Changes in Ascorbic Acid, Phenolic Compound Content, and Antioxidant Activity In Vitro in Bee Pollen Depending on Storage Conditions: Impact of Drying and Freezing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection of Pollen and Estimation of Its Botanical Origin
2.2. Preparation of Bee Pollen
2.2.1. Preparation of Dried Bee Pollen Samples
2.2.2. Preparation of Frozen Bee Pollen Samples
2.3. Microscopic Examination of Pollen Samples
2.4. Chemicals
2.5. Preparation of the Bee Pollen Extracts
2.5.1. Preparation of Ethanol Bee Pollen Extract
2.5.2. Preparation of Aqueous Bee Pollen Extracts
2.6. Evaluation of Total Phenolic Compounds (TPC) and Flavonoid Contents in Bee Pollen Samples
2.7. Determination of Ascorbic Acid in Bee Pollen Samples Using the Titrimetric Method
2.8. Quantitative and Qualitative Determination of Phenolic Compounds in Bee Pollen Samples Using the UHPLC–MS/MS Method
2.9. Determination of Antiradical and Reducing Activities In Vitro in Bee Pollen Extracts
2.9.1. Evaluation of Antiradical Activity Using the ABTS Method In Vitro
2.9.2. Estimation of Reducing Activity Using the CUPRAC Method In Vitro
2.9.3. Evaluation of Reducing Activity Using the FRAP Method In Vitro
2.9.4. Assessment of Antioxidant Activity In Vitro
2.10. Statistical Analysis
3. Results
3.1. Changes in Total Phenolic Compounds (TPC) and Flavonoid Contents in Bee Pollen Samples
3.2. Changes in Ascorbic Acid Contents in Bee Pollen Samples
3.3. Quantitative and Qualitative Determination of Phenolic Compounds in Bee Pollen Samples
3.4. Evaluation of the Antiradical and Reducing Activity of Bee Pollen Extracts In Vitro
3.5. Correlation Analysis
3.6. Botanical Origin of Bee Pollen
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Albuquerque, B.R.; Heleno, S.A.; Oliveira, M.B.; Barros, L.; Ferreira, I.C. Phenolic compounds: Current industrial applications, limitations and future challenges. Food Funct. 2021, 12, 14–29. [Google Scholar] [CrossRef] [PubMed]
- Algethami, J.S.; El-Wahed, A.A.; Elashal, M.H.; Ahmed, H.R.; Elshafiey, E.H.; Omar, E.M.; Naggar, Y.A.; Algethami, A.F.; Shou, Q.; Alsharif, S.M.; et al. Bee pollen: Clinical trials and patent applications. Nutrients 2022, 14, 2858. [Google Scholar] [CrossRef]
- Sawicki, T.; Starowicz, M.; Kłębukowska, L.; Hanus, P. The profile of polyphenolic compounds, contents of total phenolics and flavonoids, and antioxidant and antimicrobial properties of bee products. Molecules 2022, 27, 1301. [Google Scholar] [CrossRef] [PubMed]
- Dias, L.G.; Tolentino, G.; Pascoal, A.; Estevinho, L.M. Effect of processing conditions on the bioactive compounds and biological properties of bee pollen. J. Apic. Res. 2016, 55, 357–365. [Google Scholar] [CrossRef]
- Kolayli, S.; Birinci, C.; Kanbur, E.D.; Ucurum, O.; Kara, Y.; Takma, C. Comparison of biochemical and nutritional properties of bee pollen samples according to botanical differences. Eur. Food Res. Technol. 2024, 250, 799–810. [Google Scholar] [CrossRef]
- Komosinska-Vassev, K.; Olczyk, P.; Kaźmierczak, J.; Mencner, L.; Olczyk, K. Bee pollen: Chemical composition and therapeutic application. eCAM 2015, 2015, 297425. [Google Scholar] [CrossRef]
- Rozman, A.S.; Hashim, N.; Maringgal, B.; Abdan, K. A comprehensive review of stingless bee products: Phytochemical composition and beneficial properties of honey, propolis, and pollen. Appl. Sci. 2022, 12, 6370. [Google Scholar] [CrossRef]
