The Effect of Chokeberry Juice and Fiber Consumption on the Concentration of Antioxidant Minerals in Serum
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Dietary Intervention
2.3. Determination of Serum Mineral Content
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Olechno, E.; Puścion-Jakubik, A.; Zujko, M.E. Chokeberry (A. melanocarpa (Michx.) Elliott)—A Natural Product for Metabolic Disorders? Nutrients 2022, 14, 2688. [Google Scholar] [CrossRef] [PubMed]
- Hawkins, J.; Hires, C.; Baker, C.; Keenan, L.; Bush, M. Daily supplementation with Aronia melanocarpa (chokeberry) reduces blood pressure and cholesterol: A meta-analysis of controlled clinical trials. J. Diet. Suppl. 2020, 18, 517–530. [Google Scholar] [CrossRef] [PubMed]
- Rahmani, J.; Clark, C.; Varkaneh, H.K.; Lakiang, T.; Vasanthan, L.T.; Onyeche, V.; Mousavi, S.M.; Zhang, Y. The effect of Aronia consumption on lipid profile, blood pressure, and biomarkers of inflammation: A systematic review and meta-analysis of randomized controlled trials. Phytother. Res. 2019, 33, 1981–1990. [Google Scholar] [CrossRef] [PubMed]
- Olechno, E.; Puścion-Jakubik, A.; Socha, K.; Pipino, C.; Zujko, M.E. Consumption of Chokeberry Bio-Products Improves Specific Metabolic Parameters and Increases the Plasma Antioxidant Status. Antioxidants 2024, 13, 699. [Google Scholar] [CrossRef]
- Olechno, E.; Puścion-Jakubik, A.; Soroczyńska, J.; Socha, K.; Cyuńczyk, M.; Zujko, M.E. Antioxidant Properties of Chokeberry Products—Assessment of the Composition of Juices and Fibers. Foods 2023, 12, 4029. [Google Scholar] [CrossRef]
- Sidor, A.; Gramza-Michałowska, A. Black Chokeberry Aronia Melanocarpa L.—A qualitative composition, phenolic profile and antioxidant potential. Molecules 2019, 24, 3710. [Google Scholar] [CrossRef]
- Carlsen, M.H.; Halvorsen, B.L.; Holte, K.; Bøhn, S.K.; Dragland, S.; Sampson, L.; Willey, C.; Senoo, H.; Umezono, Y.; Sanada, C.; et al. The total antioxidant content of more than 3100 foods, beverages, spices, herbs and supplements used worldwide. Nutr. J. 2010, 9, 3. [Google Scholar] [CrossRef]
- Zielińska, A.; Siudem, P.; Paradowska, K.; Gralec, M.; Kaźmierski, S.; Wawer, I. Aronia melanocarpa Fruits as a Rich Dietary Source of Chlorogenic Acids and Anthocyanins: 1H-NMR, HPLC-DAD, and Chemometric Studies. Molecules 2020, 25, 3234. [Google Scholar] [CrossRef]
- Vetrani, C.; Costabile, G.; Di Marino, L.; Rivellese, A.A. Nutrition and oxidative stress: A systematic review of human studies. Int. J. Food Sci. Nutr. 2013, 64, 312–326. [Google Scholar] [CrossRef]
- Mehri, A. Trace Elements in Human Nutrition (II)—An Update. Int. J. Prev. Med. 2020, 11, 2. [Google Scholar] [CrossRef]
- Sies, H. Oxidative Stress: Concept and Some Practical Aspects. Antioxidants 2020, 9, 852. [Google Scholar] [CrossRef] [PubMed]
- Zujko, M.E.; Witkowska, A.M. Dietary Antioxidants and Chronic Diseases. Antioxidants 2023, 12, 362. [Google Scholar] [CrossRef] [PubMed]
- Zujko, M.E.; Rożniata, M.; Zujko, K. Individual Diet Modification Reduces the Metabolic Syndrome in Patients Before Pharmacological Treatment. Nutrients 2021, 13, 2102. [Google Scholar] [CrossRef]
- Zujko-Kowalska, K.; Masłowska, J.; Knaś-Dawidziuk, M.; Hamulka, J.; Zujko, M.E. Dietary Antioxidants May Support Cosmetic Treatment in Patients with Rosacea. Antioxidants 2024, 13, 381. [Google Scholar] [CrossRef]
- Cyuńczyk, M.; Zujko, M.E.; Jamiołkowski, J.; Zujko, K.; Łapińska, M.; Zalewska, M.; Kondraciuk, M.; Witkowska, A.M.; Kamiński, K.A. Dietary Total Antioxidant Capacity Is Inversely Associated with Prediabetes and Insulin Resistance in Bialystok PLUS Population. Antioxidants 2022, 11, 283. [Google Scholar] [CrossRef] [PubMed]
