Oxidative Stress-Mediated DNA Damage Induced by Ionizing Radiation in Modern Computed Tomography: Evidence for Antioxidant-Based Radioprotective Strategies
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. CT Study Protocol
2.3. Ionizing Radiation Dose Estimation
2.4. DNA Damage Determination
2.5. Determinations of Oxidative Stress-Related Parameters
2.6. Data Storage
2.7. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CT | Computed tomography |
IR | Ionizing radiation |
OS | Oxidative stress |
ED | Effective dose |
ROS | Reactive oxygen species |
CE | Contrast-enhanced |
DLP | Dose-length product |
FRAP | Ferric reducing ability of plasma |
SOD | Superoxide dismutase |
CAT | Catalase |
GSH-Px | Glutathione peroxidase |
γ-H2AX | Phosphorylated form of the histone protein H2AX |
References
- Akram, S.; Chowdhury, Y.S. Radiation exposure of medical imaging. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar] [PubMed]
- Kanal, K.M.; Butler, P.F.; Sengupta, D.; Bhargavan-Chatfield, M.; Coombs, L.P.; Morin, R.L. U.S. diagnostic reference levels and achievable doses for 10 adult CT examinations. Radiology 2017, 284, 120–133. [Google Scholar] [CrossRef]
- Mettler, F.A., Jr.; Bhargavan, M.; Faulkner, K.; Gilley, D.B.; Gray, J.E.; Ibbott, G.S.; Lipoti, J.A.; Mahesh, M.; McCrohan, J.L.; Stabin, M.G.; et al. Radiologic and nuclear medicine studies in the United States and worldwide: Frequency, radiation dose, and comparison with other radiation sources—1950–2007. Radiology 2009, 253, 520–531. [Google Scholar] [CrossRef]
- Mahesh, M.; Ansari, A.J.; Mettler, F.A., Jr. Patient exposure from radiologic and nuclear medicine procedures in the United States and worldwide: 2009–2018. Radiology 2023, 307, e221263. [Google Scholar] [CrossRef]
- Smith-Bindman, R.; Chu, P.W.; Azman Firdaus, H.; Stewart, C.; Malekhedayat, M.; Alber, S.; Bolch, W.E.; Mahendra, M.; de González, A.B.; Miglioretti, D.L. Projected lifetime cancer risks from current computed tomography imaging. JAMA Intern. Med. 2025, 185, 710–719. [Google Scholar] [CrossRef]
- Sax, K. Chromosome aberrations induced by X-rays. Genetics 1938, 23, 494–516. [Google Scholar] [CrossRef] [PubMed]
- Santivasi, W.L.; Xia, F. Ionizing radiation–induced DNA damage, response, and repair. Antioxid. Redox Signal. 2014, 21, 251–259. [Google Scholar] [CrossRef]
- Eccles, L.J.; O’Neill, P.; Lomax, M.E. Delayed repair of radiation induced clustered DNA damage: Friend or foe? Mutat. Res. 2011, 711, 134–141. [Google Scholar] [CrossRef]
- Sage, E.; Harrison, L. Clustered DNA lesion repair in eukaryotes: Relevance to mutagenesis and cell survival. Mutat. Res. 2011, 711, 123–133. [Google Scholar] [CrossRef] [PubMed]
- Nematollahi, H.; Haddadi, G.; Jorat, M.V. The effect of vitamin C on apoptosis and Bax/Bcl-2 proteins ratio in peripheral blood lymphocytes of patients during cardiac interventional procedures. J. Biomed. Phys. Eng. 2020, 10, 421–432. [Google Scholar] [CrossRef] [PubMed]
- Jackson, S.P.; Bartek, J. The DNA-damage response in human biology and disease. Nature 2009, 461, 1071–1078. [Google Scholar] [CrossRef] [PubMed]
- O’Driscoll, M.; Jeggo, P.A. The role of double-strand break repair—Insights from human genetics. Nat. Rev. Genet. 2006, 7, 45–54. [Google Scholar] [CrossRef]
- Sotomayor, C.G.; González, C.; Soto, M.; Moreno-Bertero, N.; Opazo, C.; Ramos, B.; Espinoza, G.; Sanhueza, Á.; Cárdenas, G.; Yévenes, S.; et al. Ionizing radiation-induced oxidative stress in computed tomography—Effect of vitamin C on prevention of DNA damage: PREVIR-C randomized controlled trial study protocol. J. Clin. Med. 2024, 13, 3866. [Google Scholar] [CrossRef] [PubMed]
- International Commission on Radiological Protection. The 2007 recommendations of the International Commission on Radiological Protection (ICRP Publication 103). Ann. ICRP 2007, 37, 9–34. [CrossRef]
- American Association of Physicists in Medicine. Use of Water Equivalent Diameter for Calculating Patient Size and Size-Specific Dose Estimates (SSDE) in CT (AAPM Report No. 220); AAPM: Alexandria, VA, USA, 2014; Available online: https://www.aapm.org/pubs/reports/rpt_220.pdf (accessed on 10 June 2025).