- Alfawaz, H.A.; El-Ansary, A.; Al-Ayadhi, L.; Bhat, R.S.; Hassan, W.M. Protective effects of bee pollen on multiple propionic acid-induced biochemical autistic features in a rat model. Metabolites 2022, 12, 571. [Google Scholar] [CrossRef]
- Gerçek, Y.C.; Celik, S.; Bayram, S. Screening of plant pollen sources, polyphenolic compounds, fatty acids and antioxidant/antimicrobial activity from bee pollen. Molecules 2021, 27, 117. [Google Scholar] [CrossRef]
- Ares, A.M.; Martín, M.T.; Toribio, L.; Bernal, J. Determination of free amino acids in bee pollen by liquid chromatography with fluorescence detection. Food Anal. Methods 2022, 15, 2172–2180. [Google Scholar] [CrossRef]
- Prđun, S.; Svečnjak, L.; Valentić, M.; Marijanović, Z.; Jerković, I. Characterization of bee pollen: Physico-chemical properties, headspace composition and FTIR spectral profiles. Foods 2021, 10, 2103. [Google Scholar] [CrossRef] [PubMed]
- Straumite, E.; Bartule, M.; Valdovska, A.; Kruma, Z.; Galoburda, R. Physical and microbiological characteristics and antioxidant activity of honey bee pollen. Appl. Sci. 2022, 12, 3039. [Google Scholar] [CrossRef]
- Habryka, C.; Socha, R.; Juszczak, L. Effect of bee pollen addition on the polyphenol content, antioxidant activity, and quality parameters of honey. Antioxidants 2021, 10, 810. [Google Scholar] [CrossRef]
- Ertosun, S.; Aylanc, V.; Falcão, S.I.; Vilas-Boas, M. Thermal Stability and Antioxidant Activity of Bioactive Compounds in Bread Enriched with Bee Pollen and Bee Bread. Antioxidants 2023, 12, 1691. [Google Scholar] [CrossRef] [PubMed]
- Boulfous, N.; Belattar, H.; Ambra, R.; Pastore, G.; Ghorab, A. Botanical Origin, Phytochemical Profile, and Antioxidant Activity of Bee Pollen from the Mila Region, Algeria. Antioxidants 2025, 14, 291. [Google Scholar] [CrossRef]
- Rojo, S.; Escuredo, O.; Rodríguez-Flores, M.S.; Seijo, M.C. Botanical Origin of Galician Bee Pollen (Northwest Spain) for the Characterization of Phenolic Content and Antioxidant Activity. Foods 2023, 12, 294. [Google Scholar] [CrossRef]
- Estevinho, L.M.; Dias, T.; Anjos, O. Influence of the storage conditions (frozen vs. dried) in health-related lipid indexes and antioxidants of bee pollen. Eur. J. Lipid Sci. Technol. 2019, 121, 1800393. [Google Scholar] [CrossRef]
- Martinello, M.; Mutinelli, F. Antioxidant activity in bee products: A review. Antioxidants 2021, 10, 71. [Google Scholar] [CrossRef]
- Nainu, F.; Masyita, A.; Bahar, M.A.; Raihan, M.; Prova, S.R.; Mitra, S.; Emran, T.B.; Simal-Gandara, J. Pharmaceutical prospects of bee products: Special focus on anticancer, antibacterial, antiviral, and antiparasitic properties. Antibiotics 2021, 10, 822. [Google Scholar] [CrossRef]
- El Ghouizi, A.; Bakour, M.; Laaroussi, H.; Ousaaid, D.; El Menyiy, N.; Hano, C.; Lyoussi, B. Bee pollen as functional food: Insights into its composition and therapeutic properties. Antioxidants 2023, 12, 557. [Google Scholar] [CrossRef]
- Keskin, M.; Özkök, A. Effects of drying techniques on chemical composition and volatile constituents of bee pollen. Czech J. Food Sci. 2020, 38, 203–208. [Google Scholar] [CrossRef]
- Isik, A.; Ozdemir, M.; doymaz, I. Effect of hot air drying on quality characteristics and physicochemical properties of bee pollen. Food Sci. Technol. 2019, 39, 224–231. [Google Scholar] [CrossRef]
- Kayacan, S.; Sagdic, O.; Doymaz, I. Effects of hot-air and vacuum drying on drying kinetics, bioactive compounds and color of bee pollen. J. Food Meas. Charact. 2018, 12, 1274–1283. [Google Scholar] [CrossRef]
