Carotenoids and Their Interaction with the Immune System
Abstract
1. Introduction
1.1. Overview of Carotenoids
1.2. Classification of Carotenoids
Based on chemical composition | Xanthophyls | lutein |
Carotenes | β-carotene | |
Based on molecular structure | Monocyclic | γ-carotene |
Bicyclic | α-carotene | |
Acyclic | lycopene |
1.3. Applications of Carotenoids in Health
2. Carotenoids and Their Relationship with the Immune System
2.1. Antioxidant and Anti-Inflammatory Activity of Carotenoids
Carotenoid | Type of Study | Model Details | Activity | Formulation/Treatment Details | References |
---|---|---|---|---|---|
β-carotene | In vitro | 3T3-L1 preadipocytes | Reduces pro-inflammatory adipokines | 5–10 µM (dissolved in tetrahydrofuran) | Cho et al., 2018 [27] |
In vitro | AGS cell line | Inhibits NF-κB activation | Synthetic; 20 µM (dissolved in tetrahydrofuran) Synthetic; 2–20 µM (dissolved in tetrahydrofuran) | Kim et al., 2011 [28]; Jang et al., 2009 [29] | |
In vitro | AGS cell line | Reduces oxidative stress | Synthetic; 20 µmol/L (dissolved in tetrahydrofuran) | Kim et al., 2011 [28] | |
In vitro | Murine macrophage cell line RAW264.7 and murine peritoneal macrophages | Reduces phosphorylation levels of JAK2 and STAT3 | Synthetic; 10–100 µM | Li et al., 2019 [30] | |
In vitro | Murine macrophage cell line RAW264.7 and murine peritoneal macrophages | Reduces phosphorylation levels of JNK and p38 | Synthetic; 10–100 µM | Li et al., 2019 [30] | |
Astaxanthin (ASTA) | Clinical trial | Healthy volunteers and smokers | Decreases lipid peroxidation and protect against cellular damage | Algae-derived; Softgel capsules (3 mg) for 4 weeks; 5–40 mg for 3 weeks | Imai et al., 2018 [33]; Kim et al., 2011 [37] |
In vitro | THP-1 macrophage cells | Inhibits NF-κB activation | Synthetic; 5–10 µM (dissolved in dimethyl sulfoxide) | Kishimoto et al., 2010 [35] | |
In vitro | THP-1 macrophage cells | Downregulates pro-inflammatory markers | Synthetic; 5–10 µM (dissolved in dimethyl sulfoxide) | Kishimoto et al., 2010 [35]; | |
In vitro | AGS cell line | Inhibits PI3K/AKT/mTOR signaling pathway | Synthetic; 1–10 µM (dissolved in dimethyl sulfoxide) | Utpal et al., 2024 [36] | |
Saffron (crocin and crocetin) | In vitro | PC12 cells | Increases intracellular glutathione, protecting from cell death | Plant-derived; 10 µM in serum-free DMEM | Ochiai et al., 2007 [39] |
In vivo | Sprague–Dawley male rats | Downregulates pro-inflammatory markers | Synthetic; 1 mL/kg (dissolved in normal saline) | Yang et al., 2006 [40] | |
In vitro | BV2 mouse brain microglial cells | Reduces NF-κB activation and mitigate oxidative stress | Synthetic; 5–20 µM (dissolved in fresh medium) | Nam et al., 2010 [41] | |
In vivo | Adult male Wistar rats and C57BL/6 mice | Neuroprotective potential | Synthetic; 20–60 mg/kg per day (dissolved in normal saline); between 3 and 6 weeks | Rajaei et al., 2016 [43]; Wang et al., 2015 [44]; Bandegi et al., 2014 [45] |
2.2. Immunomodulatory Activity of Carotenoids on Cell Populations of the Immune System
2.2.1. Peripheral Blood Mononuclear Cells
2.2.2. Polymorphonuclear Leukocytes
2.2.3. Dendritic Cells
2.2.4. Effect on Cytokines
Cellular Group | Carotenoid | Type of Study | Activity | Formulation/Treatment Details | References |
---|---|---|---|---|---|
PBMCs | β-carotene | Clinical trial | Increments lymphoid cells | 0–60 mg/day; 2 months | Watson et al., 1991 [49] |
Clinical trial | Increases cytotoxic activity of NK cells | Synthetic; 50 mg/day for 2 years; | Santos et al., 1996 [50]; | ||
Clinical trial | Increases cytotoxic activity of NK cells | Dietary source; 25 mg/day for 2 weeks | Watzl et al., 2003 [51] | ||
In vitro | Modulates the viability of immune cells | Synthetic; 0–3 µM (dissolved in acetone) | Ribeiro et al., 2020 [52] | ||
Astaxanthin | In vitro | Enhances phagocytic capabilities | Synthetic; 10 µM (dissolved in dimethyl sulfoxide); 20 μM | Speranza et al., 2012 [53]; Sun et al., 2016 [54] | |
In vitro | Modulates lymphocytes proliferation | Synthetic; 10 µM (dissolved in dimethyl sulfoxide); 20 μmol/L; 70–300 nM) | Speranza et al., 2012 [53]; Sun et al., 2016 [54]; Lin et al., 2015 [55] | ||
Ex vivo (BALB/c mice) | Modulates lymphocytes proliferation | Synthetic; 7 mg/kg per day by oral gavage for 14 days | Lin et al., 2015 [55] | ||
Curcumin | In vivo (Wistar rats) | Promotes the proliferative capacity of T-cells | Synthetic; 40 mg/kg per day for 30 days (Injection) | Varalakshmi et al., 2008 [56] | |
In vitro | Modulates T-cell-mediated inflammation | Synthetic; 0.2–2 µg/mL | Kim et al., 2013 [57] | ||
Lycopene | Clinical trial | Improves NK cytotoxicity | Dietary source; 25–50 mg/day for 2 weeks | Watzl et al., 2003 [51] | |
In vitro | Reduces T-cell activation | Synthetic; 1–10 µM | Kim et al., 2004 [58] | ||
In vivo (C57BL/6 mice) | Increases the CD4+/CD8+ T-cell ratio | 40 mg/kg per day (intraperitoneal injection) | Jiang et al., 2019 [59] | ||
In vitro | Induces macrophages differentiation | Synthetic; 0.1 µM | Ding et al., 2007 [60] | ||
Retinoic acid | In vitro | Induces regulatory T cells differentiation | Synthetic; 10–100 nM (dissolved in dimethyl sulfoxide); | Wang et al., 2009 [61]; Xiao et al., 2008 [63] | |
In vivo (C57BL/6 mice) | Suppresses Th1/Th17 immune responses | Synthetic; 0.2 mg/mouse per day for 21 days (intraperitoneally) | Keino et al., 2010 [62] | ||
