zoccali, C.; Mallamaci, F.; Adamczak, M.; de Oliveira, R.B.; Massy, Z.A.; Sarafidis, P.; Agarwal, R.; Mark, P.B.; Kotanko, P.; Ferro, C.J.; et al. Cardiovascular complications in chronic kidney disease: A review from the European Renal and Cardiovascular Medicine Working Group of the European Renal Association. Cardiovasc. Res. 2023, 119, 2017–2032. [Google Scholar] [CrossRef] [PubMed]
- Tian, N.; Li, L.; Ng, J.K.C.; Li, P.K.T. The Potential Benefits and Controversies of Probiotics Use in Patients at Different Stages of Chronic Kidney Disease. Nutrients 2022, 14, 4044. [Google Scholar] [CrossRef]
- Pellegrino, D.; La Russa, D.; Marrone, A. Oxidative Imbalance and Kidney Damage: New Study Perspectives from Animal Models to Hospitalized Patients. Antioxidants 2019, 8, 594. [Google Scholar] [CrossRef] [PubMed]
- Verma, S.; Singh, P.; Khurana, S.; Ganguly, N.K.; Kukreti, R.; Saso, L.; Rana, D.S.; Taneja, V.; Bhargava, V. Implications of oxidative stress in chronic kidney disease: A review on current concepts and therapies. Kidney Res. Clin. Pract. 2021, 40, 183–193. [Google Scholar] [CrossRef]
- Kim, J.; Lee, J.; Yoon, D.; Son, M.; Kim, M.J.; Ha, S.; Kim, D.; Yoo, J.A.; Kim, D.; Chung, H.Y.; et al. Thiobarbiturate-Derived Compound MHY1025 Alleviates Renal Fibrosis by Modulating Oxidative Stress, Epithelial Inflammation, and Fibroblast Activation. Antioxidants 2023, 12, 1947. [Google Scholar] [CrossRef]
- Ashkar, F.; Bhullar, K.S.; Wu, J.P. The Effect of Polyphenols on Kidney Disease: Targeting Mitochondria. Nutrients 2022, 14, 3115. [Google Scholar] [CrossRef]
- Ye, M.Y.; Lin, W.Y.; Zheng, J.; Lin, S.P. N-acetylcysteine for chronic kidney disease: A systematic review and meta-analysis. Am. J. Transl. Res. 2021, 13, 2472–2485. [Google Scholar]
- Rodríguez-Yoldi, M.J. Anti-Inflammatory and Antioxidant Properties of Plant Extracts. Antioxidants 2021, 10, 921. [Google Scholar] [CrossRef] [PubMed]
- Lee, O.Y.A.; Wong, A.N.N.; Ho, C.Y.; Tse, K.W.; Chan, A.Z.; Leung, G.P.H.; Kwan, Y.W.; Yeung, M.H.Y. Potentials of Natural Antioxidants in Reducing Inflammation and Oxidative Stress in Chronic Kidney Disease. Antioxidants 2024, 13, 751. [Google Scholar] [CrossRef]
- Yuan, Q.; Tang, B.; Zhang, C. Signaling pathways of chronic kidney diseases, implications for therapeutics. Signal Transduct. Target. Ther. 2022, 7, 182. [Google Scholar] [CrossRef] [PubMed]
- Ren, N.; Wang, W.F.; Zou, L.; Zhao, Y.L.; Miao, H.; Zhao, Y.Y. The nuclear factor kappa B signaling pathway is a master regulator of renal fibrosis. Front. Pharmacol. 2024, 14, 1335094. [Google Scholar] [CrossRef]
- Lv, W.S.; Booz, G.W.; Wang, Y.G.; Fan, F.; Roman, R.J. Inflammation and renal fibrosis: Recent developments on key signaling molecules as potential therapeutic targets. Eur. J. Pharmacol. 2018, 820, 65–76. [Google Scholar] [CrossRef]
- Natesan, V.; Kim, S.J. Natural Compounds in Kidney Disease: Therapeutic Potential and Drug Development. Biomol. Ther. 2025, 33, 39–53. [Google Scholar] [CrossRef]