- Yin, X.; Chen, K.; Cheng, H.; Chen, X.; Feng, S.; Song, Y.; Liang, L. Chemical Stability of Ascorbic Acid Integrated into Commercial Products: A Review on Bioactivity and Delivery Technology. Antioxidants 2022, 11, 153. [Google Scholar] [CrossRef]
- Pascoal, A.; Rodrigues, S.; Teixeira, A.; Feás, X.; Estevinho, L.M. Biological Activities of Commercial Bee Pollens: Antimicrobial, Antimutagenic, Antioxidant and Anti-inflammatory. Food Chem. Toxicol. 2014, 63, 233–239. [Google Scholar] [CrossRef]
- Kostić, A.Ž.; Milinčić, D.D.; Barać, M.B.; Shariati, M.A.; Tešić, Ž.L.L.; Pešić, M.B. The Application of pollen as a functional food and feed ingredient—The present and perspectives. BioMolecules 2020, 10, 84. [Google Scholar] [CrossRef] [PubMed]
- Anjos, O.; Paula, V.; Delgado, T.; Estevinho, L. Influence of the storage conditions on the quality of bee pollen. Žemdirbystė (Akademija) 2019, 106, 87–94. [Google Scholar] [CrossRef]
- Shubharani, R.; Roopa, P.; Sivaram, V. Pollen morphology of selected bee forage plants. Glob. J. BioSci Biotechnol. 2013, 2, 82–90. [Google Scholar]
- Louveaux, J.; Maurizio, A.; Vorwohl, G. Methods of melissopalynology. Bee World 1978, 59, 139–153. [Google Scholar] [CrossRef]
- Čeksterytė, V. Electronic Catalog of Plant Pollens Found in Lithuanian Honey; Lithuania Ministry of Agriculture: Vilnius, Lithuania, 2012.
- Kahraman, H.A.; Tutun, H.; Kaya, M.M.; Usluer, M.S.; Tutun, S.; Yaman, C.; Keyvan, E. Ethanolic Extract of Turkish Bee Pollen and Propolis: Phenolic Composition, Anti-Radical, Anti-Proliferative, and Antibacterial Activity. Biotechnol. Biotechnol. Equip. 2022, 36, 45–56. [Google Scholar] [CrossRef]
- Ares, A.M.; Valverde, S.; Bernal, J.L.; Nozal, M.J.; Bernal, J. Extraction and Determination of Bioactive Compounds from Bee Pollen. J. Pharm. Biomed. Anal. 2018, 147, 110–124. [Google Scholar] [CrossRef] [PubMed]
- Bobinaitė, R.; Viškelis, P.; Venskutonis, P.R. Variation of total phenolics, anthocyanins, ellagic acid and radical scavenging capacity in various raspberry (Rubus spp.) cultivars. Food Chem. 2012, 132, 1495–1501. [Google Scholar] [CrossRef] [PubMed]
- Urbonavičiūtė, A.; Jakštas, V.; Kornyšova, O.; Janulis, V.; Maruška, A. Capillary electrophoretic analysis of flavonoids in single-styled hawthorn (Crataegus monogyna Jacq.) ethanolic extracts. J. Chromatogr. A. 2006, 1112, 339–344. [Google Scholar] [CrossRef]
- González-Burgos, E.; Liaudanskas, M.; Viškelis, J.; Žvikas, V.; Janulis, V.; Gómez-Serranillos, M.P. Antioxidant activity, neuroprotective properties and bioactive constituents analysis of varying polarity extracts from Eucalyptus globulus leaves. J. Food Drug Anal. 2018, 26, 1293–1302. [Google Scholar] [CrossRef]
- Khongkarat, P.; Phuwapraisirisan, P.; Chanchao, C. Phytochemical content, especially spermidine derivatives, presenting antioxidant and antilipoxygenase activities in Thai bee pollens. PeerJ 2022, 10, e13506. [Google Scholar] [CrossRef] [PubMed]
- Munteanu, I.G.; Apetrei, C. Analytical methods used in determining antioxidant activity: A review. Int. J. Mol. Sci. 2021, 22, 3380. [Google Scholar] [CrossRef]
- Alimoglu, G.; Guzelmeric, E.; Yuksel, P.I.; Celik, C.; Deniz, I.; Yesilada, E. Monofloral and polyfloral bee pollens: Comparative evaluation of their phenolics and bioactivity profiles. LWT 2021, 142, 110973. [Google Scholar] [CrossRef]
