The Role of Methionine Sulfoxide Reductases in Oxidative Stress Tolerance and Virulence of Staphylococcus aureus and Other Bacteria
Abstract
:1. Methionine Sulfoxide Reductases
2. MSRA and MSRB Enzymes in Staphylococcus aureus and Other Bacteria
3. Methionine and MSR Enzymes as Part of an Antioxidant System
4. Environmental Impact on MSR Expression
5. Cellular Control of MSR Expression
6. Defense from Oxidants
7. Methionine Sulfoxide Reductases and Virulence
8. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Achilli, C.; Ciana, A.; Minetti, G. The discovery of methionine sulfoxide reductase enzymes: An historical account and future perspectives. Biofactors 2015, 41, 135–152. [Google Scholar] [CrossRef] [PubMed]
- Vogt, W. Oxidation of methionyl residues in proteins: Tools, targets, and reversal. Free Radic. Biol. Med. 1995, 18, 93–105. [Google Scholar] [CrossRef]
- Abrams, W.R.; Weinbaum, G.; Weissbach, L.; Weissbach, H.; Brot, B. Enzymatic reduction of oxidized alpha-1-proteinase inhibitor restores biological activity. Proc. Natl. Acad. Sci. USA 1981, 78, 7483–7486. [Google Scholar] [CrossRef] [PubMed]
- Brot, N.; Weissbach, L.; Werth, J.; Weissbach, H. Enzymatic reduction of protein-bound methionine sulfoxide. Proc. Natl. Acad. Sci. USA 1981, 78, 2155–2158. [Google Scholar] [CrossRef] [PubMed]
- Brot, N.; Weissbach, H. Peptide methionine sulfoxide reductase: Biochemistry and physiological role. Biopolymers 2000, 55, 288–296. [Google Scholar] [CrossRef]
- Moskovitz, J.; Berlett, B.S.; Poston, M.J.; Stadtman, E.R. The yeast peptide-methionine sulfoxide reductase functions as an antioxidant in vivo. Proc. Natl. Acad. Sci. USA 1997, 94, 9585–9589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delaye, L.; Becerra, A.; Orgel, L.; Lazcano, A. Molecular evolution of peptide methionine sulfoxide reductases (MSRA and MSRB): On the early development of a mechanism that protects against oxidative damage. J. Mol. Evol. 2007, 64, 15–32. [Google Scholar] [CrossRef] [PubMed]
- Grimaud, R.; Ezraty, B.; Mitchell, J.K.; Lafitte, D.; Briand, C.; Derrick, P.J.; Barras, F. Repair of oxidized proteins. Identification of a new methionine sulfoxide reductase. J. Biol. Chem. 2001, 276, 48915–48920. [Google Scholar] [PubMed]
- Minetti, G.; Balduini, C.; Brovelli, A. Reduction of DABS-L-methionine-dl-sulfoxide by protein methionine sulfoxide reductase from polymorphonuclear leukocytes: Stereospecificity towards the l-sulfoxide. Ital. J. Biochem. 1994, 43, 273–283. [Google Scholar] [PubMed]
- Moskovitz, J.; Singh, V.K.; Requena, J.; Wilkinson, B.J.; Jayaswal, R.K.; Stadtman, E.R. Purification and characterization of methionine sulfoxide reductases from mouse and Staphylococcus aureus and their substrate stereospecificity. Biochem. Biophys. Res. Commun. 2002, 290, 62–65. [Google Scholar] [CrossRef] [PubMed]
- Stadtman, E.R.; Moskovitz, J.; Berlett, B.S.; Levine, R.L. Cyclic oxidation and reduction of protein methionine residues is an important antioxidant mechanism. Mol. Cell Biochem. 2002, 234, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.M.; Kim, G.; Levine, R.L. Methionine in proteins: It’s Not Just for Protein Initiation Anymore. Neurochem. Res. 2018, 1, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Singh, V.K.; Vaish, M.; Johansson, T.R.; Baum, K.R.; Ring, R.P.; Singh, S.; Shukla, K.; Moskovitz, J. Significance of four methionine sulfoxide reductases in Staphylococcus aureus. PLoS ONE 2015, 10, e0117594. [Google Scholar] [CrossRef] [PubMed]