PMNs | β -carotene | In vitro | Modulates ROS content | Synthetic; 1 µM (dissolved in tetrahydrofuran) | Walrand et al., 2005 [64] |
Astaxanthin | In vitro | Enhances neutrophil phagocytic and microbicidal capabilities | Synthetic; 0–40 µM (dissolved in dimethyl sulfoxide) | Macedo et al., 2010 [65] | |
Fucoxanthin and vitamin C | In vitro | Modulates neutrophil phagocytic capacity and viability | Synthetic; 2–100 µM (dissolved in dimethyl sulfoxide) | Morandi et al., 2014 [66] | |
Dendritic cells | Curcumin | In vitro (from murine BM cells) | Restricts the maturation of DCs | Synthetic; 0–25 µM (dissolved in dimethyl sulfoxide) | Kim et al., 2005 [67] |
In vitro | Suppresses activation of DCs | Plant-derived; 20–30 µM (dissolved in dimethyl sulfoxide) | Shirley et al., 2008 [68] | ||
In vivo (C57BL/6 mice) | Suppresses activation of DCs | Synthetic; 100 mg/kg; oral gavage for 7 days | Zhao et al., 2016 [69] | ||
Dia | In vitro (from C57BL/6 mice) | Influences morphology and maturation | Bacterial-derived; 1 µM | Liu et al., 2016 [70] | |
Cytokines | Curcumin | In vitro | Inhibits Th1 cytokines | Synthetic; 100 mM (dissolved in dimethyl sulfoxide) | Gao et al., 2004 [71] |
In vitro | Inhibits Th1 cytokines | Dietary source; 1 g/100 g | Kim et al., 2009 [72] | ||
Lycopene | In vitro | Modulates the production of pro- and anti-inflammatory cytokines | Dietary source; 0.25–4 µM | Bessler et al., 2008 [73] | |
In vitro | Synthetic; 2 µM | Gouranton et al., 2011 [74] | |||
In vivo (C57BL/6 mice) | 40 mg/kg per day (intraperitoneal injection) | Jiang et al., 2019 [59] | |||
ß-carotene | In vitro (RAW264 cells) | Inhibits pro-inflammatory cytokines | Synthetic; 0–10 µM | Katsuura et al., 2009 [75] | |
In vivo (C57BL/6N mice) | Modulates Th cytokine production | Synthetic; 5 mg/kg per day for 7 days | Yamaguchi et al., 2010 [76] | ||
Astaxanthin | Ex vivo (BALB/c mice) | Modulates IFN-γ and IL-2 production | Synthetic; 7 mg/kg per day by oral gavage for 14 days | Lin et al., 2015 [55] |
3. Relationship Between Carotenoid Intake and Prevention of Diseases
3.1. Role of Carotenoids in Autoimmune Diseases
3.1.1. Multiple Sclerosis
3.1.2. Systemic Lupus Erythematosus
3.1.3. Rheumatoid Arthritis
Autoimmune Disease | Carotenoid | Type of Study | Activity | Formulation/Treatment Details | References |
---|---|---|---|---|---|
Multiple sclerosis | Crocin | In vivo (C57BL/6 mice) | Anti-neuroinflammatory and antidepressant properties | Plant-derived; 500 mg/kg per day for 21 days | Ghazavi et al., 2009 [84] |
Lutein | Clinical trial | Cognitive benefits | Plant-derived; 20 mg per day for 4 months | Martell et al., 2023 [85] | |
Systemic lupus erythematosus | β-carotene | Cross-sectional study | Reduces specific inflammatory biomarkers | Dietary source; 6 months | Pocovi-Gerardino et al., 2021 [91] |
Rheumatoid arthritis | Crocin | In vivo (Wistar rats) | Reduces pro-inflammatory cytokines | 10–40 mg/kg; oral treatment for 36 days | Liu et al., 2018 [96] |
In vivo (Wistar rats) | Reduces ROS serum levels | Synthetic; 10–20 mg/kg; oral treatment for 2 weeks | Hemshekhar et al., 2012 [98] | ||
Lycopene | In vivo (C57BL/6 mice) | Inhibits the infiltration of leukocytes, mononuclear cells and neutrophils at the site of inflammation | Pure lycopene or nanoemulsion (1 mg/kg) | Moia et al., 2020 [99] |
3.2. Role of Carotenoids in Other Types of Diseases
3.2.1. Cancer
3.2.2. Cardiovascular Diseases
3.2.3. Dermatological Diseases
3.2.4. Ophthalmological Diseases
3.2.5. Neurological Diseases
Other Diseases | Carotenoid | Type of Study | Activity | Formulation/Treatment Details | References |
---|---|---|---|---|---|
Cancer | β-carotene | In vitro | Inhibits cell growth, halts the cell cycle at various stages, and promotes apoptosis Has anti- and pro-oxidant properties | Synthetic; 0.5–10 µM | Gloria et al., 2014 [102] |
Saffron | In vivo | Reduces liver cancer cell viability | Plant-derived; 75–300 mg/kg; orally for 22 weeks | Amin et al., 2011 [103] | |
Cardiovascular diseases | β-carotene | In vitro | Prevents LDL oxidation | Synthetic | Goulinet & Chapman, 1997 [109] |
Dermatological diseases | Lycopene | Clinical trial | Protects against UV radiation damage | 120 mg per day for 6 days | Ribaya-Mercado et al., 1995 [113] |
β-carotene | Clinical trial | Reduces erythema induced by UV exposure | Algae-derived; 25 mg capsules for 12 weeks | Stahl et al., 2000 [114]; Heinrich et al., 2003 [115] | |
In vitro | Protects against UV radiation damage | Synthetic; 0–8 µM | Astley et al., 2003 [117] | ||
Astaxanthin | In vitro | Interferes with UVA-induced MMP-1 and SFE/NEP expression | Synthetic; 1–8 µM | Suganuma et al., 2010 [118]; | |
Ophthalmological diseases | Lutein/Zeaxanthin | Clinical trial | Slows the progression of age-related macular degeneration | 10 mg/2 mg daily | Chew et al., 2013 [122] |
Neurological diseases | Lutein | In vivo | Decreases the risk of neurological diseases and slows the rate of cognitive decline | 5 mg/kg per day (injected) for 21 days | Cho et al., 2018 [127] |
4. Challenges in Carotenoid Research and Emerging C50 Carotenoids
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Meléndez-Martínez, A.J.; Vicario, I.M.; Heredia, F.J. Pigmentos Carotenoides: Consideraciones Estructurales y Fisicoquímicas. Available online: https://ve.scielo.org/scielo.php?script=sci_arttext&pid=S0004-06222007000200002 (accessed on 30 June 2025).