- Šimoliūnienė, R.; Tomkevičiūtė, J.; Jokšienė, Ž.; Šimatonienė, V.; Kriščiukaitis, A.; Šaferis, V. Basics of Biostatistics; Publishing House of the Lithuanian University of Health Sciences: Kaunas, Lithuania, 2015; pp. 133–142. [Google Scholar]
- Aronhime, S.; Calcagno, C.; Jajamovich, G.H.; Dyvorne, H.A.; Robson, P.; Dieterich, D.; Fiel, I.M.; Martel-Laferriere, V.; Chatterji, M.; Rusinek, H.; et al. DCE-MRI of the liver: Effect of linear and nonlinear conversions on hepatic perfusion quantification and reproducibility. J. Magn. Reson. 2014, 40, 90–98. [Google Scholar] [CrossRef]
- Sánchez, J.S.; Reyes, E.S.; Durán, S.S.; Gonzalez-paramas, A.M.; Estelvhino, L.; Migue, M.G.; Watson, X.X.; Fernández-López, J.; Almeida-Muradian, L.; Pak, S.; et al. Bee Products—Chemical and Biological Properties, 1st ed.; Springer International Publishing: Cham, Switzerland, 2017; pp. 221–259. [Google Scholar]
- Qaderi, M.M.; Martel, A.B.; Strugnell, C.A. Environmental factors regulate plant secondary metabolites. Plants 2023, 12, 447. [Google Scholar] [CrossRef]
- Li, Q.Q.; Wang, K.; Marcucci, M.C.; Sawaya, A.C.H.F.; Hu, L.; Xue, X.F.; Wu, L.M.; Hu, F.L. Nutrient-rich bee pollen: A treasure trove of active natural metabolites. J. Funct. Foods 2018, 49, 472–484. [Google Scholar] [CrossRef]
- Rzepecka-Stojko, A.; Stojko, J.; Kurek-Górecka, A.; Górecki, M.; Kabała-Dzik, A.; Kubina, R.; Moździerz, A.; Buszman, E. Polyphenols from bee pollen: Structure, absorption, metabolism and biological activity. Molecules 2015, 20, 21732–21749. [Google Scholar] [CrossRef]
- Ulusoy, E.; Kolayli, S. Phenolic composition and antioxidant properties of Anzer bee pollen. J. Food Biochem. 2014, 38, 73–82. [Google Scholar] [CrossRef]
- Freire, K.R.L.; Lins, A.C.S.; Dórea, M.C.; Santos, F.A.R.; Camara, C.A.; Silva, T.M.S. Palynological origin, phenolic content, and antioxidant properties of honeybee-collected pollen from bahia, brazil. Molecules 2012, 17, 1652–1664. [Google Scholar] [CrossRef]
- Kalaycıoğlu, Z.; Kaygusuz, H.; Döker, S.; Kolaylı, S.; Erim, F.B. Characterization of Turkish honeybee pollens by principal component analysis based on their individual organic acids, sugars, minerals, and antioxidant activities. Food Sci. Technol. 2017, 84, 402–408. [Google Scholar] [CrossRef]
- Gabriele, M.; Parri, E.; Felicioli, A.; Sagona, S.; Pozzo, L.; Biondi, C.; Domenici, V.; Pucci, L. Phytochemical composition and antioxidant activity of Tuscan bee pollen of different botanic origins. Ital. J. Food Sci. 2015, 27, 248. [Google Scholar]
- Mărghitaş, L.A.; Stanciu, O.G.; Dezmirean, D.S.; Bobiş, O.; Popescu, O.; Bogdanov, S.; Campos, M.G. In vitro antioxidant capacity of honeybee-collected pollen of selected floral origin harvested from Romania. Food Chem. 2009, 115, 878–883. [Google Scholar] [CrossRef]
- Morais, M.; Moreira, L.; Feás, X.; Estevinho, L.M. Honeybee-collected pollen from five Portuguese Natural Parks: Palynological origin, phenolic content, antioxidant properties and antimicrobial activity. Food Chem. Toxicol. 2011, 49, 1096–1101. [Google Scholar] [CrossRef]
- Mayda, N.; Özkök, A.; Ecem Bayram, N.; Gerçek, Y.C.; Sorkun, K. Bee bread and bee pollen of different plant sources: Determination of phenolic content, antioxidant activity, fatty acid and element profiles. J. Food Meas. Charact. 2020, 14, 1795–1809. [Google Scholar] [CrossRef]