- Ezraty, B.; Aussel, L.; Barras, F. Methionine sulfoxide reductases in prokaryotes. Biochim. Biophys. Acta 2005, 1703, 221–229. [Google Scholar] [CrossRef] [PubMed]
- Sasindran, S.J.; Saikolappan, S.; Dhandayuthapani, S. Methionine sulfoxide reductases and virulence of bacterial pathogens. Future Microbiol. 2007, 2, 619–630. [Google Scholar] [CrossRef] [PubMed]
- Wizemann, T.M.; Moskovitz, J.; Pearce, B.J.; Cundell, D.; Arvidson, C.G.; So, M.; Weissbach, H.; Brot, N.; Masure, H.R. Peptide methionine sulfoxide reductase contributes to the maintenance of adhesins in three major pathogens. Proc. Natl. Acad. Sci. USA 1996, 93, 7985–7990. [Google Scholar] [CrossRef] [PubMed]
- Levine, R.L.; Berlett, B.S.; Moskovitz, M.J.; Mosoni, L.; Stadtman, E.R. Methionine residues may protect proteins from critical oxidative damage. Mech. Ageing Dev. 1999, 107, 323–332. [Google Scholar] [CrossRef]
- Melkani, G.C.; Kestetter, J.; Sielaff, R.; Zardeneta, G.; Mendoza, J.A. Protection of GroEL by its methionine residues against oxidation by hydrogen peroxide. Biochem. Biophys. Res. Commun. 2006, 347, 534–539. [Google Scholar] [CrossRef] [PubMed]
- Luo, S.; Levine, R.L. Methionine in proteins defends against oxidative stress. FASEB J. 2009, 23, 464–472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alamuri, P.; Maier, R.J. Methionine sulfoxide reductase in Helicobacter pylori: Interaction with methionine-rich proteins and stress-induced expression. J. Bacteriol. 2006, 188, 5839–5850. [Google Scholar] [CrossRef] [PubMed]
- Singh, V.K.; Jayaswal, R.K.; Wilkinson, B.J. Cell wall-active antibiotic induced proteins of Staphylococcus aureus identified using a proteomic approach. FEMS Microbiol. Lett. 2001, 199, 79–84. [Google Scholar] [CrossRef]
- Singh, V.K.; Moskovitz, J.; Wilkinson, B.J.; Jayaswal, R.K. Molecular characterization of a chromosomal locus in Staphylococcus aureus that contributes to oxidative defence and is highly induced by the cell-wall-active antibiotic oxacillin. Microbiology 2001, 147, 3037–3045. [Google Scholar] [CrossRef] [PubMed]
- Utaida, S.; Dunman, P.M.; Macapagal, D.; Murphy, E.; Projan, S.J.; Singh, V.K.; Jayaswal, R.K.; Wilkinson, B.J. Genome-wide transcriptional profiling of the response of Staphylococcus aureus to cell-wall-active antibiotics reveals a cell-wall-stress stimulon. Microbiology 2003, 149, 2719–2732. [Google Scholar] [CrossRef] [PubMed]
- Singh, K.; Singh, V.K. Expression of four methionine sulfoxide reductases in Staphylococcus aureus. Int. J. Microbiol. 2012, 2012, 719594. [Google Scholar] [CrossRef] [PubMed]
- Baum, K.R.; Ahmad, Z.; Singh, V.K. Regulation of expression of oxacillin-inducible methionine sulfoxide reductases in Staphylococcus aureus. Int. J. Microbiol. 2015, 2015, 617925. [Google Scholar] [CrossRef] [PubMed]
- Pechous, R.; Ledala, N.; Wilkinson, B.J.; Jayaswal, R.K. Regulation of the expression of cell wall stress stimulon member gene msrA1 in methicillin-susceptible or -resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 2004, 48, 3057–3063. [Google Scholar] [CrossRef] [PubMed]
- McClary, J.S.; Sassoubre, L.M.; Boehm, A.B. Staphylococcus aureus strain newman photoinactivation and cellular response to sunlight exposure. Appl. Environ. Microbiol. 2017, 83, e01052. [Google Scholar] [CrossRef] [PubMed]
- Moskovitz, J.; Rahman, M.A.; Rahman, J.; Yancey, S.O.; Kushner, S.R.; Brot, N.; Weissbach, H. Escherichia coli peptide methionine sulfoxide reductase gene: Regulation of expression and role in protecting against oxidative damage. J. Bacteriol. 1995, 177, 502–507. [Google Scholar] [CrossRef] [PubMed]
