Flavonoid Analysis and Antioxidant Activities of the Bryonia alba L. Aerial Parts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Extraction Procedure
2.3. Chemicals
2.4. Determination of Total Phenolic Content (TPC)
2.5. Determination of Total Flavonoid Content (TFC)
2.6. Identification and Quantification of Flavonoids
HPLC-DAD Analysis of Flavonoids
2.7. Antioxidant Activity Assays
2.7.1. DPPH Assay
2.7.2. Trolox Equivalents Antioxidant Capacity (TEAC) Assay
2.7.3. CUPRAC (Cupric Reducing Antioxidant Capacity) Assay
2.7.4. FRAP (Ferric Reducing Ability of Plasma) Assay
2.7.5. SNPAC (Silver Nanoparticles Antioxidant Capacity) Assay
2.7.6. EPR (Electron Paramagnetic Resonance) Assay
2.8. Cytotoxicity Assays
2.9. Anti-Plasmodial Assays
2.10. Zebrafish Toxicity Assays
2.11. Statistical Analysis
3. Results and Discussion
3.1. Identification and Quantification of Flavonoids by HPLC-DAD
3.2. Determination of Total Phenolic Content (TPC) and Total Flavonoid Content (TFC)
3.3. Antioxidant Activity Assays
3.4. Cytotoxicity Assays and Anti-Plasmodial Assays
3.5. Zebrafish Toxicity Assays
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Schaefer, H.; Renner, S.S. Phylogenetic relationships in the order Cucurbitales and a new classification of the gourd family (Cucurbitaceae). Taxon 2011, 60, 122–138. [Google Scholar] [CrossRef]
- Zhang, L.-B.; Simmons, M.P.; Kocyan, A.; Renner, S.S. Phylogeny of the Cucurbitales based on DNA sequences of nine loci from three genomes: Implications for morphological and sexual system evolution. Mol. Phylogenet. Evol. 2006, 39, 305–322. [Google Scholar] [CrossRef]
- Tutin, T.G.; Burges, N.A.; Chater, A.O.; Edmonson, J.R.; Heywood, V.H.; Moore, D.M.; Valentine, D.H.; Walters, S.M.; Webb, D.A. Flora Europaea (Rosaceae to Umbelliferae); Cambridge University Press: London, UK, 2010; Volume 2, pp. 297–299. [Google Scholar]
- Stevens, P.F. Angiosperm Phylogeny Group. Angiosperm Phylogeny Website. 2012. Available online: http://www.mobot.org/MOBOT/research/APweb/ (accessed on 5 April 2019).
- Kocyan, A.; Zhang, L.-B.; Schaefer, H.; Renner, S.S. A multi-locus chloroplast phylogeny for the Cucurbitaceae and its implications for character evolution and classification. Mol. Phylogenet. Evol. 2007, 44, 553–577. [Google Scholar] [CrossRef]
- Volz, S.M.; Renner, S.S. Hybridization, polyploidy, and evolutionary transitions between monoecy and dioecy in Bryonia (Cucurbitaceae). Am. J. Bot. 2008, 95, 1297–1306. [Google Scholar] [CrossRef] [Green Version]
- Rus, L.M.; Ielciu, I.; Păltinean, R.; Vlase, L.; Ştefănescu, C.; Crişan, G. Morphological and Histo-Anatomical Study of Bryonia alba L. (Cucurbitaceae ). Not. Bot. Horti Agrobot. 2015, 43, 47–52. [Google Scholar] [CrossRef]
- Ielciu, I.; Frédérich, M.; Tits, M.; Angenot, L.; Păltinean, R.; Cieckiewicz, E.; Crişan, G.; Vlase, L. Bryonia alba L. and Ecballium elaterium (L.) A. Rich.—Two related species of the Cucurbitaceae family with important pharmaceutical potential. Farmacia 2016, 64, 323–332. [Google Scholar]
- Săvulescu, T. Flora Republicii Populare Române; Editura Academiei Republicii Populare Române: Bucureşti, România, 1955; pp. 27–52. [Google Scholar]
- Ciocârlan, V. Flora ilustrată a României—Pteridophyta et Spermatophyta; Editura Ceres: Bucureşti, România, 2000; pp. 579–582. [Google Scholar]