- Araújo, J.S.; Chambó, E.D.; Costa, M.A.P.d.C.; Cavalcante da Silva, S.M.P.; Lopes de Carvalho, C.A.; M Estevinho, L. Chemical composition and biological activities of mono- and heterofloral bee pollen of different geographical origins. Int. J. Mol. Sci. 2017, 18, 921. [Google Scholar] [CrossRef]
- Feás, X.; Vázquez-Tato, M.P.; Estevinho, L.; Seijas, J.A.; Iglesias, A. Organic bee pollen: Botanical origin, nutritional value, bioactive compounds, antioxidant activity and microbiological quality. Molecules 2012, 17, 8359–8377. [Google Scholar] [CrossRef]
- Muliuolytė, L.; Kaškonienė, V.; Maruška, A. The Impact of Storage Conditions and Extrahent Concentration on the Content of Bioactive Compounds in Bee Bread and Pollen. In Proceedings of the 66th International Open Readings Conference for students of Physics and Natural Sciences, Vilnius, Lithuania, 18–21 April 2023; Vilnius University Press: Vilnius, Lithuania, 2023; p. 280. [Google Scholar]
- Abhay, S.M.; Hii, C.L.; Law, C.L.; Suzannah, S.; Djaeni, M. Effect of hot-air drying temperature on the polyphenol content and the sensory properties of cocoa beans. Int. Food Res. J. 2016, 23, 1479. [Google Scholar]
- Kostić, A.Ž.; Gercek, Y.C.; Bayram, N.E. Phenolic Acids in Pollen. In Pollen Chem & Biotechnol; Springer International Publishing: Cham, Switzerland, 2024; pp. 103–125. [Google Scholar]
- Yousefi, S.; Emam-Djomeh, Z.; Mousavi, S.M.; Oromiehie, A.R. Effect of Carrier Type and Spray Drying on the Physicochemical Properties of Pomegranate Juice Powder. Iran. J. Chem. Chem. Eng. 2011, 30, 41–49. [Google Scholar]
- Sawicki, T.; Bączek, N.; Wiczkowski, W. Betalain Profile, Content and Antioxidant Capacity of Red Beetroot Dependent on the Genotype and Root Part. J. Funct. Foods 2016, 27, 249–261. [Google Scholar]
- de Almeida-Muradian, L.B.; Pamplona, L.C.; Coimbra, S.; Barth, O.M. Chemical Composition and Botanical Evaluation of Dried Bee Pollen Pellets. J. Food Compos. Anal. 2005, 18, 105–111. [Google Scholar] [CrossRef]
- Muñoz, E.; Velásquez, P.; Rodriguez, K.; Montenegro, G.; Giordano, A. Influence of Brassica campestris and Galega officinalis on antioxidant activity of bee pollen. Rev. Bras. Farmacogn. 2020, 30, 444–449. [Google Scholar] [CrossRef]
- Čeksterytė, V.; Kurtinaitienė, B.; Venskutonis, P.R.; Pukalskas, A.; Kazernavičiūtė, R.; Balžekas, J. Evaluation of antioxidant activity and flavonoid composition in differently preserved bee products. Czech J. Food Sci. 2016, 34, 133–142. [Google Scholar]
- Özkök, D.; Silici, S. Antioxidant activities of honeybee products and their mixtures. Food Sci. Biotechnol. 2017, 26, 201–206. [Google Scholar] [CrossRef]
- Kaškonienė, V.; Ruočkuvienė, G.; Kaškonas, P.; Akuneca, I.; Maruška, A. Chemometric analysis of bee pollen based on volatile and phenolic compound compositions and antioxidant properties. Food Anal. Methods 2014, 8, 1150–1163. [Google Scholar] [CrossRef]
- Gómez-Caravaca, A.M.; Gómez-Romero, M.; Arráez-Román, D.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Advances in the analysis of phenolic compounds in products derived from bees. J. Pharm. Biomed. Anal. 2006, 41, 1220–1234. [Google Scholar] [CrossRef]
- Tyszka-Czochara, M.; Knapik-Czajka, M.; Goździalska, A.; Francik, R.; Jaśkiewicz, J. Polyphenols in a diet. Some aspects of metabolism and bioavailability of phenolic compounds. Farm. Polska 2003, 59, 589–597. [Google Scholar]
- Grajek, W. Antioxidants in Food, 1st ed.; WNT: Warsaw, Poland, 2007; pp. 258–259. [Google Scholar]