- Fiedor, J.; Burda, K. Potential Role of Carotenoids as Antioxidants in Human Health and Disease. Nutrients 2014, 6, 466–488. [Google Scholar] [CrossRef]
- Liaaen-Jensen, S.; Frode Lutnaes, B. Charged Carotenoid Species. Stud. Nat. Prod. Chem. 2005, 30, 515–557. [Google Scholar] [CrossRef]
- Khoo, H.E.; Prasad, K.N.; Kong, K.W.; Jiang, Y.; Ismail, A. Carotenoids and Their Isomers: Color Pigments in Fruits and Vegetables. Molecules 2011, 16, 1710–1738. [Google Scholar] [CrossRef] [PubMed]
- Meléndez-Martínez, A.J. Carotenoides En Agroalimentación y Salud; Terracota, SA de CV: Mexico City, Mexico, 2017; pp. 574–608. [Google Scholar]
- Swapnil, P.; Meena, M.; Singh, S.K.; Dhuldhaj, U.P.; Harish; Marwal, A. Vital Roles of Carotenoids in Plants and Humans to Deteriorate Stress with Its Structure, Biosynthesis, Metabolic Engineering and Functional Aspects. Curr. Plant Biol. 2021, 26, 100203. [Google Scholar] [CrossRef]
- Kashef, N.; Hamblin, M.R. Can Microbial Cells Develop Resistance to Oxidative Stress in Antimicrobial Photodynamic Inactivation? Drug Resist. Updat. 2017, 31, 31–42. [Google Scholar] [CrossRef] [PubMed]
- Patel, A.K.; Albarico, F.P.J.B.; Perumal, P.K.; Vadrale, A.P.; Nian, C.T.; Chau, H.T.B.; Anwar, C.; Wani, H.M.U.D.; Pal, A.; Saini, R.; et al. Algae as an Emerging Source of Bioactive Pigments. Bioresour. Technol. 2022, 351, 126910. [Google Scholar] [CrossRef] [PubMed]
- Zoz, L.; Carvalho, J.C.; Soccol, V.T.; Casagrande, T.C.; Cardoso, L. Torularhodin and Torulene: Bioproduction, Properties and Prospective Applications in Food and Cosmetics—A Review. Braz. Arch. Biol. Technol. 2014, 58, 278–288. [Google Scholar] [CrossRef]
- Berendschot, T.T.J.M.; Plat, J. Plant Stanol and Sterol Esters and Macular Pigment Optical Density In Handbook of Nutrition, Diet and the Eye; Academic Press: Cambridge, MA, USA, 2014; pp. 441–449. [Google Scholar] [CrossRef]
- Stanley, L.; Yuan, Y.W. Transcriptional Regulation of Carotenoid Biosynthesis in Plants: So Many Regulators, So Little Consensus. Front. Plant. Sci. 2019, 10, 1017. [Google Scholar] [CrossRef]
- Luan, Y.; Fu, X.; Lu, P.; Grierson, D.; Xu, C. Molecular Mechanisms Determining the Differential Accumulation of Carotenoids in Plant Species and Varieties. CRC Crit. Rev. Plant Sci. 2020, 39, 125–139. [Google Scholar] [CrossRef]
- Sun, T.; Li, L. Toward the “golden” Era: The Status in Uncovering the Regulatory Control of Carotenoid Accumulation in Plants. Plant Sci. 2020, 290, 110331. [Google Scholar] [CrossRef]
- Liang, M.H.; He, Y.J.; Liu, D.M.; Jiang, J.G. Regulation of Carotenoid Degradation and Production of Apocarotenoids in Natural and Engineered Organisms. Crit. Rev. Biotechnol. 2021, 41, 513–534. [Google Scholar] [CrossRef] [PubMed]
- Torres-Montilla, S.; Rodriguez-Concepcion, M. Making Extra Room for Carotenoids in Plant Cells: New Opportunities for Biofortification. Prog. Lipid Res. 2021, 84, 101128. [Google Scholar] [CrossRef] [PubMed]
- Hermanns, A.S.; Zhou, X.; Xu, Q.; Tadmor, Y.; Li, L. Carotenoid Pigment Accumulation in Horticultural Plants. Hortic. Plant J. 2020, 6, 343–360. [Google Scholar] [CrossRef]
- Rodriguez-Amaya, D.B.; Kimura, M. HarvestPlus Handbook for Carotenoid Analysis; International Food Policy Research Institute: Washington, DC, USA, 2004. [Google Scholar]
- Sun, T.; Rao, S.; Zhou, X.; Li, L. Plant Carotenoids: Recent Advances and Future Perspectives. Mol. Hortic. 2022, 2, 3. [Google Scholar] [CrossRef]
- Hosseini, B.; Berthon, B.S.; Jensen, M.E.; McLoughlin, R.F.; Wark, P.A.B.; Nichol, K.; Williams, E.J.; Baines, K.J.; Collison, A.; Starkey, M.R.; et al. The Effects of Increasing Fruit and Vegetable Intake in Children with Asthma on the Modulation of Innate Immune Responses. Nutrients 2022, 14, 3087. [Google Scholar] [CrossRef] [PubMed]
- Johnson, E.J. The Role of Carotenoids in Human Health. Nutr. Clin. Care 2002, 5, 56–65. [Google Scholar] [CrossRef]
- Kulczyński, B.; Gramza-Michałowska, A.; Kobus-Cisowska, J.; Kmiecik, D. The Role of Carotenoids in the Prevention and Treatment of Cardiovascular Disease—Current State of Knowledge. J. Funct. Foods 2017, 38, 45–65. [Google Scholar] [CrossRef]
- Ghiasian, M.; Khamisabadi, F.; Kheiripour, N.; Karami, M.; Haddadi, R.; Ghaleiha, A.; Taghvaei, B.; Oliaie, S.S.; Salehi, M.; Samadi, P.; et al. Effects of Crocin in Reducing DNA Damage, Inflammation, and Oxidative Stress in Multiple Sclerosis Patients: A Double-Blind, Randomized, and Placebo-Controlled Trial. J. Biochem. Mol. Toxicol. 2019, 33, e22410. [Google Scholar] [CrossRef]
- Bernstein, P.S.; Li, B.; Vachali, P.P.; Gorusupudi, A.; Shyam, R.; Henriksen, B.S.; Nolan, J.M. Lutein, Zeaxanthin, and Meso-Zeaxanthin: The Basic and Clinical Science Underlying Carotenoid-Based Nutritional Interventions against Ocular Disease. Prog. Retin. Eye Res. 2016, 50, 34–66. [Google Scholar] [CrossRef]
- Rodriguez-Concepcion, M.; Avalos, J.; Bonet, M.L.; Boronat, A.; Gomez-Gomez, L.; Hornero-Mendez, D.; Limon, M.C.; Meléndez-Martínez, A.J.; Olmedilla-Alonso, B.; Palou, A.; et al. A Global Perspective on Carotenoids: Metabolism, Biotechnology, and Benefits for Nutrition and Health. Prog. Lipid Res. 2018, 70, 62–93. [Google Scholar] [CrossRef]
- Krinsky, N.I.; Johnson, E.J. Carotenoid Actions and Their Relation to Health and Disease. Mol. Aspects Med. 2005, 26, 459–516. [Google Scholar] [CrossRef]
- Bouayed, J.; Bohn, T. Exogenous Antioxidants--Double-Edged Swords in Cellular Redox State: Health Beneficial Effects at Physiologic Doses versus Deleterious Effects at High Doses. Oxid. Med. Cell Longev. 2010, 3, 228–237. [Google Scholar] [CrossRef]