- Madeira, J.-P.; Alpha-Bazin, B.M.; Armengaud, J.; Duport, C. Methionine residues in exoproteins and their recycling by methionine sulfoxide reductase ab serve as an antioxidant strategy in Bacillus cereus. Front. Microbiol. 2017, 8, 1342. [Google Scholar] [CrossRef] [PubMed]
- Bezerra, D.P.; Pessoa, C.; de Moraes, M.O.; Saker-Neto, N.; Silveira, E.R.; Costa-Lotufo, L.V. Overview of the therapeutic potential of piplartine (piperlongumine). Eur. J. Pharm. Sci. 2013, 48, 453–463. [Google Scholar] [CrossRef] [PubMed]
- Vieira, G.A.L.; da Silva, M.T.A.; Regasini, L.O.; Cotinguiba, F.; Laure, H.J.; Rosa, J.C.; Furlan, M.; Cicarelli, R.M.B. Trypanosoma cruzi: Analysis of two different strains after piplartine treatment. Braz. J. Infect. Dis. 2018, 22, 208–218. [Google Scholar] [CrossRef] [PubMed]
- Lei, Y.; Zhang, Y.; Guenther, B.D.; Kreth, J.; Herzberg, M.C. Mechanism of adhesion maintenance by methionine sulphoxide reductase in Streptococcus gordonii. Mol. Microbiol. 2011, 80, 726–738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tamburro, A.; Robuffo, L.; Heipieper, H.J.; Allocati, N.; Rotilio, D.; Di, C.I.; Favaloro, B. Expression of glutathione S-transferase and peptide methionine sulphoxide reductase in Ochrobactrum anthropi is correlated to the production of reactive oxygen species caused by aromatic substrates. FEMS Microbiol. Lett. 2004, 241, 151–156. [Google Scholar] [CrossRef] [PubMed]
- Vattanaviboon, P.; Seeanukun, C.; Whangsuk, W.; Utamapongchai, S.; Mongkolsuk, S. Important role for methionine sulfoxide reductase in the oxidative stress response of Xanthomonas campestris pv. phaseoli. J. Bacteriol. 2005, 187, 5831–5836. [Google Scholar] [CrossRef] [PubMed]
- Romsang, A.; Atichartpongkul, S.; Trinachartvanit, W.; Vattanaviboon, P.; Mongkolsuk, S. Gene expression and physiological role of Pseudomonas aeruginosa methionine sulfoxide reductases during oxidative stress. J. Bacteriol. 2013, 195, 3299–3308. [Google Scholar] [CrossRef] [PubMed]
- Alamuri, P.; Maier, R.J. Methionine sulphoxide reductase is an important antioxidant enzyme in the gastric pathogen Helicobacter pylori. Mol. Microbiol. 2004, 53, 1397–1406. [Google Scholar] [CrossRef] [PubMed]
- Vriesema, A.J.; Dankert, J.; Zaat, S.A. A shift from oral to blood pH is a stimulus for adaptive gene expression of Streptococcus gordonii CH1 and induces protection against oxidative stress and enhanced bacterial growth by expression of msrA. Infect. Immun. 2000, 68, 1061–1068. [Google Scholar] [CrossRef] [PubMed]
- You, C.; Sekowska, A.; Francetic, O.; Martin-Verstraete, L.; Wang, Y.; Danchin, A. Spx mediates oxidative stress regulation of the methionine sulfoxide reductases operon in Bacillus subtilis. BMC Microbiol. 2008, 8, 128. [Google Scholar] [CrossRef] [PubMed]
- Larsson, J.T.; Rogstam, A.; von Wachenfeldt, C. YjbH is a novel negative effector of the disulphide stress regulator, Spx, in Bacillus subtilis. Mol. Microbiol. 2007, 66, 669–684. [Google Scholar] [CrossRef] [PubMed]
- Kommineni, S.; Garg, S.K.; Chan, C.M.; Zuber, P. YjbH-enhanced proteolysis of Spx by ClpXP in Bacillus subtilis is inhibited by the small protein YirB (YuzO). J. Bacteriol. 2011, 193, 2133–2140. [Google Scholar] [CrossRef] [PubMed]
