The Effect of Thiamine Concentration on the Antioxidative Activity Indices in Tea Extracts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Forester, S.C.; Lambert, J.D. Antioxidant effects of green tea. Mol. Nutr. Food Res. 2013, 55, 844–854. [Google Scholar] [CrossRef] [PubMed]
- Gramza, A.; Khokhar, S.; Yoko, S.; Gliszczynska-Swiglo, A.; Hes, M.; Korczak, J. Antioxidant activity of tea extracts in lipids and correlation with polyphenol content. Eur. J. Lipid Sci. Technol. 2006, 108, 351–362. [Google Scholar] [CrossRef]
- Kmiecik, D.; Gramza-Michałowska, A.; Korczak, J. Anti-polymerization activity of tea and fruits extracts during rapeseed oil heating. Food Chem. 2018, 239, 858–864. [Google Scholar] [CrossRef] [PubMed]
- Gliszczynska-Swiglo, A. Antioxidant activity of water soluble vitamins in the TEAC (trolox equivalent antioxidant capacity) and the FRAP (ferric reducing antioxidant power) assays. Food Chem. 2006, 96, 131–136. [Google Scholar] [CrossRef]
- Yang, H.; Xue, X.; Li, H.; Apandi, S.N.; Tay-chan, S.C.; Ong, S.P.; Tian, E.F. The relative antioxidant activity and steric structure of green tea catechins–A kinetic approach. Food Chem. 2018, 257, 399–405. [Google Scholar] [CrossRef]
- Sharma, P.; Montes de Oca, M.K.; Alkeswani, A.R.; McClees, S.F.; Das, T.; Elmets, C.A.; Afaq, F. Tea polyphenols for the prevention of UVB-induced skin cancer. Photoimmunol. Photomed. 2018, 34, 50–59. [Google Scholar] [CrossRef]
- Naveed, M.; BiBi, J.; Kamboh, A.A.; Suheryani, I.; Kakar, I.; Fazlani, S.A.; FangFang, X.; Kalhoro, S.A.; Yunjuan, L.; Kakar, M.U.; et al. Pharmacological values and therapeutic properties of black tea (Camellia sinensis): A comprehensive overview. Biomed. Pharmacother. 2018, 100, 521–531. [Google Scholar] [CrossRef]
- Del Rio, D.; Rodriguez-Mateos, A.; Spencer, J.P.E.; Tognolini, M.; Borges, G.; Crozier, A. Dietary (Poly)phenolics in Human Health: Structures, Bioavailability, and Evidence of Protective Effects Against Chronic Diseases. Antioxid. Redox Signal. 2013, 18, 1818–1892. [Google Scholar] [CrossRef]
- Hadi, A.; Pourmasoumi, M.; Kafeshani, M.; Karimian, J.; Maracy, M.R.; Entezari, M.H. The Effect of Green Tea and Sour Tea (Hibiscus sabdariffa L.) Supplementation on Oxidative Stress and Muscle Damage in Athletes. J. Diet. Suppl. 2017, 14, 346–357. [Google Scholar]
- Tylicki, A.; Siemieniuk, M. Thiamine and its derivatives in the regulation of cell metabolism. Postępy Hig. Med. Dośw. 2011, 65, 447–469. [Google Scholar] [CrossRef]
- Gibson, G.E.; Hirsch, J.A.; Fonzetti, P.; Jordan, B.D.; Cirio, R.T.; Elder, J. Vitamin B1 (thiamine) and dementia. Ann. N. Y. Acad. Sci. 2016, 1367, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Kotiuk, E.; Sawicka, B. Evaluation of some physicochemical and organoleptic characteristics of confectionery products enriched with vitamins and UFA n-3. Sci. Nat. Technol. 2010, 4, 52. [Google Scholar]
- Nga, N.T.T.; Quang, D.D. Unraveling the antioxidant potential of thiamine: Thermochemical and kinetics studies in aqueous phase using DFT. Vietnam J. Chem. 2019, 57, 485–490. [Google Scholar]