- Cho, S.O.; Kim, M.-H.; Kim, H. β-Carotene Inhibits Activation of NF-ΚB, Activator Protein-1, and STAT3 and Regulates Abnormal Expression of Some Adipokines in 3T3-L1 Adipocytes. J. Cancer Prev. 2018, 23, 37–43. [Google Scholar] [CrossRef]
- Kim, Y.; Seo, J.H.; Kim, H. β-Carotene and Lutein Inhibit Hydrogen Peroxide-Induced Activation of NF-ΚB and IL-8 Expression in Gastric Epithelial AGS Cells. J. Nutr. Sci. Vitaminol. 2011, 57, 216–223. [Google Scholar] [CrossRef] [PubMed]
- Jang, S.H.; Lim, J.W.; Kim, H. Beta-Carotene Inhibits Helicobacter Pylori-Induced Expression of Inducible Nitric Oxide Synthase and Cyclooxygenase-2 in Human Gastric Epithelial AGS Cells. J. Physiol. Pharmacol. 2009, 60, 131–137. [Google Scholar] [PubMed]
- Li, R.; Hong, P.; Zheng, X. β-Carotene Attenuates Lipopolysaccharide-Induced Inflammation via Inhibition of the NF-ΚB, JAK2/STAT3 and JNK/P38 MAPK Signaling Pathways in Macrophages. Anim. Sci. J. 2019, 90, 140–148. [Google Scholar] [CrossRef] [PubMed]
- Bode, J.G.; Ehlting, C.; Häussinger, D. The Macrophage Response towards LPS and Its Control through the P38(MAPK)-STAT3 Axis. Cell. Signal. 2012, 24, 1185–1194. [Google Scholar] [CrossRef]
- Ruimi, N.; Rwashdeh, H.; Wasser, S.; Konkimalla, B.; Efferth, T.; Bprgatti, M.; Gambari, R.; Mahajna, J. Daedalea Gibbosasubstances Inhibit LPS-Induced Expression of INOS by Suppression of NF-ΓB and MAPK Activities in RAW 264.7 Macrophage Cells. Int. J. Mol. Med. 2010, 25, 421–432. [Google Scholar] [CrossRef]
- Imai, A.; Oda, Y.; Ito, N.; Seki, S.; Nakagawa, K.; Miyazawa, T.; Ueda, F. Effects of Dietary Supplementation of Astaxanthin and Sesamin on Daily Fatigue: A Randomized, Double-Blind, Placebo-Controlled, Two-Way Crossover Study. Nutrients 2018, 10, 281. [Google Scholar] [CrossRef]
- Linnewiel, K.; Ernst, H.; Caris-Veyrat, C.; Ben-Dor, A.; Kampf, A.; Salman, H.; Danilenko, M.; Levy, J.; Sharoni, Y. Structure Activity Relationship of Carotenoid Derivatives in Activation of the Electrophile/Antioxidant Response Element Transcription System. Free Radic. Biol. Med. 2009, 47, 659–667. [Google Scholar] [CrossRef]
- Kishimoto, Y.; Tani, M.; Uto-Kondo, H.; Iizuka, M.; Saita, E.; Sone, H.; Kurata, H.; Kondo, K. Astaxanthin Suppresses Scavenger Receptor Expression and Matrix Metalloproteinase Activity in Macrophages. Eur. J. Nutr. 2010, 49, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Utpal, B.K.; Dehbia, Z.; Zidan, B.M.R.M.; Sweilam, S.H.; Singh, L.P.; Arunkumar, M.S.; Sona, M.; Panigrahy, U.P.; Keerthana, R.; Mandadi, S.R.; et al. Carotenoids as Modulators of the PI3K/Akt/MTOR Pathway: Innovative Strategies in Cancer Therapy. Med. Oncol. 2024, 42, 1–25. [Google Scholar] [CrossRef]
- Kim, J.H.; Chang, M.J.; Choi, H.D.; Youn, Y.K.; Kim, J.T.; Oh, J.M.; Shin, W.G. Protective Effects of Haematococcus Astaxanthin on Oxidative Stress in Healthy Smokers. J. Med. Food 2011, 14, 1469–1475. [Google Scholar] [CrossRef]
- Bolhassani, A.; Khavari, A.; Bathaie, S.Z. Saffron and Natural Carotenoids: Biochemical Activities and Anti-Tumor Effects. Biochim. Biophys. Acta 2014, 1845, 20–30. [Google Scholar] [CrossRef]
- Ochiai, T.; Shimeno, H.; Mishima, K.-I.; Iwasaki, K.; Fujiwara, M.; Tanaka, H.; Shoyama, Y.; Toda, A.; Eyanagi, R.; Soeda, S. Protective Effects of Carotenoids from Saffron on Neuronal Injury in Vitro and in Vivo. Biochim. Et Biophys. Acta (BBA)-Gen. Subj. 2007, 1770, 578–584. [Google Scholar] [CrossRef]
- Yang, R.; Tan, X.; Thomas, A.M.; Shen, J.; Qureshi, N.; Morrison, D.C.; Van Way, C.W. Crocetin Inhibits MRNA Expression for Tumor Necrosis Factor-α, Interleukin-1β, and Inducible Nitric Oxide Synthase in Hemorrhagic Shock. J. Parenter. Enter. Nutr. 2006, 30, 297–301. [Google Scholar] [CrossRef]
- Nam, K.N.; Park, Y.M.; Jung, H.J.; Lee, J.Y.; Min, B.D.; Park, S.U.; Jung, W.S.; Cho, K.H.; Park, J.H.; Kang, I.; et al. Anti-Inflammatory Effects of Crocin and Crocetin in Rat Brain Microglial Cells. Eur. J. Pharmacol. 2010, 648, 110–116. [Google Scholar] [CrossRef] [PubMed]
- Khazdair, M.R.; Boskabady, M.H.; Hosseini, M.; Rezaee, R.; Tsatsakis, A.M. The Effects of Crocus Sativus (Saffron) and Its Constituents on Nervous System: A Review. Avicenna J. Phytomed. 2015, 5, 376. [Google Scholar] [PubMed]
- Rajaei, Z.; Hosseini, M.; Alaei, H. Effects of Crocin on Brain Oxidative Damage and Aversive Memory in a 6-OHDA Model of Parkinson’s Disease. Arq. Neuropsiquiatr. 2016, 74, 723–729. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Zhang, L.; Rao, W.; Su, N.; Hui, H.; Wang, L.; Peng, C.; Tu, Y.; Zhang, S.; Fei, Z. Neuroprotective Effects of Crocin against Traumatic Brain Injury in Mice: Involvement of Notch Signaling Pathway. Neurosci. Lett. 2015, 591, 53–58. [Google Scholar] [CrossRef]
- Bandegi, A.R.; Rashidy-Pour, A.; Vafaei, A.A.; Ghadrdoost, B. Protective Effects of Crocus Sativus L. Extract and Crocin against Chronic-Stress Induced Oxidative Damage of Brain, Liver and Kidneys in Rats. Adv. Pharm. Bull. 2014, 4, 493–499. [Google Scholar] [CrossRef]
- Zhao, X.; Aldini, G.; Johnson, E.J.; Rasmussen, H.; Kraemer, K.; Woolf, H.; Musaeus, N.; Krinsky, N.I.; Russell, R.M.; Yeum, K.J. Modification of Lymphocyte DNA Damage by Carotenoid Supplementation in Postmenopausal Women. Am. J. Clin. Nutr. 2006, 83, 163–169. [Google Scholar] [CrossRef]
- Lu, L.W.; Gao, Y.; Quek, S.Y.; Foster, M.; Eason, C.T.; Liu, M.; Wang, M.; Chen, J.H.; Chen, F. The Landscape of Potential Health Benefits of Carotenoids as Natural Supportive Therapeutics in Protecting against Coronavirus Infection. Biomed. Pharmacother. 2022, 154, 113625. [Google Scholar] [CrossRef]