- Renzoni, A.; Andrey, D.O.; Jousselin, A.; Barras, C.; Monod, A.; Vaudaux, P.; Lew, D.; Kelley, W.L. Whole genome sequencing and complete genetic analysis reveals novel pathways to glycopeptide resistance in Staphylococcus aureus. PLoS ONE 2011, 6, e21577. [Google Scholar] [CrossRef] [PubMed]
- Bos, J.; Duverger, Y.; Thouvenot, B.; Chiaruttini, C.; Branlant, C.; Springer, M.; Charpentier, B.; Barras, F. The sRNA RyhB regulates the synthesis of the Escherichia coli methionine sulfoxide reductase MSRB but not MSRA. PLoS ONE 2013, 8, e63647. [Google Scholar] [CrossRef] [PubMed]
- Laplace, J.M.; Hartke, A.; Giard, J.C.; Auffray, Y. Cloning, characterization and expression of an Enterococcus faecalis gene responsive to heavy metals. Appl. Microbiol. Biotechnol. 2000, 53, 685–689. [Google Scholar] [CrossRef] [PubMed]
- Hopman, C.T.; Speijer, D.; van der Ende, A.; Pannekoek, Y. Identification of a novel anti-sigmaE factor in Neisseria meningitidis. BMC Microbiol. 2010, 10, 164. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Rai, A.K.; Mishra, M.N.; Shukla, M.; Singh, P.K.; Tripathi, A.K. RpoH2 sigma factor controls the photooxidative stress response in a non-photosynthetic rhizobacterium, Azospirillum brasilense Sp7. Microbiology 2012, 158, 2891–2902. [Google Scholar] [CrossRef] [PubMed]
- Haase, E.M.; Feng, X.; Pan, J.; Miecznikowski, J.C.; Scannapieco, F.A. Dynamics of the Streptococcus gordonii transcriptome in response to medium, salivary alpha-amylase, and starch. Appl. Environ. Microbiol. 2015, 81, 5363–5374. [Google Scholar] [CrossRef] [PubMed]
- Rosen, H.; Klebanoff, S.J.; Wang, Y.; Brot, N.; Heinecke, J.W.; Fu, X. Methionine oxidation contributes to bacterial killing by the myeloperoxidase system of neutrophils. Proc. Natl. Acad. Sci. USA 2009, 106, 18686–18691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- St John, G.; Brot, N.; Ruan, J.; Erdjument-Bromage, H.; Tempst, P.; Weissbach, H.; Nathan, C. Peptide methionine sulfoxide reductase from Escherichia coli and Mycobacterium tuberculosis protects bacteria against oxidative damage from reactive nitrogen intermediates. Proc. Natl. Acad. Sci. USA 2001, 98, 9901–9906. [Google Scholar] [CrossRef] [PubMed]
- Atack, J.M.; Kelly, D.J. Contribution of the stereospecific methionine sulphoxide reductases MSRA and MSRB to oxidative and nitrosative stress resistance in the food-borne pathogen Campylobacter jejuni. Microbiology 2008, 154, 2219–2230. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.L.; Gold, B.; Darby, C.; Brot, N.; Jiang, X.; De Carvalho, L.P.S.; Wellner, D.; John, G.S.; Jacobs, W.R., Jr.; Nathan, C. Mycobacterium tuberculosis expresses methionine sulphoxide reductases A and B that protect from killing by nitrite and hypochlorite. Mol. Microbiol. 2009, 71, 583–593. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Hartke, A.; Sorda, M.L.; Posteraro, B.; Laplace, J.-M.; Auffray, Y.; Sanguinetti, M. Role of methionine sulfoxide reductases A and B of Enterococcus faecalis in oxidative stress and virulence. Infect Immun. 2010, 78, 3889–3897. [Google Scholar] [CrossRef] [PubMed]
- Hayes, C.S.; Illades-Aguiar, B.; Casillas-Martinez, L.; Setlow, P. In vitro and in vivo oxidation of methionine residues in small, acid-soluble spore proteins from Bacillus species. J. Bacteriol. 1998, 180, 2694–2700. [Google Scholar] [PubMed]
- Trivedi, R.N.; Agarwal, P.; Kumawat, M.; Pesingi, P.K.; Gupta, V.K.; Goswami, T.K.; Mahawar, M. Methionine sulfoxide reductase A (MSRA) contributes to Salmonella Typhimurium survival against oxidative attack of neutrophils. Immunobiology 2015, 220, 1322–1327. [Google Scholar] [CrossRef] [PubMed]