- Szymandera-Buszka, K.; Waszkowiak, K. Effect of selected fat products on stability of thiamine hydrochloride. Food Sci. Technol. Qual. 2014, 21, 150–158. [Google Scholar] [CrossRef]
- Taşdelen, E.; Ceylan, N. Effects of Dietary Inclusion of Oil Sources with or without Vitamin E on Body Composition and Meat Oxidation Level in Broilers. Bras. Cienc. Avic. 2017, 19, 103–116. [Google Scholar] [CrossRef]
- Portari, G.V.; Marchini, J.S.; Vannucchi, H.; Jordao, A.A. Antioxidant Effect of Thiamine on Acutely Alcoholized Rats and Lack of Efficacy Using Thiamine or Glucose to Reduce Blood Alcohol Content. Basic Clin. Pharmacol. Toxicol. 2008, 103, 482–486. [Google Scholar] [CrossRef]
- Grzesik, M.; Bartosz, G.; Stefaniuk, I.; Pichla, M.; Namieśnik, J.; Sadowska-Bartosz, I. Dietary antioxidants as a source of hydrogen peroxide. Food Chem. 2018, 278, 692–699. [Google Scholar] [CrossRef]
- Yang, C.S.; Ho, C.T.; Zhang, J.; Wan, X.; Zhang, K.; Lim, J. Antioxidants: Differing Meanings in Food Science and Health Science. J. Agric. Food Chem. 2018, 66, 3063–3068. [Google Scholar] [CrossRef]
- Spahis, S.; Borys, J.; Levy, E. Metaboloc syndrome as a multifaceted risk factor for oxidative stress. Interpret. J. Bible Theol. 2017, 26, 445–461. [Google Scholar]
- Jha, J.C.; Banal, C.; Chow, B.S.M.; Cooper, M.E.; Jandeleit-Dahm, K. Diabetes and Kidney Disease: Role of Oxidative Stress. Antioxid. Redox Signal. 2016, 25, 657–684. [Google Scholar] [CrossRef]
- Enko, J.; Gliszczyńska-Świgło, A. Influence of the interactions between tea (Camellia sinensis) extracts and ascorbic acid on their antioxidant activity: Analysis with interaction indexes and isobolograms. Food Addit. Contam. Part A 2015, 32, 1234–1242. [Google Scholar] [CrossRef] [PubMed]
- Szymandera-Buszka, K. Study on Stability of Thiamine in the Presence of Selected Fat Products and Antioxidants; Publisher of Poznań University of Life Sciences: Poznań, Poland, 2014; Volume 471. [Google Scholar]
- Gramza, A.; Korczak, J.; Hes, M.; Jedrusek-Golinska, A. Tea extracts influence on catalytical properties of Fe2plus in lipids. Pol. J. Environ. Stud. 2004, 13, 143–146. [Google Scholar]
- PN-EN ISO 3960. Vegetable and Animal Oils and Fats—Determination of Peroxide Value; NSIA: Warsaw, Poland, 2005. [Google Scholar]
- PN-EN-ISO 6885. Animal and Vegetable Fats and Oils—Determination of Anisidine Value; NSIA: Warsaw, Poland, 2008. [Google Scholar]
- Kondratowicz-Pietruszka, E. Analysis of oxidative changes occurring in olive oil during storage. Pol. J. Food Nutr. Sci. 2007, 57, 297–302. [Google Scholar]
- Tang, S.Z.; Kerry, J.P.; Sheehan, D.; Buckley, D.J. Antioxidative mechanisms of tea catechins in chicken meat systems. Food Chem. 2002, 76, 45–51. [Google Scholar] [CrossRef]
- Li, J.-W.; Ding, S.-D.; Ding, S.-L. Comparison of antioxidant capacities of extracts from five cultivars of Chinese jujube. Process Biochem. 2005, 40, 3607–3613. [Google Scholar]
- Re, R.; Pellegrini, N.; Protegente, A.; Pannala, A.; Yang, M.C.; Rice-Evans, C. Antioxidant activity an improved ABTS radical cation decolorization assay. Free Rad. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Chu, Y.H.; Chang, C.L.; Hsu, H.F. Flavonoid content of several vegetables and their antioxidant activity. J. Sci. Food Agric. 2000, 80, 561–566. [Google Scholar] [CrossRef]