- Mettler, F.A., Jr.; Mahesh, M.; Bhargavan-Chatfield, M.; Chambers, C.E.; Elee, J.G.; Frush, D.P.; Miller, D.L.; Royal, H.D.; Milano, M.T.; Spelic, D.C.; et al. Patient exposure from radiologic and nuclear medicine procedures in the United States: Procedure volume and effective dose for the period 2006–2016. Radiology 2020, 295, 418–427. [Google Scholar] [CrossRef]
- Rostami, A.; Moosavi, S.A.; Moghadam, H.D.; Bolookat, E.R. Micronuclei assessment of the radioprotective effects of melatonin and vitamin C in human lymphocytes. Cell J. 2016, 18, 46–51. [Google Scholar] [CrossRef]
- Tao, S.M.; Zhou, F.; Schoepf, U.J.; Fischer, A.M.; Giovagnoli, D.; Lin, Z.X.; Zhou, C.S.; Lu, G.M.; Zhang, L.J. The effect of prophylactic oral vitamin C use on DNA double-strand breaks after abdominal contrast-enhanced CT: A preliminary study. Eur. J. Radiol. 2019, 117, 69–74. [Google Scholar] [CrossRef]
- Stehli, J.; Fuchs, T.A.; Ghadri, J.R.; Gaemperli, O.; Fiechter, M.; Kaufmann, P.A. Antioxidants prevent DNA double-strand breaks from X-ray–based cardiac examinations. J. Am. Coll. Cardiol. 2014, 64, 117–118. [Google Scholar] [CrossRef]
- Rothkamm, K.; Balroop, S.; Shekhdar, J.; Fernie, P.; Goh, V. Leukocyte DNA damage after multi–detector row CT: A quantitative biomarker of low-level radiation exposure. Radiology 2007, 242, 244–251. [Google Scholar] [CrossRef]
- Ngo, V.; Duennwald, M.L. Nrf2 and oxidative stress: A general overview of mechanisms and implications in human disease. Antioxidants 2022, 11, 2345. [Google Scholar] [CrossRef]
- Zeng, F.; Wang, M.; Li, Z.; Zhang, Y. Overexpression of the circadian gene Bmal1 regulates the Nrf2/HO-1 oxidative stress pathway to alleviate inflammation and apoptosis in PC12 cells following cerebral ischemia-reperfusion injury. Medicine 2025, 104, e42763. [Google Scholar] [CrossRef]
- Xu, Y.; Zheng, H.; Slabu, I.; Liehn, E.A.; Rusu, M. Vitamin C in cardiovascular disease: From molecular mechanisms to clinical evidence and therapeutic applications. Antioxidants 2025, 14, 506. [Google Scholar] [CrossRef]
- de Toda, I.M.; González-Sánchez, M.; Cerro, E.D.-D.; Valera, G.; Carracedo, J.; Guerra-Pérez, N. Sex differences in markers of oxidation and inflammation. Implications for ageing. Mech. Ageing Dev. 2023, 211, 111797. [Google Scholar] [CrossRef]
- Tong, J.; Hei, T.K. Aging and age-related health effects of ionizing radiation. Radiat. Med. Prot. 2020, 1, 15–23. [Google Scholar] [CrossRef]
- Martemucci, G.; Portincasa, P.; Di Ciaula, A.; Mariano, M.; Centonze, V.; D’Alessandro, A.G. Oxidative stress, aging, antioxidant supplementation and their impact on human health: An overview. Mech. Ageing Dev. 2022, 206, 111707. [Google Scholar] [CrossRef]