- Gropper, S.S.; Smith, J.L.; Carr, T.P. Essential Trace and Ultratrace Minerals. In Advanced Nutrition and Human Metabolism, 7th ed.; Gropper, S.S., Smith, J.L., Eds.; Cengage Learning: Boston, MA, USA, 2017. [Google Scholar]
- Lee, S.R. Critical role of zinc as either an antioxidant or a prooxidant in cellular systems. Oxid. Med. Cell Longev. 2018, 2018, 9156285. [Google Scholar] [CrossRef]
- Baltaci, A.K.; Yuce, K.; Mogulkoc, R. Zinc Metabolism and Metallothioneins. Biol. Trace Elem. Res. 2018, 183, 22–31. [Google Scholar] [CrossRef]
- Ruttkay-Nedecky, B.; Nejdl, L.; Gumulec, J.; Zitka, O.; Masarik, M.; Eckschlager, T.; Stiborova, M.; Adam, V.; Kizek, R. The role of metallothionein in oxidative stress. Int. J. Mol. Sci. 2013, 14, 6044–6066. [Google Scholar] [CrossRef]
- Oteiza, P.I. Zinc and the modulation of redox homeostasis. Free Radic. Biol. Med. 2012, 53, 1748–1759. [Google Scholar] [CrossRef]
- Marreiro, D.D.; Cruz, K.J.; Morais, J.B.; Beserra, J.B.; Severo, J.S.; de Oliveira, A.R. Zinc and Oxidative Stress: Current Mechanisms. Antioxidants 2017, 6, 24. [Google Scholar] [CrossRef]
- Pan, X.; Qin, P.; Liu, R.; Li, J.; Zhang, F. Molecular Mechanism on Two Fluoroquinolones-induced Oxidative Stress: Evidences from Copper/zinc Superoxide Dismutase. RSC Adv. 2016, 6, 91141–91149. [Google Scholar] [CrossRef]
- Gaware, V.; Kotade, K.; Dhamak, K.; Somawanshi, S. Ceruloplasmin its role and significance: A review. Int. J. Biomed. Res. 2011, 1, 153–162. [Google Scholar] [CrossRef]
- Bost, M.; Houdart, S.; Oberli, M.; Kalonji, E.; Huneau, J.F.; Margaritis, I. Dietary copper and human health: Current evidence and unresolved issues. J. Trace Elem. Med. Biol. 2016, 35, 107–115. [Google Scholar] [CrossRef]
- Osredkar, J. Copper and zinc, biological role and significance of copper/zinc imbalance. Clin. Toxicol. 2011, 3, 0495. [Google Scholar] [CrossRef]
- Emokpae, M.A.; Fatimehin, E.B. Cu/Zn Ratio as an Inflammatory Marker in Patients with Sickle Cell Disease. Sci. 2020, 2, 89. [Google Scholar] [CrossRef]
- Malavolta, M.; Piacenza, F.; Basso, A.; Giacconi, R.; Costarelli, L.; Mocchegiani, E. Serum copper to zinc ratio: Relationship with aging and health status. Mech. Ageing Dev. 2015, 151, 93–100. [Google Scholar] [CrossRef]
- Guo, C.H.; Chen, P.C.; Yeh, M.S.; Hsiung, D.Y.; Wang, C.L. Cu/Zn ratios are associated with nutritional status, oxidative stress, inflammation, and immune abnormalities in patients on peritoneal dialysis. Clin. Biochem. 2011, 44, 275–280. [Google Scholar] [CrossRef]
- Malavolta, M.; Giacconi, R.; Piacenza, F.; Santarelli, L.; Cipriano, C.; Costarelli, L.; Tesei, S.; Pierpaoli, S.; Basso, A.; Galeazzi, R.; et al. Plasma copper/zinc ratio: An inflammatory/nutritional biomarker as predictor of all-cause mortality in elderly population. Biogerontology 2010, 11, 309–319. [Google Scholar] [CrossRef]
- Li, L.; Yang, X. The Essential Element Manganese, Oxidative Stress, and Metabolic Diseases: Links and Interactions. Oxid. Med. Cell. Longev. 2018, 2018, 7580707. [Google Scholar] [CrossRef]
- Bresciani, G.; da Cruz, I.B.; González-Gallego, J. Manganese superoxide dismutase and oxidative stress modulation. Adv. Clin. Chem. 2015, 68, 87–130. [Google Scholar]
- European Food Safety Authority. Dietary Reference Values for Nutrients Summary Report. Available online: https://efsa.onlinelibrary.wiley.com/doi/epdf/10.2903/sp.efsa.2017.e15121 (accessed on 21 December 2024).