- Milani, A.; Basirnejad, M.; Shahbazi, S.; Bolhassani, A. Carotenoids: Biochemistry, Pharmacology and Treatment. Br. J. Pharmacol. 2017, 174, 1290–1324. [Google Scholar] [CrossRef]
- Watson, R.R.; Prabhala, R.H.; Plezia, P.M.; Alberts, D.S. Effect of Beta-Carotene on Lymphocyte Subpopulations in Elderly Humans: Evidence for a Dose-Response Relationship. Am. J. Clin. Nutr. 1991, 53, 90–94. [Google Scholar] [CrossRef]
- Santos, M.S.; Meydani, S.N.; Leka, L.; Wu, D.; Fotouhi, N.; Meydani, M.; Hennekens, C.H.; Gaziano, J.M. Natural Killer Cell Activity in Elderly Men Is Enhanced by Beta-Carotene Supplementation. Am. J. Clin. Nutr. 1996, 64, 772–777. [Google Scholar] [CrossRef]
- Watzl, B.; Bub, A.; Briviba, K.; Rechkemmer, G. Supplementation of a Low-Carotenoid Diet with Tomato or Carrot Juice Modulates Immune Functions in Healthy Men. Ann. Nutr. Metab. 2003, 47, 255–261. [Google Scholar] [CrossRef]
- Ribeiro, D.; Sousa, A.; Nicola, P.; Ferreira de Oliveira, J.M.P.; Rufino, A.T.; Silva, M.; Freitas, M.; Carvalho, F.; Fernandes, E. β-Carotene and Its Physiological Metabolites: Effects on Oxidative Status Regulation and Genotoxicity in in Vitro Models. Food Chem. Toxicol. 2020, 141, 111392. [Google Scholar] [CrossRef]
- Speranza, L.; Pesce, M.; Patruno, A.; Franceschelli, S.; De Lutiis, M.A.; Grilli, A.; Felaco, M. Astaxanthin Treatment Reduced Oxidative Induced Pro-Inflammatory Cytokines Secretion in U937: SHP-1 as a Novel Biological Target. Mar. Drugs 2012, 10, 890–899. [Google Scholar] [CrossRef]
- Sun, W.; Xing, L.; Lin, H.; Leng, K.; Zhai, Y.; Liu, X. Assessment and Comparison of in Vitro Immunoregulatory Activity of Three Astaxanthin Stereoisomers. J. Ocean. Univ. China 2016, 15, 283–287. [Google Scholar] [CrossRef]
- Lin, K.H.; Lin, K.C.; Lu, W.J.; Thomas, P.A.; Jayakumar, T.; Sheu, J.R. Astaxanthin, a Carotenoid, Stimulates Immune Responses by Enhancing IFN-γ and IL-2 Secretion in Primary Cultured Lymphocytes in Vitro and Ex Vivo. Int. J. Mol. Sci. 2015, 17, 44. [Google Scholar] [CrossRef]
- Varalakshmi, C.; Ali, A.M.; Pardhasaradhi, B.V.V.; Srivastava, R.M.; Singh, S.; Khar, A. Immunomodulatory Effects of Curcumin: In-Vivo. Int. Immunopharmacol. 2008, 8, 688–700. [Google Scholar] [CrossRef]
- Kim, G.; Jang, M.S.; Son, Y.M.; Seo, M.J.; Ji, S.Y.; Han, S.H.; Jung, I.D.; Park, Y.M.; Jung, H.J.; Yun, C.H. Curcumin Inhibits CD4+ T Cell Activation, but Augments CD69 Expression and TGF-Β1-Mediated Generation of Regulatory T Cells at Late Phase. PLoS ONE 2013, 8, e62300. [Google Scholar] [CrossRef]
- Kim, G.Y.; Kim, J.H.; Ahn, S.C.; Lee, H.J.; Moon, D.O.; Lee, C.M.; Park, Y.M. Lycopene Suppresses the Lipopolysaccharide-Induced Phenotypic and Functional Maturation of Murine Dendritic Cells through Inhibition of Mitogen-Activated Protein Kinases and Nuclear Factor-KappaB. Immunology 2004, 113, 203–211. [Google Scholar] [CrossRef]
- Jiang, X.; Wu, H.; Zhao, W.; Ding, X.; You, Q.; Zhu, F.; Qian, M.; Yu, P. Lycopene Improves the Efficiency of Anti-PD-1 Therapy via Activating IFN Signaling of Lung Cancer Cells. Cancer Cell Int. 2019, 19, 68. [Google Scholar] [CrossRef]
- Ding, Q.; Jin, T.; Wang, Z.; Chen, Y. Catalase Potentiates Retinoic Acid-Induced THP-1 Monocyte Differentiation into Macrophage through Inhibition of Peroxisome Proliferator-Activated Receptor Gamma. J. Leukoc. Biol. 2007, 81, 1568–1576. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Huizinga, T.W.J.; Toes, R.E.M. De Novo Generation and Enhanced Suppression of Human CD4+CD25+ Regulatory T Cells by Retinoic Acid. J. Immunol. 2009, 183, 4119–4126. [Google Scholar] [CrossRef]
- Keino, H.; Watanabe, T.; Sato, Y.; Okada, A.A. Anti-Inflammatory Effect of Retinoic Acid on Experimental Autoimmune Uveoretinitis. Br. J. Ophthalmol. 2010, 94, 802–807. [Google Scholar] [CrossRef] [PubMed]
- Xiao, S.; Jin, H.; Korn, T.; Liu, S.M.; Oukka, M.; Lim, B.; Kuchroo, V.K. Retinoic Acid Increases Foxp3+ Regulatory T Cells and Inhibits Development of Th17 Cells by Enhancing TGF-β-Driven Smad3 Signaling and Inhibiting IL-6 and IL-23 Receptor Expression. J. Immunol. 2008, 181, 2277. [Google Scholar] [CrossRef]
- Walrand, S.; Farges, M.C.; Dehaese, O.; Cardinault, N.; Minet-Quinard, R.; Grolier, P.; Bouteloup-Demange, C.; Ribalta, J.; Winklhofer-Roob, B.M.; Rock, E.; et al. In Vivo and in Vitro Evidences That Carotenoids Could Modulate the Neutrophil Respiratory Burst during Dietary Manipulation. Eur. J. Nutr. 2005, 44, 114–120. [Google Scholar] [CrossRef] [PubMed]
- MacEdo, R.C.; Bolin, A.P.; Marin, D.P.; Otton, R. Astaxanthin Addition Improves Human Neutrophils Function: In Vitro Study. Eur. J. Nutr. 2010, 49, 447–457. [Google Scholar] [CrossRef] [PubMed]
- Morandi, A.C.; Molina, N.; Guerra, B.A.; Bolin, A.P.; Otton, R. Fucoxanthin in Association with Vitamin C Acts as Modulators of Human Neutrophil Function. Eur. J. Nutr. 2014, 53, 779–792. [Google Scholar] [CrossRef]
- Kim, G.-Y.; Kim, K.-H.; Lee, S.-H.; Yoon, M.-S.; Lee, H.-J.; Moon, D.-O.; Lee, C.-M.; Ahn, S.-C.; Park, Y.C.; Park, Y.-M. Curcumin Inhibits Immunostimulatory Function of Dendritic Cells: MAPKs and Translocation of NF-Kappa B as Potential Targets. J. Immunol. 2005, 174, 8116–8124. [Google Scholar] [CrossRef]
- Shirley, S.A.; Montpetit, A.J.; Lockey, R.F.; Mohapatra, S.S. Curcumin Prevents Human Dendritic Cell Response to Immune Stimulants. Biochem. Biophys. Res. Commun. 2008, 374, 431–436. [Google Scholar] [CrossRef]