- Mladenov, E.; Fan, X.; Dueva, R.; Soni, A.; Iliakis, G. Radiation-dose-dependent functional synergisms between ATM, ATR and DNA-PKcs in checkpoint control and resection in G2-phase. Sci. Rep. 2019, 9, 8255. [Google Scholar] [CrossRef]
- Lee, W.H.; Nguyen, P.; Hu, S.; Liang, G.; Ong, S.G.; Han, L.; Sanchez-Freire, V.; Lee, A.S.; Vasanawala, M.; Segall, G.; et al. Variable activation of the DNA damage response pathways in patients undergoing single-photon emission computed tomography myocardial perfusion imaging. Circ. Cardiovasc. Imaging 2015, 8, e002851. [Google Scholar] [CrossRef]
- Rahmanian, N.; Hosseinimehr, S.J.; Khalaj, A. The paradox role of caspase cascade in ionizing radiation therapy. J. Biomed. Sci. 2016, 23, 88. [Google Scholar] [CrossRef]
- Cao, X.; Wen, P.; Fu, Y.; Gao, Y.; Qi, X.; Chen, B.; Tao, Y.; Wu, L.; Xu, A.; Lu, H.; et al. Radiation induces apoptosis primarily through the intrinsic pathway in mammalian cells. Cell Signal 2019, 62, 109337. [Google Scholar] [CrossRef]
- Rehani, M.M. What makes and keeps radiation risks associated with CT a hot topic? AJR. Am. J. Roentgenol. 2015, 204, W234–W235. [Google Scholar] [CrossRef] [PubMed]
- Kachelrieß, M.; Rehani, M.M. Is it possible to kill the radiation risk issue in computed tomography? Phys. Medica 2020, 71, 176–177. [Google Scholar] [CrossRef] [PubMed]
- Gülçin, İ. Antioxidants and antioxidant methods: An updated overview. Arch. Toxicol. 2020, 94, 651–715. [Google Scholar] [CrossRef]
- Rodrigo, R.; Prieto, J.C.; Castillo, R. Cardioprotection against ischaemia/reperfusion by vitamins C and E plus n-3 fatty acids: Molecular mechanisms and potential clinical applications. Clin. Sci. 2013, 124, 1–15. [Google Scholar] [CrossRef]
- Caritá, A.C.; Fonseca-Santos, B.; Shultz, J.D.; Michniak-Kohn, B.; Chorilli, M.; Leonardi, G.R. Vitamin C: One compound, several uses. Advances for delivery, efficiency and stability. Nanomedicine 2020, 24, 102117. [Google Scholar] [CrossRef]
- Weber, P.; Bendich, A.; Schalch, W. Vitamin C and human health—A review of recent data relevant to human requirements. Int. J. Vitam. Nutr. Res. 1996, 66, 19–30. [Google Scholar] [PubMed]
- Singh, V.K.; Beattie, L.A.; Seed, T.M. γ-Tocotrienol, a radiation countermeasure: Radioprotective efficacy and mechanisms. PLoS ONE 2014, 9, e114078. [Google Scholar] [CrossRef]
- Yang, Z.; Ming, X.-F. Recent advances in understanding endothelial dysfunction in atherosclerosis. Clin Med Res 2006, 4, 53–65. [Google Scholar] [CrossRef]
- Kondo, H.; Takahashi, M.; Niki, E. Peroxynitrite-induced hemolysis of human erythrocytes and its inhibition by antioxidants. FEBS Lett. 1997, 413, 236–238. [Google Scholar] [CrossRef] [PubMed]
- Ateş, B.; Abraham, L.; Ercal, N. Antioxidant and free radical scavenging properties of N-acetylcysteine amide (NACA) and comparison with N-acetylcysteine (NAC). Free Radic. Res. 2008, 42, 372–377. [Google Scholar] [CrossRef] [PubMed]