- Avery, J.C.; Hoffmann, P.R. Selenium, Selenoproteins, and Immunity. Nutrients 2018, 10, 1203. [Google Scholar] [CrossRef] [PubMed]
- Razaghi, A.; Poorebrahim, M.; Sarhan, D.; Björnstedt, M. Selenium stimulates the antitumour immunity: Insights to future research. Eur. J. Cancer 2021, 155, 256–267. [Google Scholar] [CrossRef] [PubMed]
- Vinceti, M.; Filippini, T.; Del Giovane, C.; Dennert, G.; Zwahlen, M.; Brinkman, M.; Zeegers, M.P.; Horneber, M.; D’Amico, R.; Crespi, C.M. Selenium for preventing cancer. Cochrane Database Syst. Rev. 2018, 1, CD005195. [Google Scholar] [CrossRef]
- Kieliszek, M.; Blazejak, S. Current Knowledge on the Importance of Selenium in Food for Living Organisms: A Review. Molecules 2016, 21, 609. [Google Scholar] [CrossRef]
- Dembińska-Kieć, A.; Naskalski, J.; Solnica, B. Diagnostyka Laboratoryjna z Elementami Biochemii Klinicznej, 4th ed.; Edra Urban & Partner: Wrocław, Poland, 2017. (In Polish) [Google Scholar]
- Brewer, G.J. Risks of copper and iron toxicity during aging in humans. Chem. Res. Toxicol. 2010, 23, 319–326. [Google Scholar] [CrossRef] [PubMed]
- Wapnir, R.A. Copper absorption and bioavailability. Am. J. Clin. Nutr. 1998, 67, 1054S–1060S. [Google Scholar] [CrossRef]
- Gaetke, L.M.; Chow-Johnson, H.S.; Chow, C.K. Copper: Toxicological relevance and mechanisms. Arch. Toxicol. 2014, 88, 1929–1938. [Google Scholar] [CrossRef]
- de Bie, P.; Muller, P.; Wijmenga, C.; Klomp, L.W. Molecular pathogenesis of Wilson and Menkes disease: Correlation of mutations with molecular defects and disease phenotypes. J. Med. Genet. 2007, 44, 673–688. [Google Scholar] [CrossRef]
- Fujikawa, H.; Haruta, J. Copper Deficiency: An Overlooked Diagnosis. Cureus 2023, 15, e49139. [Google Scholar] [CrossRef]
- Nielsen, F.H. Manganese, Molybdenum, Boron, Chromium, and Other Trace Elements. In Present Knowledge in Nutrition, 10th ed.; Erdman, J.W., Jr., Zeisel, S.H., Eds.; Wiley-Blackwell: Hoboken, NJ, USA, 2012; pp. 586–607. [Google Scholar]
- Aschner, J.L.; Aschner, M. Nutritional aspects of manganese homeostasis. Mol. Aspects Med. 2005, 26, 353–362. [Google Scholar] [CrossRef]
- Chen, P.; Bornhorst, J.; Aschner, M. Manganese metabolism in humans. Front. Biosci. 2018, 23, 1655–1679. [Google Scholar] [CrossRef] [PubMed]
- Buchman, A.R. Manganese. In Modern Nutrition in Health and Disease, 11th ed.; Catharine, A., Ross, B.C., Cousins, R.J., Tucker, K.L., Ziegler, T.R., Eds.; Lippincott Williams & Wilkins: Baltimore, MD, USA, 2014; pp. 238–244. [Google Scholar]
- Avila, D.S.; Puntel, R.L.; Aschner, M. Manganese in health and disease. Met. Ions Life Sci. 2013, 13, 199–227. [Google Scholar] [PubMed]
- O’Neal, S.L.; Zheng, W. Manganese Toxicity Upon Overexposure: A Decade in Review. Curr. Environ. Health Rep. 2015, 2, 315–328. [Google Scholar] [CrossRef]