- Nuutila, A.M.; Puupponem-Pimia, R.; Aarni, M.; Oksman-Caldentey, K.M. Comparision of antioxidant activities of onion and garlic extracts by inhibition of lipid peroxidation and radical scavenging activity. Food Chem. 2003, 81, 485–493. [Google Scholar] [CrossRef]
- Bystrom, L.M.; Guzman, M.L.; Rivella, S. Iron and Reactive Oxygen Species: Friends or Foes of Cancer Cells? Antioxid. Redox Signal. 2014, 20, 1917–1924. [Google Scholar] [CrossRef]
- Khan, N.; Mukhtar, H. Tea Polyphenols in Promotion of Human Health. Nutrients 2019, 11, 39. [Google Scholar] [CrossRef]
- Dziadek, K.; Kukiełka, E.; Kopeć, A. Antioxidant activity of sweet cherry (Prunus avium) fruits, petioles and leaves infusions and extracts. Chem. Environ. Biotechnol. 2018, 21, 7–10. [Google Scholar] [CrossRef]
- Colpo, A.C.; Rosa, H.; Eduarda, M.; Eliza, C.; Pazzini, F.; De Camargo, V.B.; Bassante, F.E.M.; Puntel, R.; Silva, D.; Mendez, A.; et al. Yerba mate (Ilex paraguariensis St. Hill.)-based beverages: How successive extraction influences the extract composition and its capacity to chelate iron and scavenge free radicals. Food Chem. 2016, 209, 185–195. [Google Scholar] [CrossRef] [PubMed]
- Ramsaha, S.; Aumjaud, B.E. Polyphenolic rich traditional plants and teas improve lipid stability in food test systems. J. Food Sci. Technol. 2015, 52, 773–782. [Google Scholar] [CrossRef] [PubMed]
- Tenore, G.; Daglia, M.; Ciampaglia, R.; Novellino, E. Exploring the nutraceutical potential of polyphenols from black, green and white tea infusions—An overview. Curr. Pharm. Biotechnol. 2015, 16, 265–271. [Google Scholar] [CrossRef] [PubMed]
- Yen, G.C.; Chen, H.Y. Antioxidant Activity of Various Tea Extracts in Relation to Their Antimutagenicity. J. Agric. Food Chem. 1995, 43, 27–32. [Google Scholar] [CrossRef]
- Gramza-Michałowska, A.; Kobus-Cisowska, J.; Kmiecik, D.; Korczak, J.; Helak, B.; Dziedzic, K.; Górecka, D. Antioxidative potential, nutritional value and sensory profiles of confectionery fortified with green and yellow tea leaves (Camellia sinensis). Food Chem. 2016, 211, 448–454. [Google Scholar] [CrossRef]
- Gadow, A.; Joubert, E.; Hansmann, C.F. Comparison of the antioxidant activity of rooibos tea (Aspalathus linearis) with green, oolong, and black tea. Food Chem. 1997, 60, 73–77. [Google Scholar] [CrossRef]
- Satoh, E.; Tohyama, N.; Nishimura, M. Comparison of the antioxidant activity of roasted tea with green, oolong, and black teas. Int. J. Food Sci. Nutr. 2005, 56, 551–559. [Google Scholar] [CrossRef]
- Horie, M.; Nara, K.; Sugino, S.; Umeno, A.; Yoshida, Y. Comparison of antioxidant activities among four kinds of Japanese traditional fermented tea. Food Sci. Nutr. 2017, 5, 639–645. [Google Scholar] [CrossRef] [Green Version]
- Hajiaghaalipour, F.; Sanusi, J.; Kanthimathi, M.S. Temperature and Time of Steeping Affect the Antioxidant Properties of White, Green, and Black Tea Infusions. J. Food Sci. 2016, 81, H246–H254. [Google Scholar] [CrossRef]