- Zhao, H.M.; Xu, R.; Huang, X.Y.; Cheng, S.M.; Huang, M.F.; Yue, H.Y.; Wang, X.; Zou, Y.; Lu, A.P.; Liu, D.Y. Curcumin Suppressed Activation of Dendritic Cells via JAK/STAT/SOCS Signal in Mice with Experimental Colitis. Front. Pharmacol. 2016, 7, 455. [Google Scholar] [CrossRef]
- Liu, H.; Xu, W.; Chang, X.; Qin, T.; Yin, Y.; Yang, Q. 4,4’-Diaponeurosporene, a C30 Carotenoid, Effectively Activates Dendritic Cells via CD36 and NF-ΚB Signaling in a ROS Independent Manner. Oncotarget 2016, 7, 40978–40991. [Google Scholar] [CrossRef]
- Gao, X.; Kuo, J.; Jiang, H.; Deeb, D.; Liu, Y.; Divine, G.; Chapman, R.A.; Dulchavsky, S.A.; Gautam, S.C. Immunomodulatory Activity of Curcumin: Suppression of Lymphocyte Proliferation, Development of Cell-Mediated Cytotoxicity, and Cytokine Production in Vitro. Biochem. Pharmacol. 2004, 68, 51–61. [Google Scholar] [CrossRef]
- Kim, W.; Fan, Y.Y.; Smith, R.; Patil, B.; Jayaprakasha, G.K.; McMurray, D.N.; Chapkin, R.S. Dietary Curcumin and Limonin Suppress CD4+ T-Cell Proliferation and Interleukin-2 Production in Mice. J. Nutr. 2009, 139, 1042–1048. [Google Scholar] [CrossRef] [PubMed]
- Bessler, H.; Salman, H.; Bergman, M.; Alcalay, Y.; Djaldetti, M. In Vitro Effect of Lycopene on Cytokine Production by Human Peripheral Blood Mononuclear Cells. Immunol. Investig. 2008, 37, 183–190. [Google Scholar] [CrossRef] [PubMed]
- Gouranton, E.; Thabuis, C.; Riollet, C.; Malezet-Desmoulins, C.; El Yazidi, C.; Amiot, M.J.; Borel, P.; Landrier, J.F. Lycopene Inhibits Proinflammatory Cytokine and Chemokine Expression in Adipose Tissue. J. Nutr. Biochem. 2011, 22, 642–648. [Google Scholar] [CrossRef] [PubMed]
- Katsuura, S.; Imamura, T.; Bando, N.; Yamanishi, R. β-Carotene and β-cryptoxanthin but not lutein evoke redox and immune changes in RAW264 murine macrophages. Mol. Nutr. Food Res. 2009, 53, 1396–1405. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Hasegawa, I.; Yahagi, N.; Ishigaki, Y.; Takano, F.; Ohta, T. Carotenoids Modulate Cytokine Production in Peyer’s Patch Cells Ex Vivo. J. Agric. Food Chem. 2010, 58, 8566–8572. [Google Scholar] [CrossRef] [PubMed]
- Bolon, B. Cellular and Molecular Mechanisms of Autoimmune Disease. Toxicol. Pathol. 2012, 40, 216–229. [Google Scholar] [CrossRef] [PubMed]
- Rosenblum, M.D.; Remedios, K.A.; Abbas, A.K. Mechanisms of Human Autoimmunity. J. Clin. Investig. 2015, 125, 2228–2233. [Google Scholar] [CrossRef]
- Korani, S.; Korani, M.; Sathyapalan, T.; Sahebkar, A. Therapeutic Effects of Crocin in Autoimmune Diseases: A Review. Biofactors 2019, 45, 835–843. [Google Scholar] [CrossRef]
- Calabresi, P.A. Diagnosis and Management of Multiple Sclerosis. Am. Fam. Physician 2004, 70, 1935–1944. [Google Scholar]
- Cantarel, B.L.; Waubant, E.; Chehoud, C.; Kuczynski, J.; Desantis, T.Z.; Warrington, J.; Venkatesan, A.; Fraser, C.M.; Mowry, E.M. Gut Microbiota in Multiple Sclerosis: Possible Influence of Immunomodulators. J. Investig. Med. 2015, 63, 729–734. [Google Scholar] [CrossRef]
- Miyake, S.; Kim, S.; Suda, W.; Oshima, K.; Nakamura, M.; Matsuoka, T.; Chihara, N.; Tomita, A.; Sato, W.; Kim, S.W.; et al. Dysbiosis in the Gut Microbiota of Patients with Multiple Sclerosis, with a Striking Depletion of Species Belonging to Clostridia XIVa and IV Clusters. PLoS ONE 2015, 10, e0137429. [Google Scholar] [CrossRef]
- Mojaverrostami, S.; Bojnordi, M.N.; Ghasemi-Kasman, M.; Ebrahimzadeh, M.A.; Hamidabadi, H.G. A Review of Herbal Therapy in Multiple Sclerosis. Adv. Pharm. Bull. 2018, 8, 575–590. [Google Scholar] [CrossRef] [PubMed]
- Ghazavi, A.; Mosaycbi, G.; Salehi, H.; Abtahi, H. Effect of Ethanol Extract of Saffron (Crocus Sativus L.) on the Inhibition of Experimental Autoimmune Encephalomyelitis in C57bl/6 Mice. Pak. J. Biol. Sci. 2009, 12, 690–695. [Google Scholar] [CrossRef]
- Martell, S.G.; Kim, J.; Cannavale, C.N.; Mehta, T.D.; Erdman, J.W.; Adamson, B.; Motl, R.W.; Khan, N.A. Randomized, Placebo-Controlled, Single-Blind Study of Lutein Supplementation on Carotenoid Status and Cognition in Persons with Multiple Sclerosis. J. Nutr. 2023, 153, 2298–2311. [Google Scholar] [CrossRef]
- Chrabąszcz, K.; Kołodziej, M.; Roman, M.; Pięta, E.; Piergies, N.; Rudnicka-Czerwiec, J.; Bartosik-Psujek, H.; Paluszkiewicz, C.; Cholewa, M.; Kwiatek, W.M. Carotenoids Contribution in Rapid Diagnosis of Multiple Sclerosis by Raman Spectroscopy. Biochim. Biophys. Acta (BBA) Gen. Subj. 2023, 1867, 130395. [Google Scholar] [CrossRef] [PubMed]
- Manson, J.J.; Rahman, A. Systemic Lupus Erythematosus. Orphanet J. Rare Dis. 2006, 1, 6. [Google Scholar] [CrossRef]
- Tsokos, G.C. Systemic Lupus Erythematosus. N. Engl. J. Med. 2011, 365, 2110–2121. [Google Scholar] [CrossRef]
- Fujii, J.; Kurahashi, T.; Konno, T.; Homma, T.; Iuchi, Y. Oxidative Stress as a Potential Causal Factor for Autoimmune Hemolytic Anemia and Systemic Lupus Erythematosus. World J. Nephrol. 2015, 4, 213. [Google Scholar] [CrossRef] [PubMed]
- Han, G.M.; Han, X.F. Lycopene Reduces Mortality in People with Systemic Lupus Erythematosus: A Pilot Study Based on the Third National Health and Nutrition Examination Survey. J. Dermatolog Treat. 2016, 27, 430–435. [Google Scholar] [CrossRef] [PubMed]
- Pocovi-Gerardino, G.; Correa-Rodríguez, M.; Callejas-Rubio, J.L.; Ríos-Fernández, R.; Martín-Amada, M.; Cruz-Caparros, M.G.; Rueda-Medina, B.; Ortego-Centeno, N. Beneficial Effect of Mediterranean Diet on Disease Activity and Cardiovascular Risk in Systemic Lupus Erythematosus Patients: A Cross-Sectional Study. Rheumatology 2021, 60, 160–169. [Google Scholar] [CrossRef]