- Horning, K.J.; Caito, S.W.; Tipps, K.G.; Bowman, A.B.; Aschner, M. Manganese Is Essential for Neuronal Health. Annu. Rev. Nutr. 2015, 35, 71–108. [Google Scholar] [CrossRef]
- Mehdi, Y.; Hornick, J.-L.; Istasse, L.; Dufrasne, I. Selenium in the Environment, Metabolism and Involvement in Body Functions. Molecules 2013, 18, 3292–3311. [Google Scholar] [CrossRef]
- Mojadadi, A.; Au, A.; Salah, W.; Witting, P.; Ahmad, G. Role for Selenium in Metabolic Homeostasis and Human Reproduction. Nutrients 2021, 13, 3256. [Google Scholar] [CrossRef] [PubMed]
- Kieliszek, M. Selenium–Fascinating Microelement, Properties and Sources in Food. Molecules 2019, 24, 1298. [Google Scholar] [CrossRef]
- Lei, X.G.; Combs, G.F., Jr.; Sunde, R.A.; Caton, J.S.; Arthington, J.D.; Vatamaniuk, M.Z. Dietary Selenium Across Species. Annu. Rev. Nutr. 2022, 42, 337–375. [Google Scholar] [CrossRef]
- Fairweather-Tait, S.; Bao, Y.; Broadley, M.; Collings, R.; Ford, D.; Hesketh, J.; Hurst, R. Selenium in human health and disease. Antioxid. Redox Signal. 2011, 14, 1337–1383. [Google Scholar] [CrossRef]
- Li, Q.; Liu, M.; Hou, J.; Jiang, C.; Li, S.; Wang, T. The prevalence of Keshan disease in China. Int. J. Cardiol. 2013, 2, 1121–1126. [Google Scholar] [CrossRef]
- Jia, Y.; Han, S.; Hou, J.; Wang, R.; Li, G.; Su, S.; Qi, L.; Wang, Y.; Du, L.; Sun, H.; et al. Spatial Epidemiological Analysis of Keshan Disease in China. Ann. Glob. Health 2022, 88, 79. [Google Scholar] [CrossRef] [PubMed]
- Prasad, A.S. Zinc is an Antioxidant and Anti-Inflammatory Agent: Its Role in Human Health. Front. Nutr. 2014, 1, 14. [Google Scholar] [CrossRef] [PubMed]
- Schoofs, H.; Schmit, J.; Rink, L. Zinc Toxicity: Understanding the Limits. Molecules 2024, 29, 3130. [Google Scholar] [CrossRef] [PubMed]
- Baye, K.; Guyot, J.P.; Mouquet-Rivier, C. The unresolved role of dietary fibers on mineral absorption. Crit. Rev. Food Sci. Nutr. 2017, 57, 949–957. [Google Scholar] [CrossRef]
- Shah, M.; Chandalia, M.; Adams-Huet, B.; Brinkley, L.J.; Sakhaee, K.; Grundy, S.M.; Garg, A. Effect of a high-fiber diet compared with a moderate-fiber diet on calcium and other mineral balances in subjects with type 2 diabetes. Diabetes Care 2009, 32, 990–995. [Google Scholar] [CrossRef]
Average Intake in Diet | |||
---|---|---|---|
Antioxidant Minerals | |||
Stage 0 | Stage 1 | Stage 2 | |
Cu [mg/day] | 1.36 | 1.41 | 1.39 |
Zn [mg/day] | 11.02 | 11.15 | 11.01 |
Mn [mg/day] | 1.96 | 1.92 | 1.87 |
Fe [mg/day] | 13.94 | 13.83 | 13.98 |
Se [µg/day] | 45.34 | 48.01 | 50.12 |
Antioxidant Vitamins | |||
Stage 0 | Stage 1 | Stage 2 | |
A [µg/day retinol and retinyl esters] | 1089.62 | 1085.54 | 1088.02 |
β-karoten [µg/day] | 3909.44 | 3918.5 | 3921.41 |
vitamin C [mg/day] | 136.31 | 139.32 | 140.65 |
