Application of Plackett–Burman Design in Screening of Natural Antioxidants Suitable for Anchovy Oil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Preparation of Fish Oil
2.3. Storage of Anchovy Oil Supplemented with Natural Antioxidants
2.4. Peroxide Value and Anisidine Value
2.5. Oxidation Kinetics of Anchovy Oil
2.6. Screening of Natural Antioxidants by PBD
2.7. Application of Synergist and Screened Natural Antioxidant
2.8. Statistical Analysis
3. Results and Discussion
3.1. Effect of Nine Antioxidants Used Alone on the Oxidation Stability of Anchovy Oil
3.2. Application of PBD in the Screening of Natural Antioxidants for the Combined Utilization
3.3. Application of Synergist and Screened Natural Antioxidants in Anchovy Oil
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Sandgruber, S.; Buettner, A. Comparative human-sensory evaluation and quantitative comparison of odour-active oxidation markers of encapsulated fish oil products used for supplementation during pregnancy and the breastfeeding period. Food Chem. 2012, 133, 458–466. [Google Scholar] [CrossRef] [PubMed]
- Serfert, Y.; Drusch, S.; Schwarz, K. Sensory odour profiling and lipid oxidation status of fish oil and microencapsulated fish oil. Food Chem. 2010, 123, 968–975. [Google Scholar] [CrossRef]
- Hammer, M.; Schieberle, P. Model studies on the key aroma compounds formed by an oxidative degradation of omega-3 fatty acids initiated by either copper(II) ions or lipoxygenase. J. Agric. Food Chem. 2013, 61, 10891–10900. [Google Scholar] [CrossRef] [PubMed]
- Brewer, M.S. Natural Antioxidants: Sources, Compounds, Mechanisms of Action, and Potential Applications. Compr. Rev. Food Sci. Food Saf. 2011, 10, 221–247. [Google Scholar] [CrossRef]
- Gorji, S.G.; Smyth, H.E.; Sharma, M.; Fitzgerald, M. Lipid oxidation in mayonnaise and the role of natural antioxidants: A review. Trends Food Sci. Technol. 2016, 56, 88–102. [Google Scholar] [CrossRef] [Green Version]
- Carvajal, A.K.; Mozuraityte, R.; Standal, I.B.; Storrø, I.; Aursand, M. Antioxidants in Fish Oil Production for Improved Quality. J. Am. Oil Chem. Soc. 2014, 91, 1611–1621. [Google Scholar] [CrossRef]
- Moen, V.; Stoknes, I.; Breivik, H. Antioxidant Efficacy of a New Synergistic, Multicomponent Formulation for Fish Oil Omega-3 Concentrates. J. Am. Oil Chem. Soc. 2017, 94, 947–957. [Google Scholar] [CrossRef]
- Barry, H.; Gutteridge, J.M.C.; Aruoma, O.I. The deoxyribose method a simple “test tube” assay for determination of rate constants for reactions of hydroxyl radicals. Anal. Biochem. 1987, 165, 215–219. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Zhang, F.; Thakur, K.; Ci, A.T.; Wang, H.; Zhang, J.G.; Wei, Z.J. Effect of natural polyphenol on the oxidative stability of pecan oil. Food Chem. Toxicol. 2018, 119, 489–495. [Google Scholar] [CrossRef]
- Asnaashari, M.; Farhoosh, R.; Sharif, A. Antioxidant activity of gallic acid and methyl gallate in triacylglycerols of Kilka fish oil and its oil-in-water emulsion. Food Chem. 2014, 159, 439–444. [Google Scholar] [CrossRef]