- Nakken, B.; Papp, G.; Bosnes, V.; Zeher, M.; Nagy, G.; Szodoray, P. Biomarkers for Rheumatoid Arthritis: From Molecular Processes to Diagnostic Applications-Current Concepts and Future Perspectives. Immunol. Lett. 2017, 189, 13–18. [Google Scholar] [CrossRef]
- Rathore, B.; Mahdi, F.; Mahdi, A.A.; Das, S.K. Crocus Sativus and Nyctanthes Arbortristis Extract Modulates Anti-Inflammatory Cytokine in Experimental Arthritis. Int. J. Pharm. Sci. Res. 2016, 35, 768–774. [Google Scholar]
- De Pablo, P.; Dietrich, T.; Karlson, E.W. Antioxidants and Other Novel Cardiovascular Risk Factors in Subjects with Rheumatoid Arthritis in a Large Population Sample. Arthritis Rheum. 2007, 57, 953–962. [Google Scholar] [CrossRef]
- Paredes, S.; Girona, J.; Hurt-Camejo, E.; Vallvé, J.C.; Olivé, S.; Heras, M.; Benito, P.; Masana, L. Antioxidant Vitamins and Lipid Peroxidation in Patients with Rheumatoid Arthritis: Association with Inflammatory Markers. J. Rheumatol. 2002, 29, A394. [Google Scholar] [CrossRef]
- Liu, W.; Sun, Y.; Cheng, Z.; Guo, Y.; Liu, P.; Wen, Y. Crocin Exerts Anti-Inflammatory and Anti-Arthritic Effects on Type II Collagen-Induced Arthritis in Rats. Pharm. Biol. 2018, 56, 209–216. [Google Scholar] [CrossRef]
- Durães, F.; Pinto, M.; Sousa, E. Old Drugs as New Treatments for Neurodegenerative Diseases. Pharmaceuticals 2018, 11, 44. [Google Scholar] [CrossRef]
- Hemshekhar, M.; Sebastin Santhosh, M.; Sunitha, K.; Thushara, R.M.; Kemparaju, K.; Rangappa, K.S.; Girish, K.S. A Dietary Colorant Crocin Mitigates Arthritis and Associated Secondary Complications by Modulating Cartilage Deteriorating Enzymes, Inflammatory Mediators and Antioxidant Status. Biochimie 2012, 94, 2723–2733. [Google Scholar] [CrossRef]
- Moia, V.M.; Leal Portilho, F.; Almeida Pádua, T.; Barbosa Corrêa, L.; Ricci-Junior, E.; Cruz Rosas, E.; Magalhaes Rebelo Alencar, L.; Savio Mendes Sinfronio, F.; Sampson, A.; Hussain Iram, S.; et al. Lycopene Used as Anti-Inflammatory Nanodrug for the Treatment of Rheumathoid Arthritis: Animal Assay, Pharmacokinetics, ABC Transporter and Tissue Deposition. Colloids Surf. B Biointerfaces 2020, 188, 110814. [Google Scholar] [CrossRef]
- Costenbader, K.H.; Kang, J.H.; Karlson, E.W. Antioxidant Intake and Risks of Rheumatoid Arthritis and Systemic Lupus Erythematosus in Women. Am. J. Epidemiol. 2010, 172, 205–216. [Google Scholar] [CrossRef]
- Eliassen, A.H.; Hendrickson, S.J.; Brinton, L.A.; Buring, J.E.; Campos, H.; Dai, Q.; Dorgan, J.F.; Franke, A.A.; Gao, Y.T.; Goodman, M.T.; et al. Circulating Carotenoids and Risk of Breast Cancer: Pooled Analysis of Eight Prospective Studies. J. Natl. Cancer Inst. 2012, 104, 1905–1916. [Google Scholar] [CrossRef] [PubMed]
- Gloria, N.F.; Soares, N.; Brand, C.; Oliveira, F.L.; Borojevic, R.; Teodoro, A.J. Lycopene and Beta-Carotene Induce Cell-Cycle Arrest and Apoptosis in Human Breast Cancer Cell Lines. Anticancer. Res. 2014, 34, 1377–1386. [Google Scholar] [PubMed]
- Amin, A.; Hamza, A.A.; Bajbouj, K.; Ashraf, S.S.; Daoud, S. Saffron: A Potential Candidate for a Novel Anticancer Drug against Hepatocellular Carcinoma. Hepatology 2011, 54, 857–867. [Google Scholar] [CrossRef]
- Ilic, D.; Forbes, K.M.; Hassed, C. Lycopene for the Prevention of Prostate Cancer. Cochrane Database Syst. Rev. 2011, 2011, CD008007. [Google Scholar] [CrossRef] [PubMed]
- Eggersdorfer, M.; Wyss, A. Carotenoids in Human Nutrition and Health. Arch. Biochem. Biophys. 2018, 652, 18–26. [Google Scholar] [CrossRef]
- Gammone, M.A.; Pluchinotta, F.R.; Bergante, S.; Tettamanti, G.; D’Orazio, N. Prevention of Cardiovascular Diseases with Carotenoids. Front. Biosci. 2017, 9, 165–171. [Google Scholar] [CrossRef]
- Pashkow, F.J.; Watumull, D.G.; Campbell, C.L. Astaxanthin: A Novel Potential Treatment for Oxidative Stress and Inflammation in Cardiovascular Disease. Am. J. Cardiol. 2008, 101, S58–S68. [Google Scholar] [CrossRef]
- Pereira, C.P.M.; Souza, A.C.R.; Vasconcelos, A.R.; Prado, P.S.; Name, J.J. Antioxidant and Anti-Inflammatory Mechanisms of Action of Astaxanthin in Cardiovascular Diseases (Review). Int. J. Mol. Med. 2021, 47, 37–48. [Google Scholar] [CrossRef]
- Goulinet, S.; Chapman, M.J. Plasma LDL and HDL Subspecies Are Heterogenous in Particle Content of Tocopherols and Oxygenated and Hydrocarbon Carotenoids. Relevance to Oxidative Resistance and Atherogenesis. Arterioscler. Thromb. Vasc. Biol. 1997, 17, 786–796. [Google Scholar] [CrossRef]
- Song, B.; Liu, K.; Gao, Y.; Zhao, L.; Fang, H.; Li, Y.; Pei, L.; Xu, Y. Lycopene and Risk of Cardiovascular Diseases: A Meta-Analysis of Observational Studies. Mol. Nutr. Food Res. 2017, 61, 1601009. [Google Scholar] [CrossRef] [PubMed]
- Csekes, E.; Račková, L. Skin Aging, Cellular Senescence and Natural Polyphenols. Int. J. Mol. Sci. 2021, 22, 12641. [Google Scholar] [CrossRef] [PubMed]
- Balasubramanian, S.; Eckert, R.L. Keratinocyte Proliferation, Differentiation, and Apoptosis—Differential Mechanisms of Regulation by Curcumin, Egcg and Apigenin. Toxicol. Appl. Pharmacol. 2007, 224, 214. [Google Scholar] [CrossRef] [PubMed]
- Ribaya-Mercado, J.D.; Garmyn, M.; Gilchrest, B.A.; Russell, R.M. Skin Lycopene is Destroyed Preferentially over Beta-Carotene during Ultraviolet Irradiation in Humans. J. Nutr. 1995, 125, 1854–1859. [Google Scholar] [CrossRef]
- Stahl, W.; Heinrich, U.; Jungmann, H.; Sies, H.; Tronnier, H. Carotenoids and Carotenoids plus Vitamin E Protect against Ultraviolet Light-Induced Erythema in Humans. Am. J. Clin. Nutr. 2000, 71, 795–798. [Google Scholar] [CrossRef]