- Kamal-Eldin, A.; Budilarto, E. Tocopherols and tocotrienols as antioxidants for food preservation. In Handbook of Antioxidants for Food Preservation; Shahidi, F., Ed.; Woodhead Publishing: Cambridge, UK, 2015; pp. 141–159. [Google Scholar] [CrossRef]
- Xiao, L.; Tsutsui, T.; Miwa, N. The lipophilic vitamin C derivative 6-O-palmitoyl ascorbate protects human lymphocytes against X-ray–induced DNA damage, lipid peroxidation and protein carbonylation. Mol. Cell Biochem. 2014, 394, 247–259. [Google Scholar] [CrossRef]
- Brand, M.; Sommer, M.; Ellmann, S.; Wuest, W.; May, M.S.; Eller, A.; Vogt, S.; Lell, M.M.; Kuefner, M.A.; Uder, M.; et al. Influence of different antioxidants on X-ray–induced DNA double-strand breaks using γ-H2AX immunofluorescence microscopy: A preliminary study. PLoS ONE 2015, 10, e0127142. [Google Scholar] [CrossRef]
- Bicheru, N.S.; Haidoiu, C.; Călborean, O.; Popa, A.; Grecu, D.S.; Căinap, S. Effect of antioxidant pretreatment on γ-H2AX foci formation induced by computed tomography. Health Phys. 2020, 119, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Küfner, M.A.; Brand, M.; Ehrlich, J.; Braga, L.; Uder, M.; Semelka, R.C. Effect of antioxidants on X-ray–induced γ-H2AX foci in human blood lymphocytes: Preliminary observations. Radiology 2012, 264, 59–67. [Google Scholar] [CrossRef] [PubMed]
Characteristics | ANONE | BEXPOSURE | p |
---|---|---|---|
n = 17 | n = 18 | ||
Age, years | 30 ± 12 | 55 ± 13 | <0.001 |
Gender, female | 5 (30) | 15 (83) | 0.001 |
BMI, kg/m2 | 24.0 (22.5, 28.2) | 26.5 (23.0, 31.5) | 0.30 |
Comorbidity | - | ||
Benign abdominal lesions | - | 7 (39) | |
Abdominal infection/inflammation | - | 4 (22) | |
Abdominal wall hernia | - | 2 (11) | |
Other | - | 5 (28) | |
γ-H2AX, foci/cell | 1.4 ± 0.5 | 1.3 ± 0.2 | 0.42 |
Biomarker | ANONE | BEXPOSURE | p |
---|---|---|---|
n = 17 | n = 18 | ||
GSH-Px, U/mg Hb | 3.1 ± 0.5 | 2.8 ± 0.4 | 0.03 |
SOD, U/mg Hb | 272 ± 56 | 197 ± 39 | <0.001 |
CAT, k/mg Hb | 1565 ± 604 | 905 ± 354 | <0.001 |
F2-isoprostanes, pg/mL | 20 ± 2 | 20 ± 7 | 0.72 |
FRAP, µmol/L | 356 (277, 469) | 305 (265, 408) | 0.38 |
Biomarker | ANONE | BEXPOSURE | p | ||
---|---|---|---|---|---|
n = 17 | n = 18 | ||||
GSH-Px, U/mg Hb | 3.2 | (2.9, 3.6) | 3.0 | (2.6, 3.5) | 0.15 |
SOD, U/mg Hb | 242 | (232, 268) | 232 | (195, 262) | 0.28 |
CAT, k/mg Hb | 1398 | (1188, 1821) | 1241 | (976, 1541) | 0.02 |
F2-isoprostanes, pg/mL | 22.9 | (20.4, 27.8) | 20.9 | (17.6, 26.1) | 0.29 |
FRAP, µmol/L | 405 | (267, 472) | 297 | (272, 422) | 0.19 |
γ-H2AX, foci/cell | 1.3 | ± 0.2 | 1.8 | ± 0.8 | 0.03 |
Biomarker | ANONE | BEXPOSURE | p | ||||
---|---|---|---|---|---|---|---|
p ¥ | n = 17 | p ¥ | n = 18 | ||||
GSH-Px, change | ns | *** | |||||
Absolute, U/mg Hb | 0.2 | (−0.3, 0.3) | 0.2 | (0.0, 0.4) | 0.17 | ||