- Bartosz, G. The Second Face of Oxygen, 2nd ed.; PWN: Warsaw, Poland, 2003; pp. 30–57. [Google Scholar]
- Rice-Evans, C.A.; Miller, N.J.; Paganga, G. Structure–antioxidant activity relationships of flavonoids and phenolic acids. Free Radic. Biol. Med. 1996, 20, 933–956. [Google Scholar] [CrossRef] [PubMed]
- Castellucio, C.; Paganga, G.; Melikan, N.; Bowell, G.P.; Pridham, J.; Sampson, J.; Rice-Evans, C. Antioxidant potential of intermediates in phenylopropanoid metabolism in higher plants. FEBS Lett. 1995, 368, 188–192. [Google Scholar] [CrossRef] [PubMed]
- Iriti, M. Introduction to polyphenols, plant chemicals for human health. Mini Rev. Med. Chem. 2011, 11, 1183–1185. [Google Scholar]
- Robak, J. Flavonoids as drugs inhibiting aggregation of blood platelets. Farm. Polska 1993, 49, 1–4. [Google Scholar]
- Cholbi, M.R.; Paya, M.; Alcaraz, M.J. Inhibitory effects of phenolic compounds on CCl4-induced microsomal lipid peroxidation. Experientia 1991, 47, 195–199. [Google Scholar] [CrossRef]
- Cook, N.C.; Samman, S. Flavonoids—Chemistry, metabolism, cardioprotective effects and dietary sources. J. Nutr. Biochem. 1996, 7, 66–76. [Google Scholar] [CrossRef]
- Raudonis, R.; Bumblauskiene, L.; Jakstas, V.; Pukalskas, A.; Janulis, V. Optimization and validation of postcolumn assay for screening of radical scavengers in herbal raw materials and herbal preparations. J. Chromatogr. A 2010, 1217, 7690–7698. [Google Scholar] [CrossRef]
- Bonvehi, S.J.; Soliva Torrentó, M.; Centelles Lorente, E. Evaluation of polyphenolic compounds in honeybee-collected pollen produced in Spain. J. Agric. Food Chem. 2001, 49, 1848–1853. [Google Scholar] [CrossRef]
- Čeksterytė, V.; Kazlauskas, S. Composition of flavonoids in Lithuanian honey and beebread. Biologija 2006, 2, 28–33. [Google Scholar]
- Burda, S.; Oleszek, W. Antioxidant and antiradical activities of flavonoids. J. Agric. Food Chem. 2001, 49, 2774–2779. [Google Scholar] [CrossRef]
- Dabeek, W.M.; Marra, M.V. Dietary quercetin and kaempferol: Bioavailability and potential cardiovascular-related bioactivity in humans. Nutrients 2019, 11, 2288. [Google Scholar] [CrossRef] [PubMed]
- Alizadeh, S.R.; Ebrahimzadeh, M.A. Quercetin derivatives: Drug design, development, and biological activities, a review. Eur. J. Med. Chem. 2022, 229, 114068. [Google Scholar] [CrossRef]
- Xie, L.; Deng, Z.; Zhang, J.; Dong, H.; Liu, X. Comparison of flavonoid O-glycoside, C-glycoside and their aglycones on antioxidant capacity and metabolism during in vitro digestion and in vivo. Foods 2022, 11, 882. [Google Scholar] [CrossRef]
- Wright, G.A.; Skinner, B.D.; Smith, B.H. Ability of honeybee, Apis mellifera, to detect and discriminate odors of varieties of canola (Brassica rapa and Brassica napus) and snapdragon flowers (Antirrhinum majus). J. Chem. Ecol. 2002, 28, 721–740. [Google Scholar] [CrossRef] [PubMed]
- Stanley, D.A.; Gunning, D.; Stout, J.C. Pollinators and pollination of oilseed rape crops (Brassica napus L.) in Ireland: Ecological and economic incentives for pollinator conservation. J. Insect Conserv. 2013, 17, 1181–1189. [Google Scholar] [CrossRef]
- Abrol, D.P. Honeybees and rapeseed: A pollinator-plant interaction. Adv. Bot. Res. 2007, 45, 337–367. [Google Scholar]
- Donkersley, P. Trees for bees. Agric. Ecosyst. Environ. 2019, 270–271, 79–83. [Google Scholar] [CrossRef]