vitamin E [mg/day α-tocopherol equivalent] | 10.73 | 10.61 | 10.72 |
FRAP value [mmol/kg] | 16.78 | 16.80 | 16.81 |
Studied Component | Chokeberry Juice | Chokeberry Fiber |
---|---|---|
Content of Studied Component | ||
FRAP [mmol/kg] | 97.41 | 6.51 |
TPC [mg GAE/kg] | 4566 | 765 |
Total Flavonoids [mg QE/kg] | 791.7 | 63.7 |
Total Anthocyanins [mg Cy-3-GL/kg] | 257.5 | 26.11 |
Vitamin C [mg/kg] | 112.89 | 56.03 |
Mg [mg/kg] | 222.02 | 990.88 |
Fe [mg/kg] | 1.07 | 60.314 |
Cu [mg/kg] | 65.64 | 3.69 |
Mn [mg/kg] | 6.49 | 38.61 |
Se [µg/kg] | 26.86 | 212.91 |
Zn [mg/kg] | 1.15 | 17.26 |
Hg [µg/kg] | 0.28 | 3.40 |
Pb [µg/kg] | 1.63 | 19.52 |
Cd [µg/kg] | 1.95 | 14.64 |
As [µg/kg] | 1.00 | 6.65 |
NO2− [mg/kg] | 4012 | 4.42 |
NO3− [mg/kg] | 38.63 | 41.41 |
Parameter | Av. ± SD | Min.–Max. | Med. | Q1–Q3 |
---|---|---|---|---|
Total | ||||
Cu (mg/L) stage 0 | 1.022 ± 0.143 | 0.804–1.616 | 0.995 ** 0/1, ** 0/2 | 0.912–1.105 |
stage 1 | 1.030 ± 0.142 | 0.800–1.609 | 0.999 | 0.921–1.110 |
stage 2 | 1.037 ± 0.175 | 0.810–1.970 | 1.004 | 0.923–1.109 |
Mn (µg/L) stage 0 | 1.202 ± 0.608 | 0.116–3.502 | 1.010 *** 0/1, *** 0/2 | 0.860–1.505 |
stage 1 | 1.696 ± 0.695 | 0.499–3.443 | 1.519 *** 1/2 | 1.161–0.930 |
stage 2 | 2.341 ± 1.018 | 0.343–6.831 | 2.236 | 1.571–2.917 |
Se (µg/L) stage 0 | 75.86 ± 16.82 | 31.46–118.34 | 77.33 *** 0/1, *** 0/2, | 63.22–87.04 |
stage 1 | 100.17 ± 27.22 | 40.00–156.26 | 95.46 | 77.33–121.65 |
stage 2 | 99.51 ± 24.22 | 44.00–155.11 | 98.46 | 80.83–116.78 |
Zn (mg/L) stage 0 | 1.116 ± 0.340 | 0.746–3.120 | 1.060 | 0.953–1.164 |
stage 1 | 1.073 ± 0.205 | 0.662–1.875 | 1.041 | 0.981–1.137 |
stage 2 | 1.111 ± 0.325 | 0.738–2.747 | 1.019 | 0.930–1.153 |
Women | Men | |||
Parameter | Av. ± SD (Min.–Max.) | Med. (Q1–Q3) | Av. ± SD (Min.–Max.) | Med. (Q1–Q3) |
Cu (mg/L) stage 0 | 1.038 ± 0.150 (0.807–1.161) | 1.006 (0.916–1.141) | 0.991 ± 0.126 (0.804–1.229) | 0.970 (0.897–1.088) |
stage 1 | 1.045 ± 0.144 (0.821–1.609) | 1.010 (0.940–1.144) | 0.998 ± 0.134 (0.800–1.339) | 0.974 (0.800–1.339) |
stage 2 | 1.045 ± 0.143 (0.824–1.610) | 1.011 (0.930–1.143) | 1.030 ± 0.234 (0.810–1.970) | 0.980 (0.892–1.081) |
Mn (µg/L) stage 0 | 1.207 ± 0.652 (0.116–3.502) | 1.008 (0.835–1.540) | 1.193 ± 0.520 (0.373–2.623) | 1.011 (0.860–1.372) |
stage 1 | 1.703 ± 0.712 (0.499–3.443) | 1.588 (1.145–2.091) | 1.681 ± 0.673 (0.825–3.114) | 1.311 (1.194–2.191) |
stage 2 | 2.333 ± 1.054 (0.343–6.831) | 2.227 (1.599–2.911) | 2.358 ± 0.962 (1.132–4.198) | 2.244 (1.541–3.248) |
Se (µg/L) stage 0 | 74.80 ± 17.67 (31.46–118.34) | 76.82 (59.41–86.88) | 78.00 ± 15.02 (39.57–100.89) | 81.29 (69.83–89.12) |
stage 1 | 102.06 ± 27.17 (55.55–156.26) | 98.49 (77.52–123.75) | 96.32 ± 27.44 (40.00–156.11) | 90.33 (75.69–117.44) |