Relative, % | 5 | (−9, 12) | 10 | (0, 15) | 0.21 | ||
SOD, change | ns | *** | |||||
Absolute, U/mg Hb | −22 | (−42, 7) | 30 | (−4, 71) | <0.001 | ||
Relative, % | −8 | (−12, 3) | 15 | (−2, 38) | <0.001 | ||
CAT, change | ns | *** | |||||
Absolute, k/mg Hb | 40 | (238, 207) | 262 | (37, 652) | 0.01 | ||
Relative, % | 3 | (−12, 15) | 26 | (5, 80) | 0.01 | ||
F2-isoprostanes, change | ns | ns | |||||
Absolute, pg/mL | 2.4 | (−0.9, 7.3) | 2.1 | (−1.9, 5.7) | 0.40 | ||
Relative, % | 15 | (−5, 30) | 11 | (−11, 33) | 0.35 | ||
FRAP, change | ns | ns | |||||
Absolute, µmol/L | 8 | (−19, 27) | 14 | (−30, 61) | 0.42 | ||
Relative, % | 2 | (−4, 7) | 5 | (−8, 17) | 0.29 | ||
γ-H2AX, change | ns | *** | |||||
Absolute, foci/cell | 0.0 | (−0.4, 0.3) | 0.2 | (−0.2, 0.7) | 0.02 | ||
Relative, % | −2 | (−25, 26) | 15 | (−15, 60) | 0.02 |
Variables | Overall | ANONE | BEXPOSURE | |||
---|---|---|---|---|---|---|
Std. β | p | Std. β | p | Std. β | p | |
Age, years | 0.02 | 0.88 | −0.37 | 0.12 | −0.03 | 0.89 |
Gender, female | −0.34 | 0.06 | −0.39 | 0.10 | −0.12 | 0.67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramos, B.; Gómez-Cayupán, J.; Aranis, I.; García Tapia, E.; Coghlan, C.; Ulloa, M.-J.; Gelerstein Claro, S.; Urbina, K.; Espinoza, G.; De Grazia, J.; et al. Oxidative Stress-Mediated DNA Damage Induced by Ionizing Radiation in Modern Computed Tomography: Evidence for Antioxidant-Based Radioprotective Strategies. Antioxidants 2025, 14, 1085. https://doi.org/10.3390/antiox14091085
Ramos B, Gómez-Cayupán J, Aranis I, García Tapia E, Coghlan C, Ulloa M-J, Gelerstein Claro S, Urbina K, Espinoza G, De Grazia J, et al. Oxidative Stress-Mediated DNA Damage Induced by Ionizing Radiation in Modern Computed Tomography: Evidence for Antioxidant-Based Radioprotective Strategies. Antioxidants. 2025; 14(9):1085. https://doi.org/10.3390/antiox14091085
Chicago/Turabian StyleRamos, Baltasar, Jorge Gómez-Cayupán, Isidora Aranis, Esperanza García Tapia, Constanza Coghlan, María-José Ulloa, Santiago Gelerstein Claro, Katherine Urbina, Gonzalo Espinoza, José De Grazia, and et al. 2025. "Oxidative Stress-Mediated DNA Damage Induced by Ionizing Radiation in Modern Computed Tomography: Evidence for Antioxidant-Based Radioprotective Strategies" Antioxidants 14, no. 9: 1085. https://doi.org/10.3390/antiox14091085
APA StyleRamos, B., Gómez-Cayupán, J., Aranis, I., García Tapia, E., Coghlan, C., Ulloa, M.-J., Gelerstein Claro, S., Urbina, K., Espinoza, G., De Grazia, J., Díaz, J., Piscitelli, P., Castro, D., Manterola, M., Rodrigo, R., & Sotomayor, C. G. (2025). Oxidative Stress-Mediated DNA Damage Induced by Ionizing Radiation in Modern Computed Tomography: Evidence for Antioxidant-Based Radioprotective Strategies. Antioxidants, 14(9), 1085. https://doi.org/10.3390/antiox14091085