- Čeksterytė, V.; Borutinskaitė, V.; Matuzevičius, D.; Treigytė, G.; Navakauskas, D.; Kurtinaitienė, B.; Navakauskienė, R. Evaluation of Proteome profiles of Salix spp. pollen and relationship between glucose oxidase activity and pollen content in willow honey. Balt. For. 2019, 25, 83–96. [Google Scholar] [CrossRef]
- Borutinskaitė, V.; Treigytė, G.; Matuzevičius, D.; Čeksterytė, V.; Kurtinaitienė, B.; Serackis, A.; Navakauskas, D.; Navakauskienė, R. Proteomic studies of honeybee-and manually-collected pollen. Zemdirbystė-Agriculture 2019, 106, 183–190. [Google Scholar] [CrossRef]
- Čeksterytė, V.; Kurtinaitienė, B.; Jaškūnė, K.; Kretavičius, J. The influence of storage conditions on invertase, glucose oxidase activity and free acidity of bee bread and bee-collected pollen mixed with honey and vegetable oils. J. Apic. Res. 2020, 59, 862–875. [Google Scholar] [CrossRef]
- Čeksterytė, V.; Kurtinaitienė, B.; Balžekas, J. Pollen diversity in honey collected from Lithuania’s protected landscape areas. EAP 2013, 62, 277–282. [Google Scholar] [CrossRef]
- Baltrušaitytė, V.; Venskutonis, P.R.; Čeksterytė, V. Radical scavenging activity of different floral origin honey and beebread phenolic extracts. Food Chem. 2007, 101, 502–514. [Google Scholar] [CrossRef]
- Yoruk, R.; Marshall, M.R. Physicochemical properties and function of plant polyphenol oxidase: A review. J. Food Biochem. 2003, 27, 361–422. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, R.; Zhao, W.; Hua, Y.; Kong, X.; Chen, Y. Enzymatic hydrolysis of flavonoid glycosides by propolis β-glycosidase. Molecules 2012, 17, 2259–2273. [Google Scholar]
- Anjos, O.; Seixas, N.; Antunes, C.A.L.; Campos, M.G.; Paula, V.; Estevinho, L.M. Quality of bee pollen submitted to drying, pasteurization, and high-pressure processing—A comparative approach. Int. Food Res. 2023, 170, 112964. [Google Scholar] [CrossRef]
- Rzepecka-Stojko, A.; Stec, M.; Kurzeja, E.; Gawrońska, E.; Pawłowska-Góral, K. The effect of storage of bee pollen extracts on polyphenol content. Pol. J. Environ. Stud. 2012, 21, 1007–1011. [Google Scholar]
- Szczesna, T.; Rybak-Chimielewska, H.; Bornus, L. Effect of storage on variation of contents of vitamin C and A in pollen collected by bees. Apiacta 1991, 2, 1991. [Google Scholar]
- Castagna, A.; Benelli, G.; Conte, G.; Sgherri, C.; Signorini, F.; Nicolella, C.; Ranieri, A.; Canale, A. Drying techniques and storage: Do they affect the nutritional value of bee-collected pollen? Molecules 2020, 25, 4925. [Google Scholar] [CrossRef]
- Rodríguez-Pólit, C.; Gonzalez-Pastor, R.; Heredia-Moya, J.; Carrera-Pacheco, S.E.; Castillo-Solis, F.; Vallejo-Imbaquingo, R.; Barba-Ostria, C.; Guamán, L.P. Chemical Properties and Biological Activity of Bee Pollen. Molecules 2023, 28, 7768. [Google Scholar] [CrossRef]
- Chaaban, H.; Ioannou, I.; Paris, C.; Charbonnel, C.; Ghoul, M. Photostability of Flavanones, Flavonols, and Flavones and Evolution of Their Antioxidant Activity. J. Food Process Preserv. 2016, 40, 13203. [Google Scholar] [CrossRef]
- De la Rosa, L.A.; Escamilla, J.O.M.; Garcia, J.R.; Parrilla, E.A. Phenolic compounds. In Postharvest Physiology and Biochemistry of Fruits and Vegetables, 1st ed.; Yahia, E.M., Carrillo-López, A., Eds.; Woodhead Publishing: Cambridge, UK, 2019; pp. 253–271. [Google Scholar]
- Tournaire, C.; Croux, S.; Maurette, M.-T.; Beck, I.; Hocquaux, M.; Braun, M.; Oliveros, E. Antioxidant Activity of Flavonoids: Efficiency of Singlet Oxygen Quenching. J. Photochem. Photobiol. B Biol. 1993, 19, 205–215. [Google Scholar] [CrossRef] [PubMed]