- Saleh, M.; Bartual, S.G.; Abdullah, M.R.; Jensch, I.; Asmat, T.M.; Petruschka, L.; Pribyl, T.; Gellert, M.; Lillig, C.H.; Antelmann, H.; et al. Molecular architecture of Streptococcus pneumoniae surface thioredoxin-fold lipoproteins crucial for extracellular oxidative stress resistance and maintenance of virulence. EMBO Mol. Med. 2013, 5, 1852–1870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dhandayuthapani, S.; Jagannath, C.; Nino, C.; Saikolappan, S.; Sasindran, S.J. Methionine sulfoxide reductase B (MSRB) of Mycobacterium smegmatis plays a limited role in resisting oxidative stress. Tuberculosis 2009, 89, S26–S32. [Google Scholar] [CrossRef]
- Soriani, F.M.; Kress, M.R.; de Gouvêa, P.F.; Malavazi, I.; Savoldi, M.; Gallmetzer, A.; Strauss, J.; Goldman, M.H.S.; Goldman, G.H. Functional characterization of the Aspergillus nidulans methionine sulfoxide reductases (MSRA and MSRB). Fungal Genet. Biol. 2009, 46, 410–417. [Google Scholar] [CrossRef] [PubMed]
- Wei, W.; Cao, Z.; Zhu, Y.-L.; Wang, X.; Ding, G.; Xu, H.; Jia, P.; Qu, D.; Danchin, A.; Li, Y. Conserved genes in a path from commensalism to pathogenicity: Comparative phylogenetic profiles of Staphylococcus epidermidis RP62A and ATCC12228. BMC Genomics 2006, 7, 112. [Google Scholar] [CrossRef] [PubMed]
- Mahawar, M.; Tran, V.; Sharp, J.S.; Maier, R.J. Synergistic roles of Helicobacter pylori methionine sulfoxide reductase and GroEL in repairing oxidant-damaged catalase. J. Biol. Chem. 2011, 286, 19159–19169. [Google Scholar] [CrossRef] [PubMed]
- Pang, Y.Y.; Schwartz, J.; Bloomberg, S.; Boyd, J.M.; ·Horswill, A.R.; Nauseef, W.M. Methionine sulfoxide reductases protect against oxidative stress in Staphylococcus aureus encountering exogenous oxidants and human neutrophils. J. Innate Immun. 2014, 6, 353–364. [Google Scholar] [CrossRef] [PubMed]
- Hassouni, M.E.; Chambost, J.P.; Expert, D.; Gijsegem, F.V.; Barras, F. The minimal gene set member MSRA, encoding peptide methionine sulfoxide reductase, is a virulence determinant of the plant pathogen Erwinia chrysanthemi. Proc. Natl. Acad. Sci. USA 1999, 96, 887–892. [Google Scholar] [CrossRef] [PubMed]
- Vanhove, A.S.; Hang, S.; Vijayakumar, V.; Wong, A.C.; Asara, J.M.; Watnick, P.I. Vibrio cholerae ensures function of host proteins required for virulence through consumption of luminal methionine sulfoxide. PLoS Pathog. 2017, 13, e1006428. [Google Scholar] [CrossRef] [PubMed]
- Denkel, L.A.; Horst, S.A.; Rouf, S.F.; Kitowski, V.; Böhm, O.M.; Rhen, M.; Jäger, T.; Bange, F.-C. Methionine sulfoxide reductases are essential for virulence of Salmonella typhimurium. PLoS ONE 2011, 6, e26974. [Google Scholar] [CrossRef] [PubMed]
- Sarkhel, R.; Rajan, P.; Gupta, A.K.; Kumawat, M.; Agarwal, P.; Shome, A.; Puii, L.; Mahawar, M. Methionine sulfoxide reductase A of Salmonella Typhimurium interacts with several proteins and abets in its colonization in the chicken. Biochim. Biophys. Acta 2017, 1861, 3238–3245. [Google Scholar] [CrossRef] [PubMed]
- Douglas, T.; Daniel, D.S.; Parida, B.K.; Jagannath, C.; Dhandayuthapani, S. Methionine sulfoxide reductase A (MSRA) deficiency affects the survival of Mycobacterium smegmatis within macrophages. J. Bacteriol. 2004, 186, 3590–3598. [Google Scholar] [CrossRef] [PubMed]
- Dhandayuthapani, S.; Blaylock, M.W.; Bebear, C.M.; Rasmussen, W.G.; Baseman, J.B. Peptide methionine sulfoxide reductase (MSRA) is a virulence determinant in Mycoplasma genitalium. J. Bacteriol. 2001, 183, 5645–5650. [Google Scholar] [CrossRef] [PubMed]