stage 2 | 101.14 ± 24.44 (52.42–155.11) | 99.27 (86.07–120.95) | 96.21 ± 23.89 (44.00–145.33) | 94.13 (80.71–115.59) |
Zn (mg/L) stage 0 | 1.097 ± 0.392 (0.770–3.120) | 1.015 (0.933–1.113) ** | 1.155 ± 0.195 (0.764–1.603) | 1.122 (1.042–1.269) ** |
stage 1 | 1.057 ± 0.206 (0.662–1.875) | 1.020 (0.974–1.121) | 1.105 ± 0.201 (0.788–1.684) | 1.055 (0.998–1.184) |
stage 2 | 1.117 ± 0.355 (0.738–2.747) | 0.993 (0.913–1.153) | 1.100 ± 0.258 (0.811–2.072) | 1.026 (0.984–1.157) |
Parameter | Group | Av. ± SD (Min.–Max.) | Med. (Q1–Q3) |
Cu/Zn—stage 0 | Total | 0.993 ± 0.245 (0.346–1.707) | 0.980 (0.832–1.110) * |
Cu/Zn—stage 1 | 1.020 ± 0.226 (0.508–1.703) | 0.993 (0.906–1.125) | |
Cu/Zn—stage 2 | 1.022 ± 0.279 (0.341–1.956) | 1.018 (0.857–1.201) * | |
Cu/Zn—stage 0 | Women | 1.033 ± 0.251 (0.346–1.707) | 1.013 (0.863–1.200) * |
Cu/Zn—stage 1 | 1.050 ± 0.228 (0.513–1.703) | 1.000 (0.923–1.144) | |
Cu/Zn—stage 2 | 1.030 ± 0.270 (0.341–1.793) | 1.047 (0.857–1.234) * | |
Cu/Zn—stage 0 | Men | 0.911 ± 0.213 (0.540–1.590) | 0.912 (0.785–1.040) * |
Cu/Zn—stage 1 | 0.958 ± 0.212 (0.507–1.543) | 0.952 (0.832–1.052) | |
Cu/Zn—stage 2 | 1.005 ± 0.301 (0.487–1.956) | 0.993 (0.847–1.074) * |
Parameter | Stage 1 | Stage 2 | ||
---|---|---|---|---|
R | p | R | p | |
Cu in plasma/Cu in chokeberry juice | 0.16 | 0.16 | 0.15 | 0.18 |
Mn in plasma/Mn in chokeberry juice | 0.04 | 0.73 | 0.03 | 0.73 |
Se in plasma/Se in chokeberry juice | −0.06 | 0.57 | −0.06 | 0.61 |
Zn in plasma/Zn in chokeberry juice | 0.17 | 0.12 | 0.22 | 0.05 * |
Cu in plasma/Cu in chokeberry fiber | na | na | 0.14 | 0.20 |
Mn in plasma/Mn in chokeberry fiber | na | na | 0.03 | 0.79 |
Se in plasma/Se in chokeberry fiber | na | na | 0.06 | 0.62 |
Zn in plasma/Zn in chokeberry fiber | na | na | −0.23 | 0.04 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olechno, E.; Zujko, M.E.; Socha, K.; Puścion-Jakubik, A. The Effect of Chokeberry Juice and Fiber Consumption on the Concentration of Antioxidant Minerals in Serum. Antioxidants 2025, 14, 516. https://doi.org/10.3390/antiox14050516
Olechno E, Zujko ME, Socha K, Puścion-Jakubik A. The Effect of Chokeberry Juice and Fiber Consumption on the Concentration of Antioxidant Minerals in Serum. Antioxidants. 2025; 14(5):516. https://doi.org/10.3390/antiox14050516
Chicago/Turabian StyleOlechno, Ewa, Małgorzata Elżbieta Zujko, Katarzyna Socha, and Anna Puścion-Jakubik. 2025. "The Effect of Chokeberry Juice and Fiber Consumption on the Concentration of Antioxidant Minerals in Serum" Antioxidants 14, no. 5: 516. https://doi.org/10.3390/antiox14050516
APA StyleOlechno, E., Zujko, M. E., Socha, K., & Puścion-Jakubik, A. (2025). The Effect of Chokeberry Juice and Fiber Consumption on the Concentration of Antioxidant Minerals in Serum. Antioxidants, 14(5), 516. https://doi.org/10.3390/antiox14050516