- Chu, C.; Deng, J.; Man, Y.; Qu, Y. Green Tea Extracts Epigallocatechin-3-gallate for Different Treatments. BioMed Res. Int. 2017, 2017, 5615647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szymusiak, H. Studies on the Effectiveness of Selected Antioxidants Found in Food Products; Publisher of the University of Economics: Poznań, Poland, 2002. [Google Scholar]
- Gliszczynska-Swiglo, A.; Szymusiak, H. Interaction of Food Flavonoids with Vitamins. Myricetin and Vitamin B1 as Model Compounds; Kyiv National University of Trade Economics: Kiev, Ukraine, 2006; Volume 2, pp. 774–778. [Google Scholar]
Correlation Coefficient of Oxidative Stability Values of Soybean Oil and Content of Thiamine | ||||
---|---|---|---|---|
Type of Tea Extracts | Concentration of Thiamine [mg/100 g] | Peroxide Value [meqO2/kg] | Anisidine Value | The Protection Factor (Wo) |
Extract of white tea | 0.08–0.8 mg | −0.929 | −0.833 | 0.961 |
0.8–20 mg | 0.949 | 0.948 | −0.908 | |
0–0.06 mg | −0.154 | −0.123 | 0.155 | |
Extract of green tea | 0.08–0.8 mg | −0.674 | −0.713 | 0.622 |
0.8–20 mg | 0.943 | 0.951 | −0.913 | |
0–0.06 mg | −0.111 | −0.077 | 0.111 | |
Extract of yellow tea | 0.08–0.8 mg | −0.846 | −0.750 | 0.710 |
0.8–20 mg | 0.906 | 0.796 | −0.902 | |
0–0.06 mg | 0.032 | −0.099 | −0.033 | |
Extract of red tea | 0.08–0.8 mg | −0.683 | −0.696 | 0.586 |
0.8–20 mg | 0.845 | 0.661 | −0.857 | |
0–0.06 mg | −0.099 | −0.099 | 0.100 | |
Extract of black tea | 0.08–0.8 mg | −0.491 | 0.139 | 0.151 |
0.8–20 mg | 0.646 | 0.613 | −0.611 | |
0–0.06 mg | −0.207 | 0.069 | 0.207 | |
Without additionals of extract | 0.08–0.8 mg | −0.624 | 0.817 | 0.729 |
0.8–20 mg | −0.260 | −0.355 | 0.363 | |
0–0.06 mg | 0.987 | 0.906 | −0.975 |
Correlation Coefficient of Oxidative Stability Values of Soybean Oil and Content of Thiamine | ||||
---|---|---|---|---|
Type of Tea Extracts | Concentration of Thiamine [mg/100 g] | Peroxide Value [meqO2/kg] | Anisidine Value | The Protection Factor (Wo) |
Extract of white tea | 0.08–0.8 mg | −0.900 | −0.779 | 0.910 |
0.8–20 mg | 0.977 | 0.964 | −0.954 | |
0–0.06 mg | 0.072 | −0.175 | −0.073 | |
Extract of green tea | 0.08–0.8 mg | −0.974 | −0.801 | 0.980 |
0.8–20 mg | 0.962 | 0.968 | −0.916 | |
0–0.06 mg | −0.077 | −0.077 | 0.069 | |
Extract of yellow tea | 0.08–0.8 mg | −0.913 | −0.767 | 0.921 |
0.8–20 mg | 0.928 | 0.964 | −0.885 | |
0–0.06 mg | −0.088 | −0.099 | 0.089 | |
Extract of red tea | 0.08–0.8 mg | −0.971 | −0.702 | 0.971 |
0.8–20 mg | 0.872 | 0.939 | −0.856 | |
0–0.06 mg | 0.013 | 0.070 | −0.013 | |
Extract of black tea | 0.08–0.8 mg | −0.633 | −0.272 | 0.639 |
0.8–20 mg | 0.764 | 0.832 | −0.741 | |
0–0.06 mg | −0.271 | 0.180 | 0.271 | |
Without additionals of extract | 0.08–0.8 mg | −0.403 | −0.107 | 0.384 |
0.8–20 mg | 0.948 | 0.938 | −0.911 | |
0–0.06 mg | −0.387 | −0.329 | 0.388 |
Type of Tea Extracts | Concentration of Thiamine [mg/100 g] | Correlation Coefficient of Oxidative Stability Values and Content of Thiamine | |||
---|---|---|---|---|---|
Chelating Activity | Reducing Power | ||||
Thiamine Hydrochloride | Thiamine Pyrophosphate | Thiamine Hydrochloride | Thiamine Pyrophosphate | ||
Extract of white tea | 0.08–0.8 mg | 0.729 | 0.815 | 0.731 | 0.864 |