- Baştürk, A.; Ceylan, M.M.; Çavuş, M.; Boran, G.; Javidipour, I. Effects of some herbal extracts on oxidative stability of corn oil under accelerated oxidation conditions in comparison with some commonly used antioxidants. Lwt-Food Sci. Technol. 2018, 89, 358–364. [Google Scholar] [CrossRef]
- Smet, K.; Raes, K.; Huyghebaert, G.; Haak, L.; Arnouts, S.; De Smet, S. Lipid and protein oxidation of broiler meat as influenced by dietary natural antioxidant supplementation. Poult. Sci. 2008, 87, 1682–1688. [Google Scholar] [CrossRef] [PubMed]
- Belwal, T.; Bhatt, I.D.; Rawal, R.S.; Pande, V. Microwave-assisted extraction (MAE) conditions using polynomial design for improving antioxidant phytochemicals in Berberis asiatica Roxb. ex DC. leaves. Ind. Crop. Prod. 2017, 95, 393–403. [Google Scholar] [CrossRef]
- Ma, Y.; Shi, L.; Liu, Y.; Lu, Q. Effects of Neutralization, Decoloration, and Deodorization on Polycyclic Aromatic Hydrocarbons during Laboratory-Scale Oil Refining Process. J. Chem. 2017, 2017, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.Y.; Ding, L.; Shi, H.H.; Xu, J.; Xue, C.H.; Zhang, T.T.; Wang, Y.M. Eicosapentaenoic acid in the form of phospholipids exerts superior anti-atherosclerosis effects to its triglyceride form in ApoE(-/-) mice. Food Funct. 2019, 10, 4177–4188. [Google Scholar] [CrossRef]
- Wang, Z.; Xu, J.; Liu, Y.; Li, Z.; Xue, Y.; Wang, Y.; Xue, C. Arsenic Speciation of Edible Shrimp by High-Performance Liquid Chromatography-Inductively Coupled Plasma-Mass Spectrometry (HPLC-ICP-MS): Method Development and Health Assessment. Anal. Lett. 2019, 52, 2266–2282. [Google Scholar] [CrossRef]
- Yuehua, H.; Fereidoon, S. Antioxidant Activity of Green Tea and Its Catechins in a Fish Meat Model System. J. Agric. Food Chem. 1997, 45, 4262–4266. [Google Scholar] [CrossRef]
- AOCS. Official Methods and Recommended Practices of the American Oil Chemists’ Society, 4th ed.; Firestone, D., Ed.; AOCS Press: Champaign, IL, USA, 1993. [Google Scholar]
- Menegazzo, M.L.; Petenuci, M.E.; Fonseca, G.G. Production and characterization of crude and refined oils obtained from the co-products of Nile tilapia and hybrid sorubim processing. Food Chem. 2014, 157, 100–104. [Google Scholar] [CrossRef]
- Yeşilsu, A.F.; Özyurt, G. Oxidative stability of microencapsulated fish oil with rosemary, thyme and laurel extracts: A kinetic assessment. J. Food Eng. 2019, 240, 171–182. [Google Scholar] [CrossRef]
- Jie, Y.; Zhao, H.; Sun, X.; Lv, X.; Zhang, Z.; Zhang, B. Isolation of antioxidative peptide from the protein hydrolysate of Caragana ambigua seeds and its mechanism for retarding lipid auto-oxidation. J. Sci. Food Agric. 2019, 99, 3078–3085. [Google Scholar] [CrossRef]
- Sullivan Ritter, J.C.; Budge, S.M.; Jovica, F.; Reid, A.-J.M. Oxidation Rates of Triacylglycerol and Ethyl Ester Fish Oils. J. Am. Oil Chem. Soc. 2015, 92, 561–569. [Google Scholar] [CrossRef]
- Colakoglu, A.S. Oxidation kinetics of soybean oil in the presence of monoolein, stearic acid and iron. Food Chem. 2007, 101, 724–728. [Google Scholar] [CrossRef]
- Sha, R.; Wu, D.; Wang, W.; Wang, S.; Cai, C.; Mao, J. Application of Plackett–Burman Design in Screening the Significant Parameters in Extraction of Phytic Acid from Defatted Rice Bran by Acetic Acid. Waste Biomass Valoriz. 2017, 10, 1003–1011. [Google Scholar] [CrossRef]