- Das, K.; la Garza, G.D.; Maffi, S.; Saikolappan, S.; Dhandayuthapani, S. Methionine sulfoxide reductase A (MSRA) deficient Mycoplasma genitalium shows decreased interactions with host cells. PLoS ONE 2012, 7, e36247. [Google Scholar] [CrossRef] [PubMed]
- Giomarelli, B.; Visai, L.; Hijazi, K.; Rindi, S.; Ponzio, M.; Iannelli, F.; Speziale, P.; Pozzi, G. Binding of Streptococcus gordonii to extracellular matrix proteins. FEMS Microbiol. Lett. 2006, 265, 172–177. [Google Scholar] [CrossRef] [PubMed]
- Saha, S.S.; Hashino, M.; Suzuki, J.; Uda, A.; Watanabe, K.; Shimizu, T.; Watarai, M. Contribution of methionine sulfoxide reductase B (MSRB) to Francisella tularensis infection in mice. FEMS Microbiol. Lett. 2017, 364, fnw260. [Google Scholar] [CrossRef] [PubMed]
- Walter, J.; Chagnaud, P.; Tannock, G.W.; Loach, D.M.; Bello, F.D.; Jenkinson, H.F.; Hammes, W.P.; Hertel, C. A high-molecular-mass surface protein (Lsp) and methionine sulfoxide reductase B (MSRB) contribute to the ecological performance of Lactobacillus reuteri in the murine gut. Appl. Environ. Microbiol. 2005, 71, 979–986. [Google Scholar] [CrossRef] [PubMed]
- Sansom, F.M.; Tang, L.; Ralton, J.E.; Saunders, E.C.; Naderer, T.; McConville, M.J. Leishmania major methionine sulfoxide reductase A is required for resistance to oxidative stress and efficient replication in macrophages. PLoS ONE 2013, 8, e56064. [Google Scholar] [CrossRef] [PubMed]
- Skaar, E.P.; Tobiason, D.M.; Quick, J.; Judd, R.C.; Weissbach, H.; Etienne, F.; Brot, N.; Seifert, H.S. The outer membrane localization of the Neisseria gonorrhoeae MSRA/B is involved in survival against reactive oxygen species. Proc. Natl. Acad. Sci. USA 2002, 99, 10108–10113. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Soler-Garcia, A.A.; Jerse, A.E. A strain-specific catalase mutation and mutation of the metal-binding transporter gene mntC attenuate Neisseria gonorrhoeae in vivo but not by increasing susceptibility to oxidative killing by phagocytes. Infect. Immun. 2009, 77, 1091–1102. [Google Scholar] [CrossRef] [PubMed]
- Mintz, K.P.; Moskovitz, J.; Wu, H.; Fives-Taylor, P.M. Peptide methionine sulfoxide reductase (MSRA) is not a major virulence determinant for the oral pathogen Actinobacillus actinomycetemcomitans. Microbiology 2002, 148, 3695–3703. [Google Scholar] [CrossRef] [PubMed]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, V.K.; Singh, K.; Baum, K. The Role of Methionine Sulfoxide Reductases in Oxidative Stress Tolerance and Virulence of Staphylococcus aureus and Other Bacteria. Antioxidants 2018, 7, 128. https://doi.org/10.3390/antiox7100128
Singh VK, Singh K, Baum K. The Role of Methionine Sulfoxide Reductases in Oxidative Stress Tolerance and Virulence of Staphylococcus aureus and Other Bacteria. Antioxidants. 2018; 7(10):128. https://doi.org/10.3390/antiox7100128
Chicago/Turabian StyleSingh, Vineet K., Kuldeep Singh, and Kyle Baum. 2018. "The Role of Methionine Sulfoxide Reductases in Oxidative Stress Tolerance and Virulence of Staphylococcus aureus and Other Bacteria" Antioxidants 7, no. 10: 128. https://doi.org/10.3390/antiox7100128
APA StyleSingh, V. K., Singh, K., & Baum, K. (2018). The Role of Methionine Sulfoxide Reductases in Oxidative Stress Tolerance and Virulence of Staphylococcus aureus and Other Bacteria. Antioxidants, 7(10), 128. https://doi.org/10.3390/antiox7100128