0.2–20 mg | −0.909 | −0.925 | −0.882 | −0.876 | |
0–0.06 mg | −0.090 | 0.355 | −0.170 | 0.268 | |
Extract of green tea | 0.08–0.8 mg | 0.611 | 0.817 | 0.691 | 0.640 |
0.2–20 mg | −0.889 | −0.887 | −0.856 | −0.888 | |
0–0.06 mg | 0.307 | 0.298 | −0.255 | −0.294 | |
Extract of yellow tea | 0.08–0.8 mg | 0.603 | 0.742 | 0.699 | 0.470 |
0.2–20 mg | −0.868 | −0.882 | −0.788 | −0.901 | |
0–0.06 mg | −0.061 | −0.307 | −0.701 | −0.035 | |
Extract of red tea | 0.08–0.8 mg | 0.519 | 0.785 | 0.508 | 0.519 |
0.2–20 mg | −0.643 | −0.715 | −0.620 | −0.628 | |
0–0.06 mg | 0.310 | 0.387 | 0.050 | 0.123 | |
Extract of black tea | 0.08–0.8 mg | 0.142 | −0.084 | −0.147 | −0.069 |
0.2–20 mg | −0.490 | −0.416 | −0.471 | −0.530 | |
0–0.06 mg | −0.041 | 0.139 | −0.294 | 0.202 | |
Without additionals of extract | 0.08–0.8 mg | 0.523 | 0.518 | 0.602 | 0.669 |
0.2–20 mg | −0.878 | −0.872 | −0.973 | −0.961 | |
0–0.06 mg | 0.397 | 0.397 | 0.371 | 0.495 |
Type of Tea Extracts | Concentration of Thiamine [mg/100 g] | Correlation Coefficient of Oxidative Stability Values and Content of Thiamine | |||
---|---|---|---|---|---|
Chelating Activity | Reducing Power | ||||
Thiamine Hydrochloride | Thiamine Pyrophosphate | Thiamine Hydrochloride | Thiamine Pyrophosphate | ||
Extract of white tea | 0.08–0.8 mg | 0.741 | 0.785 | 0.764 | 0.805 |
0.2–20 mg | −0.888 | −0.930 | −0.913 | −0.916 | |
0–0.06 mg | −0.023 | −0.178 | 0.147 | −0.185 | |
Extract of green tea | 0.08–0.8 mg | 0.683 | 0.649 | 0.700 | 0.778 |
0.2–20 mg | −0.884 | −0.923 | −0.897 | −0.882 | |
0–0.06 mg | 0.114 | 0.038 | 0.139 | −0.202 | |
Extract of yellow tea | 0.08–0.8 mg | 0.542 | 0.563 | 0.586 | 0.604 |
0.2–20 mg | −0.869 | −0.898 | −0.836 | −0.878 | |
0–0.06 mg | −0.061 | −0.096 | −0.046 | −0.035 | |
Extract of red tea | 0.08–0.8 mg | 0.752 | 0.637 | 0.688 | 0.565 |
0.2–20 mg | −0.594 | −0.588 | −0.656 | −0.613 | |
0–0.06 mg | 0.108 | 0.001 | −0.023 | −0.006 | |
Extract of black tea | 0.08–0.8 mg | −0.220 | 0.764 | −0.114 | 0.203 |
0.2–20 mg | −0.586 | −0.434 | −0.446 | −0.732 | |
0–0.06 mg | 0.121 | 0.139 | 0.147 | 0.139 | |
Without additionals of extract | 0.08–0.8 mg | 0,589 | 0,589 | 0,578 | 0,869 |
0.2–20 mg | −0,985 | −0,984 | −0,985 | −0,989 | |
0–0.06 mg | 0,397 | 0,397 | 0,139 | 0,004 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piechocka, J.; Szymandera-Buszka, K.; Kobus-Cisowska, J.; Gramza-Michałowska, A.; Jędrusek-Golińska, A. The Effect of Thiamine Concentration on the Antioxidative Activity Indices in Tea Extracts. Antioxidants 2019, 8, 555. https://doi.org/10.3390/antiox8110555
Piechocka J, Szymandera-Buszka K, Kobus-Cisowska J, Gramza-Michałowska A, Jędrusek-Golińska A. The Effect of Thiamine Concentration on the Antioxidative Activity Indices in Tea Extracts. Antioxidants. 2019; 8(11):555. https://doi.org/10.3390/antiox8110555
Chicago/Turabian StylePiechocka, Justyna, Krystyna Szymandera-Buszka, Joanna Kobus-Cisowska, Anna Gramza-Michałowska, and Anna Jędrusek-Golińska. 2019. "The Effect of Thiamine Concentration on the Antioxidative Activity Indices in Tea Extracts" Antioxidants 8, no. 11: 555. https://doi.org/10.3390/antiox8110555