- Zhao, X.; Shi, C.; Zhou, X.; Lin, T.; Gong, Y.; Yin, M.; Fan, L.; Wang, W.; Fang, J. Preparation of a nanoscale dihydromyricetin-phospholipid complex to improve the bioavailability: In vitro and in vivo evaluations. Eur. J. Pharm. Sci. 2019, 138, 104994. [Google Scholar] [CrossRef]
- Wang, D.; Ma, Y.; Wang, Q.; Huang, J.; Sun, R.; Xia, Q. Solid Self-Emulsifying Delivery System (S-SEDS) of Dihydromyricetin: A New Way for Preparing Functional Food. J. Food Sci. 2019, 84, 936–945. [Google Scholar] [CrossRef]
- Teng, J.; Liu, X.; Hu, X.; Zhao, Y.; Tao, N.P.; Wang, M. Dihydromyricetin as a Functional Additive to Enhance Antioxidant Capacity and Inhibit the Formation of Thermally Induced Food Toxicants in a Cookie Model. Molecules 2018, 23, 2184. [Google Scholar] [CrossRef] [Green Version]
- Xie, K.; He, X.; Chen, K.; Chen, J.; Sakao, K.; Hou, D.X. Antioxidant Properties of a Traditional Vine Tea, Ampelopsis grossedentata. Antioxidants 2019, 8, 295. [Google Scholar] [CrossRef] [Green Version]
- Zuo, A.R.; Dong, H.H.; Yu, Y.Y.; Shu, Q.L.; Zheng, L.X.; Yu, X.Y.; Cao, S.W. The antityrosinase and antioxidant activities of flavonoids dominated by the number and location of phenolic hydroxyl groups. Chin. Med. 2018, 13, 51. [Google Scholar] [CrossRef] [Green Version]
- Ye, L.; Wang, H.; Duncan, S.E.; Eigel, W.N.; O’Keefe, S.F. Antioxidant activities of Vine Tea (Ampelopsis grossedentata) extract and its major component dihydromyricetin in soybean oil and cooked ground beef. Food Chem. 2015, 172, 416–422. [Google Scholar] [CrossRef]
- Majdalawieh, A.F.; Mansour, Z.R. Sesamol, a major lignan in sesame seeds (Sesamum indicum): Anti-cancer properties and mechanisms of action. Eur. J. Pharmacol. 2019, 855, 75–89. [Google Scholar] [CrossRef]
- Fhaner, M.; Hwang, H.-S.; Winkler-Moser, J.K.; Bakota, E.L.; Liu, S.X. Protection of fish oil from oxidation with sesamol. Eur. J. Lipid Sci. Technol. 2016, 118, 885–897. [Google Scholar] [CrossRef]
- Lin, C.; Zhang, X.; Xiao, J.; Zhong, Q.; Kuang, Y.; Cao, Y.; Chen, Y. Effects on longevity extension and mechanism of action of carnosic acid in Caenorhabditis elegans. Food Funct. 2019, 10, 1398–1410. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Zhang, Y.; Liu, D.; Liu, D.; Zhang, C.; Qi, H.; Gu, H.; Yang, L.; Zhou, Z. Efficient Homogenization-Ultrasound-Assisted Extraction of Anthocyanins and Flavonols from Bog Bilberry (Vaccinium uliginosum L.) Marc with Carnosic Acid as an Antioxidant Additive. Molecules 2019, 24, 2537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, N.; Pruthi, V. Potential applications of ferulic acid from natural sources. Biotechnol. Rep. 2014, 4, 86–93. [Google Scholar] [CrossRef] [Green Version]
- Ghatak, S.B.; Panchal, S.J. Ferulic Aci-An Insight Into Its Current Research and Future Prospects. Trends Food Sci. Technol. 2010. [Google Scholar] [CrossRef]
- Wang, H.; Wang, S.; Zhu, H.; Wang, S.; Xing, J. Inclusion Complexes of Lycopene and beta-Cyclodextrin: Preparation, Characterization, Stability and Antioxidant Activity. Antioxidants 2019, 8, 314. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.; Shi, J.; Colina Ibarra, A.; Kakuda, Y.; Jun Xue, S. The scavenging capacity and synergistic effects of lycopene, vitamin E, vitamin C, and β-carotene mixtures on the DPPH free radical. Lwt-Food Sci. Technol. 2008, 41, 1344–1349. [Google Scholar] [CrossRef]