Rat | |||
---|---|---|---|
Gene | Forward (5′-3′) | Reverse (3′-5′) | GenBank® Accession Number |
Mcp1 | ATGCAGTTAATGCCCCACTC | TTCCTTATTGGGGTCAGCAC | NM_031530.1 |
Cxcl1 | AGACAGTGGCAGGGATTCAC | GGGGACACCCTTTAGCATCT | NM_030845.2 |
Il8 | GAAGATAGATTGCACCGA | GATAGCCTCTCACACATTTC | XM_004833923.2 |
Tnfa | ATTGCTCTGTGAGGCGACTG | GGGGCTCTGAGGAGTAGACG | NM_012675.3 |
Il1b | AAAATGCCTCGTGCTGTCTG | CCACAGGGATTTTGTCGTTG | NM_031512.2 |
Il6 | TCTCTCCGCAAGAGACTTCCA | ATACTGGTCTGTTGTGGGTGG | NM_012589.2 |
18s rRNA | ACAGCTGCTGCTTTCACCGT | TCAACCCACTTCTGATGGGCT | NR_046237.3 |
Mouse | |||
Mcp1 | CCAGCAAGATGATCCCAATG | CTTCTTGGGGTCAGCACAGA | NM_011333.3 |
Cxcl1 | AATGCATCCACATGCTGCTA | ATAGCCTCCTCGACCCACTT | NM_008176.3 |
Tnfa | CGTCAGCCGATTTGCTATCT | CGGACTCCGCAAAGTCTAAG | D84199.2 |
Il1b | GCCCATCCTCTGTGACTCAT | AGGCCACAGGTATTTTGTCG | NM_008361.4 |
Il6 | TGGGTTCTAGCCAGCAGAGT | ACCACCAGAGACCGTTATGC | NM_031168.2 |
Crp | CGCAGCTTCAGTGTCTTCTC | AGATGTGTGTTGGAGCCTCA | NM_007768.4 |
Havcr1 | CTGGAATGGCACTGTGACATCC | GCAGATGCCAACATAGAAGCCC | BC053400.1 |
Lcn2 | ACTGAATGGGTGGTGAGTGT | GGGAGTGCTGGCCAAATAAG | NM_008491.2 |
Col1a1 | CAGCTCCAGGAAGACCTCGA | GTAACAAGGGTGAGCCTGGC | NM_007742.4 |
Vim | CAAGCCTGACCTCACTGCTG | CACCTGTCTCCGGTACTCGT | NM_011701.4 |
Acta2 | TTGTCCACCGCAAATGCTTC | AAGGCGCTGATCCACAAAAC | NM_007392.3 |
Gapdh | AAGGTCATCCCAGAGCTGAA | CTGCTTCACCACCTTCTTGA | GU214026.1 |
Antibody | Company | Catalog Number |
---|---|---|
p-p38 | Cell Signaling | 9216S |
p38 | Santa Cruz | sc-81621 |
p-JNK | Invitrogen | 44-682G |
JNK | Santa Cruz | sc-7395 |
p-p65 | Cell Signaling | 3033L |
p65 | GeneTex | GTX107678 |
COL1 | Santa Cruz | sc-393573 |
Vimentin | Cell Signaling | 5741S |
αSMA | Santa Cruz | sc-32251 |
α-tubulin | Santa Cruz | sc-5286 |
β-actin | Santa Cruz | sc-69879 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.; Kim, J.; Kim, J.-L.; Park, M.-R.; Park, K.W.; Chung, K.W. Ganoderma lucidum and Robinia pseudoacacia Flower Extract Complex Alleviates Kidney Inflammation and Fibrosis by Modulating Oxidative Stress. Antioxidants 2025, 14, 409. https://doi.org/10.3390/antiox14040409
Kim S, Kim J, Kim J-L, Park M-R, Park KW, Chung KW. Ganoderma lucidum and Robinia pseudoacacia Flower Extract Complex Alleviates Kidney Inflammation and Fibrosis by Modulating Oxidative Stress. Antioxidants. 2025; 14(4):409. https://doi.org/10.3390/antiox14040409
Chicago/Turabian StyleKim, Soyoung, Jeongwon Kim, Jong-Lae Kim, Mi-Ryeong Park, Kye Won Park, and Ki Wung Chung. 2025. "Ganoderma lucidum and Robinia pseudoacacia Flower Extract Complex Alleviates Kidney Inflammation and Fibrosis by Modulating Oxidative Stress" Antioxidants 14, no. 4: 409. https://doi.org/10.3390/antiox14040409
APA StyleKim, S., Kim, J., Kim, J.-L., Park, M.-R., Park, K. W., & Chung, K. W. (2025). Ganoderma lucidum and Robinia pseudoacacia Flower Extract Complex Alleviates Kidney Inflammation and Fibrosis by Modulating Oxidative Stress. Antioxidants, 14(4), 409. https://doi.org/10.3390/antiox14040409