- Heinrich, U.; Gärtner, C.; Wiebusch, M.; Eichler, O.; Sies, H.; Tronnier, H.; Stahl, W. Supplementation with Beta-Carotene or a Similar Amount of Mixed Carotenoids Protects Humans from UV-Induced Erythema. J. Nutr. 2003, 133, 98–101. [Google Scholar] [CrossRef] [PubMed]
- Meléndez-Martínez, A.J. An Overview of Carotenoids, Apocarotenoids, and Vitamin A in Agro-Food, Nutrition, Health, and Disease. Mol. Nutr. Food Res. 2019, 63, 1801045. [Google Scholar]
- Astley, S.B.; Hughes, D.A.; Wright, A.J.A.; Elliott, R.M.; Southon, S. DNA Damage and Susceptibility to Oxidative Damage in Lymphocytes: Effects of Carotenoids in Vitro and in Vivo. Br. J. Nutr. 2004, 91, 53–61. [Google Scholar] [CrossRef]
- Suganuma, K.; Nakajima, H.; Ohtsuki, M.; Imokawa, G. Astaxanthin Attenuates the UVA-Induced up-Regulation of Matrix-Metalloproteinase-1 and Skin Fibroblast Elastase in Human Dermal Fibroblasts. J. Dermatol. Sci. 2010, 58, 136–142. [Google Scholar] [CrossRef]
- Meinke, M.C.; Friedrich, A.; Tscherch, K.; Haag, S.F.; Darvin, M.E.; Vollert, H.; Groth, N.; Lademann, J.; Rohn, S. Influence of Dietary Carotenoids on Radical Scavenging Capacity of the Skin and Skin Lipids. Eur. J. Pharm. Biopharm. 2013, 84, 365–373. [Google Scholar] [CrossRef]
- Michalak, M. Plant-Derived Antioxidants: Significance in Skin Health and the Ageing Process. Int. J. Mol. Sci. 2022, 23, 585. [Google Scholar] [CrossRef]
- Wong, W.L.; Su, X.; Li, X.; Cheung, C.M.G.; Klein, R.; Cheng, C.Y.; Wong, T.Y. Global Prevalence of Age-Related Macular Degeneration and Disease Burden Projection for 2020 and 2040: A Systematic Review and Meta-Analysis. Lancet Glob. Health 2014, 2, e106–e116. [Google Scholar] [CrossRef] [PubMed]
- Chew, E.Y.; SanGiovanni, J.P.; Ferris, F.L.; Wong, W.T.; Agron, E.; Clemons, T.E.; Sperduto, R.; Danis, R.; Chandra, S.R.; Blodi, B.A.; et al. Lutein/Zeaxanthin for the Treatment of Age-Related Cataract: AREDS2 Randomized Trial Report No. 4. JAMA Ophthalmol. 2013, 131, 843–850. [Google Scholar] [CrossRef]
- Chew, E.Y.; Clemons, T.E.; SanGiovanni, J.P.; Danis, R.P.; Ferris, F.L.; Elman, M.J.; Antoszyk, A.N.; Ruby, A.J.; Orth, D.; Bressler, S.B.; et al. Secondary Analyses of the Effects of Lutein/Zeaxanthin on Age-Related Macular Degeneration Progression: AREDS2 Report No. 3. JAMA Ophthalmol. 2014, 132, 142–149. [Google Scholar] [CrossRef]
- Yeum, K.-J.; Taylor, A.; Tang, G.; Russell, R.M. Measurement of Carotenoids, Retinoids, and Tocopherols in Human Lenses. Investig. Ophthalmol. Vis. Sci. 1995, 36, 2756–2761. [Google Scholar] [PubMed]
- Rzajew, J.; Radzik, T.; Rebas, E. Calcium-Involved Action of Phytochemicals: Carotenoids and Monoterpenes in the Brain. Int. J. Mol. Sci. 2020, 21, 1428. [Google Scholar] [CrossRef]
- Merhan, O. The Biochemistry and Antioxidant Properties of Carotenoids. In Carotenoids; IntechOpen: London, UK, 2017. [Google Scholar] [CrossRef]
- Cho, K.S.; Shin, M.; Kim, S.; Lee, S.B. Recent Advances in Studies on the Therapeutic Potential of Dietary Carotenoids in Neurodegenerative Diseases. Oxid Med. Cell Longev. 2018, 2018, 4120458. [Google Scholar] [CrossRef]
- Min, K.B.; Min, J.Y. Association between Leukocyte Telomere Length and Serum Carotenoid in US Adults. Eur. J. Nutr. 2017, 56, 1045–1052. [Google Scholar] [CrossRef]
- Baeza-Morales, A.; Medina-García, M.; Martínez-Peinado, P.; Pascual-García, S.; Pujalte-Satorre, C.; López-Jaén, A.B.; Martínez-Espinosa, R.M.; Sempere-Ortells, J.M. The Antitumour Mechanisms of Carotenoids: A Comprehensive Review. Antioxidants 2024, 13, 1060. [Google Scholar] [CrossRef]
- Mussagy, C.U.; Caicedo-Paz, A.V.; Farias, F.O.; de Souza Mesquita, L.M.; Giuffrida, D.; Dufossé, L. Microbial bacterioruberin: The new C50 carotenoid player in food industries. Food Microbiol. 2024, 124, 104623. [Google Scholar] [CrossRef] [PubMed]
- Baeza-Morales, A.; Pascual-García, S.; Martínez-Peinado, P.; Navarro-Sempere, A.; Segovia, Y.; Medina-García, M.; Pujalte-Satorre, C.; García, M.; Martínez-Espinosa, R.M.; Sempere-Ortells, J.M. Bacterioruberin extract from Haloferax mediterranei induces apoptosis and cell cycle arrest in myeloid leukaemia cell lines. Sci. Rep. 2025, 15, 23485. [Google Scholar] [CrossRef] [PubMed]
- Giani, M.; Montoyo-Pujol, Y.G.; Peiró, G.; Martínez-Espinosa, R.M. Haloarchaeal carotenoids exert an in vitro antiproliferative effect on human breast cancer cell lines. Sci. Rep. 2023, 13, 7148. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Medina-García, M.; Baeza-Morales, A.; Martínez-Peinado, P.; Pascual-García, S.; Pujalte-Satorre, C.; Martínez-Espinosa, R.M.; Sempere-Ortells, J.M. Carotenoids and Their Interaction with the Immune System. Antioxidants 2025, 14, 1111. https://doi.org/10.3390/antiox14091111
Medina-García M, Baeza-Morales A, Martínez-Peinado P, Pascual-García S, Pujalte-Satorre C, Martínez-Espinosa RM, Sempere-Ortells JM. Carotenoids and Their Interaction with the Immune System. Antioxidants. 2025; 14(9):1111. https://doi.org/10.3390/antiox14091111
Chicago/Turabian StyleMedina-García, Miguel, Andrés Baeza-Morales, Pascual Martínez-Peinado, Sandra Pascual-García, Carolina Pujalte-Satorre, Rosa María Martínez-Espinosa, and José Miguel Sempere-Ortells. 2025. "Carotenoids and Their Interaction with the Immune System" Antioxidants 14, no. 9: 1111. https://doi.org/10.3390/antiox14091111
APA StyleMedina-García, M., Baeza-Morales, A., Martínez-Peinado, P., Pascual-García, S., Pujalte-Satorre, C., Martínez-Espinosa, R. M., & Sempere-Ortells, J. M. (2025). Carotenoids and Their Interaction with the Immune System. Antioxidants, 14(9), 1111. https://doi.org/10.3390/antiox14091111