- Varas Condori, M.A.; Pascual Chagman, G.J.; Barriga-Sanchez, M.; Villegas Vilchez, L.F.; Ursetta, S.; Guevara Perez, A.; Hidalgo, A. Effect of tomato (Solanum lycopersicum L.) lycopene-rich extract on the kinetics of rancidity and shelf-life of linseed (Linum usitatissimum L.) oil. Food Chem. 2019, 302, 125327. [Google Scholar] [CrossRef]
- Granato, D.; Katayama, F.C.U.; Castro, I.A. Assessing the association between phenolic compounds and the antioxidant activity of Brazilian red wines using chemometrics. Lwt-Food Sci. Technol. 2010, 43, 1542–1549. [Google Scholar] [CrossRef]
- Zhao, B.; Lan, T.; Li, H.; He, Y.; Wu, D.; Chen, Z. Antioxidation activity of Moringa oleifera Lam. leaves extract on soybean oil during both storage and thermal treatment. J. Food Process. Preserv. 2019, 43. [Google Scholar] [CrossRef]
- Ahn, H.-J.; Kim, J.-H.; Jo, C.; Kim, M.-J.; Byun, M.-W. Comparison of irradiated phytic acid and other antioxidants for antioxidant activity. Food Chem. 2004, 88, 173–178. [Google Scholar] [CrossRef]
- Ernst, G.; Empson, K.L.; Eaton, J.W. Phytic acid. A natural antioxidant. J. Biol. Chem. 1987, 262, 11647–11650. [Google Scholar]
- Canan, C.; Delaroza, F.; Casagrande, R.; Baracat, M.M.; Shimokomaki, M.; Ida, E.I. Antioxidant capacity of phytic acid purified from rice bran. Acta Sci. Technol. 2012, 34, 457–463. [Google Scholar] [CrossRef] [Green Version]
- Delgado Dobladez, J.A.; Águeda Maté, V.I.; Uribe Santos, D.L.; Torrellas, S.Á.; Larriba, M. Citric Acid Purification by Simulated Mov. Bed Adsorption with Methanol as Desorbent. Sep. Sci. Technol. 2018, 54, 930–942. [Google Scholar] [CrossRef]
- Qiu, X.; Chen, S.; Liu, G.; Lin, H. Inhibition of lipid oxidation in frozen farmed ovate pompano (Trachinotus ovatus L.) fillets stored at −18 degrees C by chitosan coating incorporated with citric acid or licorice extract. J. Sci. Food Agric. 2016, 96, 3374–3379. [Google Scholar] [CrossRef] [PubMed]
Variables | Unit | Symbol | Coded Variables Levels | |
---|---|---|---|---|
−1 | 1 | |||
X1: DM | % | A | 0.01 | 0.02 |
X2: TP | % | B | 0.02 | 0.04 |
X3: CA | % | C | 0.02 | 0.04 |
X4: AP | % | D | 0.01 | 0.02 |
X5: RA | % | E | 0.02 | 0.04 |
X6: SO | % | F | 0.02 | 0.04 |
X7: FA | % | G | 0.01 | 0.02 |
X8, X9, X10, X11: Dummy factors | - | - | −1 | 1 |
NO | Synergist or Antioxidant (Additive Amount, w%) |
---|---|
F1 | Contrast (anchovy oil sample without synergist or antioxidant) |
F2 | Sesamol (0.04%) |
F3 | TBHQ (0.02%) |
F4 | Sesamol (0.02%) + Teapolyphenol (0.02%) + Rosemary acid (0.02%) |
F5 | Sesamol (0.04%) + Citric acid (0.2%) |
F6 | Sesamol (0.04%) + Phytic acid (0.2%) |
Antioxidants | Storage Time (Days) | ||||||
---|---|---|---|---|---|---|---|
1 **A | 2 AB | 3 B | 4 C | 5 D | 6 E | 7 F | |
Contrast *C | 107.47 ± 1.96 f | 151.75 ± 8.37 e | 213.12 ± 1.91 f | 270.95 ± 8.29 g | 360.62 ± 2.13 h | 526.28 ± 5.48 f | 690.59 ± 12.49 g |
DM A | 52.03 ± 2.03 a | 56.85 ± 1.60 a | 61.68 ± 3.86 a | 66.63 ± 2.17 a | 73.76 ± 2.09 a | 83.02 ± 1.49 a | 92.28 ± 5.29 a |