- Ramešová, S.; Sokolová, R.; Degano, I.; Bulíčková, J.; Žabka, J.; Gál, M. On the Stability of the Bioactive Flavonoids Quercetin and Luteolin Under Oxygen-Free Conditions. Anal. Bioanal. Chem. 2012, 402, 975–982. [Google Scholar] [CrossRef] [PubMed]
Compound | Parent Ion (m/z) | Daughter Ion (m/z) | Cone Voltage, V | Collision Energy, eV |
---|---|---|---|---|
p-Coumaric acid | 163 | 93 | 28 | 22 |
Gallic acid | 169 | 51 | 36 | 30 |
Ferulic acid | 193 | 134 | 32 | 18 |
Chlorogenic acid | 353 | 191 | 32 | 14 |
Rosmarinic acid | 359 | 161 | 36 | 16 |
Phloretin | 273 | 167 | 42 | 16 |
Phloridzin | 435 | 273 | 42 | 14 |
Apigenin | 269 | 117 | 54 | 36 |
Naringenin | 271 | 151 | 46 | 18 |
Avicularin | 433 | 301 | 50 | 20 |
Kaempferol | 285 | 185 | 50 | 25 |
Kaempferol-3-O-glucoside | 447 | 284 | 54 | 28 |
Kaempferol-3-O-rutinoside | 593 | 285 | 36 | 20 |
Quercetin | 301 | 151 | 48 | 20 |
Quercetin-3-arabinopiranoside | 433 | 300 | 56 | 26 |
Hyperoside | 463 | 300 | 50 | 26 |
Rutin | 609 | 300 | 70 | 38 |
Quercitrin | 447 | 300 | 50 | 26 |
Isoquercitrin | 463 | 301 | 52 | 28 |
Isorhamnetin | 315 | 300 | 44 | 22 |
Isorhamnetin-3-glucoside | 477 | 314 | 60 | 28 |
Isorhamnetin-3-O-rutinoside | 623 | 315 | 70 | 32 |
Luteolin | 285 | 133 | 58 | 36 |
Luteolin-4-O-glucoside | 447 | 285 | 36 | 16 |
Luteolino-3.7-diglucoside | 609 | 447 | 30 | 20 |
Plant Pollen | Average, % | Variation Limits | SD | CV, % | |
---|---|---|---|---|---|
Min. | Max. | ||||
Brassica napus L. | 35.37 | 34.30 | 36.40 | 1.05 | 2.97 |
Salix spp. | 36.87 | 36.4 | 37.40 | 0.50 | 1.37 |
Acer platanoides L. | 12.83 | 11.0 | 15.40 | 2.29 | 17.84 |
Malus domestica Borkh. | 9.03 | 8.10 | 10.40 | 1.21 | 13.39 |
Taraxacum officinale L. | 5.93 | 5.40 | 6.70 | 0.68 | 11.47 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stebuliauskaitė, R.; Liaudanskas, M.; Žvikas, V.; Čeksterytė, V.; Sutkevičienė, N.; Sorkytė, Š.; Bračiulienė, A.; Trumbeckaitė, S. Changes in Ascorbic Acid, Phenolic Compound Content, and Antioxidant Activity In Vitro in Bee Pollen Depending on Storage Conditions: Impact of Drying and Freezing. Antioxidants 2025, 14, 462. https://doi.org/10.3390/antiox14040462
Stebuliauskaitė R, Liaudanskas M, Žvikas V, Čeksterytė V, Sutkevičienė N, Sorkytė Š, Bračiulienė A, Trumbeckaitė S. Changes in Ascorbic Acid, Phenolic Compound Content, and Antioxidant Activity In Vitro in Bee Pollen Depending on Storage Conditions: Impact of Drying and Freezing. Antioxidants. 2025; 14(4):462. https://doi.org/10.3390/antiox14040462
Chicago/Turabian StyleStebuliauskaitė, Rosita, Mindaugas Liaudanskas, Vaidotas Žvikas, Violeta Čeksterytė, Neringa Sutkevičienė, Šarūnė Sorkytė, Aurita Bračiulienė, and Sonata Trumbeckaitė. 2025. "Changes in Ascorbic Acid, Phenolic Compound Content, and Antioxidant Activity In Vitro in Bee Pollen Depending on Storage Conditions: Impact of Drying and Freezing" Antioxidants 14, no. 4: 462. https://doi.org/10.3390/antiox14040462
APA StyleStebuliauskaitė, R., Liaudanskas, M., Žvikas, V., Čeksterytė, V., Sutkevičienė, N., Sorkytė, Š., Bračiulienė, A., & Trumbeckaitė, S. (2025). Changes in Ascorbic Acid, Phenolic Compound Content, and Antioxidant Activity In Vitro in Bee Pollen Depending on Storage Conditions: Impact of Drying and Freezing. Antioxidants, 14(4), 462. https://doi.org/10.3390/antiox14040462