TP B | 82.80 ± 0.68 bcd | 113.39 ± 0.71 bc | 143.53 ± 1.67 bc | 170.95 ± 2.37 b | 212.21 ± 0.47 b | 305.06 ± 0.85 b | 419.66 ± 7.78 b |
FA B | 98.60 ± 4.70 e | 111.96 ± 4.18 bc | 165.33 ± 1.11 d | 208.20 ± 4.30 de | 260.61 ± 1.97 e | 346.93 ± 1.22 d | 450.23 ± 0.21 cd |
VC B | 80.59 ± 3.79 bcd | 115.36 ± 2.46 bc | 160.76 ± 2.01 d | 204.90 ± 2.09 de | 269.93 ± 1.51 f | 366.89 ± 15.96 e | 484.08 ± 2.95 ef |
SO B | 86.76 ± 2.37 d | 120.43 ± 4.68 c | 151.62 ± 6.19 c | 210.76 ± 0.45 e | 268.05 ± 0.95 ef | 342.13 ± 6.01 d | 418.08 ± 1.21 b |
LE B | 96.61 ± 1.59 e | 136.74 ± 6.66 d | 181.34 ± 0.94 e | 232.03 ± 1.02 f | 295.77 ± 4.32 g | 374.10 ± 1.88 e | 498.92 ± 1.46 f |
RA B | 82.38 ± 3.05 cd | 111.15 ± 2.16 bc | 162.64 ± 1.66 d | 206.18 ± 1.66 de | 262.83 ± 0.20 ef | 335.94 ± 3.23 d | 468.39 ± 4.47 de |
AP B | 76.86 ± 1.33 bc | 112.59 ± 3.78 bc | 151.01 ± 1.23 c | 199.04 ± 1.18 cd | 245.17 ± 3.04 d | 327.98 ± 1.07 cd | 437.60 ± 0.26 bc |
CA B | 73.16 ± 3.34 b | 101.54 ± 1.09 b | 135.73 ± 0.75 b | 190.62 ± 1.81 c | 233.56 ± 3.42 c | 312.40 ± 2.43 bc | 417.25 ± 16.85 b |
Antioxidants | Equations | R2 | k |
---|---|---|---|
Contrast | Ya = 0.3228X b + 0.7397 | 0.9972 | 0.3228 |
DM | Y = 0.1087X + 0.0465 | 0.9914 | 0.1087 |
TP | Y = 0.2727X + 0.5123 | 0.9906 | 0.2727 |
FA | Y = 0.2704X + 0.6419 | 0.9927 | 0.2704 |
VC | Y = 0.3137X + 0.4451 | 0.996 | 0.3137 |
SO | Y = 0.2758X + 0.5977 | 0.9938 | 0.2758 |
LE | Y = 0.2814X + 0.7005 | 0.9936 | 0.2814 |
RA | Y = 0.2974X + 0.5019 | 0.9928 | 0.2974 |
AP | Y = 0.2986X + 0.4548 | 0.9933 | 0.2986 |
CA | Y = 0.3072X + 0.3573 | 0.9948 | 0.3072 |
NO | Equations | R2 | k |
---|---|---|---|
F1 | Y = 0.3228X + 0.7397 | 0.9972 | 0.3228 |
F2 | Y = 0.2758X + 0.5977 | 0.9938 | 0.2758 |
F3 | Y = 0.2691X + 0.5782 | 0.9965 | 0.2691 |
F4 | Y = 0.2694X + 0.5569 | 0.998 | 0.2694 |
F5 | Y = 0.2678X + 0.5388 | 0.9979 | 0.2678 |
F6 | Y = 0.2589X + 0.0378 | 0.9994 | 0.2589 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wen, Y.-Q.; Xue, C.-H.; Xu, L.-L.; Wang, X.-H.; Bi, S.-J.; Xue, Q.-Q.; Zhang, T.; Xue, Y.; Li, Z.-J.; Chen, G.-D.; et al. Application of Plackett–Burman Design in Screening of Natural Antioxidants Suitable for Anchovy Oil. Antioxidants 2019, 8, 627. https://doi.org/10.3390/antiox8120627
Wen Y-Q, Xue C-H, Xu L-L, Wang X-H, Bi S-J, Xue Q-Q, Zhang T, Xue Y, Li Z-J, Chen G-D, et al. Application of Plackett–Burman Design in Screening of Natural Antioxidants Suitable for Anchovy Oil. Antioxidants. 2019; 8(12):627. https://doi.org/10.3390/antiox8120627
Chicago/Turabian StyleWen, Yun-Qi, Chang-Hu Xue, Li-Li Xu, Xiao-Han Wang, Shi-Jie Bi, Qian-Qian Xue, Tao Zhang, Yong Xue, Zhao-Jie Li, Gui-Dong Chen, and et al. 2019. "Application of Plackett–Burman Design in Screening of Natural Antioxidants Suitable for Anchovy Oil" Antioxidants 8, no. 12: 627. https://doi.org/10.3390/antiox8120627
APA StyleWen, Y.-Q., Xue, C.-H., Xu, L.-L., Wang, X.-H., Bi, S.-J., Xue, Q.-Q., Zhang, T., Xue, Y., Li, Z.-J., Chen, G.-D., & Jiang, X.-M. (2019). Application of Plackett–Burman Design in Screening of Natural Antioxidants Suitable for Anchovy Oil. Antioxidants, 8(12), 627. https://doi.org/10.3390/antiox8120627