- Sârbu, I.; Ştefan, N.; Oprea, A. Plante Vasculare din România; Editura Victor B Victor: Bucureşti, România, 2013; pp. 528–530. [Google Scholar]
- Volz, S.M.; Renner, S.S. Phylogeography of the ancient Eurasian medicinal plant genus Bryonia (Cucurbitaceae) inferred from nuclear and chloroplast sequences. Taxon 2009, 58, 550–560. [Google Scholar] [CrossRef]
- Ielciu, I.; Vlase, L.; Frédérich, M.; Hanganu, D.; Păltinean, R.; Cieckiewicz, E.; Olah, N.K.; Gheldiu, A.M.; Crişan, G. Polyphenolic profile and biological activities of the leaves and aerial parts of Echinocystis lobata (Michx.) Torr. et A. Gray (Cucurbitaceae). Farmacia 2017, 65, 179–183. [Google Scholar]
- Ielciu, I.; Hanganu, D.; Păltinean, R.; Vlase, L.; Frédérich, M.; Gheldiu, A.M.; Benedec, D.; Crişan, G. Antioxidant capacity and polyphenolic content of the Echinocystis lobata (Michx.) Torr. et A.Gray flowers. Pak. J. Pharm. Sci. 2018, 31 (Suppl. 2), 677–683. [Google Scholar]
- Ielciu, I.; Mouithys-Mickalad, A.; Franck, T.; Angenot, L.; Ledoux, A.; Păltinean, R.; Cieckiewicz, E.; Etienne, D.; Tits, M.; Crişan, G.; et al. Flavonoid composition, cellular antioxidant activity and (myelo)peroxidase inhibition of a Bryonia alba L. (Cucurbitaceae) leaves extract. J. Pharm. Pharmacol. 2019, 71, 230–239. [Google Scholar] [CrossRef]
- Ríos, J.-L.; Giner, R.; Marín, M.; Recio, M. A Pharmacological Update of Ellagic Acid. Planta Med. 2018, 84, 1068–1093. [Google Scholar] [CrossRef]
- Benedec, D.; Hanganu, D.; Oniga, I.; Filip, L.; Bischin, C.; Silaghi-Dumitrescu, R.; Tiperciuc, B.; Vlase, L.; McPhee, D.J. Achillea schurii Flowers: Chemical, Antioxidant, and Antimicrobial Investigations. Molecules 2016, 21, 1050. [Google Scholar] [CrossRef]
- Benedec, D.; Filip, L.; Vlase, L.; Bele, C.; Sevastre, B.; Raita, O.; Olah, N.-K.; Hanganu, D. In vitro study of antioxidant activity and phenolic content of Chrysanthemum balsamita varieties. J. Pharm. Sci. 2016, 29, 1359–1364. [Google Scholar]
- Thaipong, K.; Boonprakob, U.; Crosby, K.; Cisneros-Zevallos, L.; Hawkins Byrne, D. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J. Food Compos. Anal. 2006, 19, 669–675. [Google Scholar] [CrossRef]
- Olah, N.K.; Osser, G.; Câmpean, R.F.; Furtună, F.R.; Benedec, D.; Filip, L.; Raita, O.; Hanganu, D. The study of polyphenolic compounds profile of some Rosmarinus officinalis L. extracts. Pak. J. Pharm. Sci. 2016, 29, 2355–2361. [Google Scholar]
- Arnao, M.; Cano, A.; Acosta, M. The hidrophilic and lipophilic contribution to total antioxidant activity. Food Chem. 2001, 73, 239–244. [Google Scholar] [CrossRef]
- Hanganu, D.; Filip, L.; Olah, N.K.; Mocan, A.; Vlase, L.; Raita, O.; Oniga, I.; Benedec, D. Evaluation of polyphenolic profile and antioxidant activity for Cytisus nigricans and Cytisus albus. Farmacia 2016, 64, 863–867. [Google Scholar]
- Özyürek, M.; Güngör, N.; Baki, S.; Güçlü, K.; Apak, R. Development of a Silver Nanoparticle-Based Method for the Antioxidant Capacity Measurement of Polyphenols. Anal. Chem. 2012, 84, 8052–8059. [Google Scholar] [CrossRef]
- Benzie, I.F.; Strain, J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- Hanganu, D.; Olah, N.K.; Mocan, A.; Vlase, L.; Benedec, D.; Raita, O.; Toma, C.C. Comparative Polyphenolic Content and Antioxidant Activities of Two Romanian Lysimachia Species. Rev. Chim. 2016, 67, 227–231. [Google Scholar]
- LeDoux, A.; St-Gelais, A.; Cieckiewicz, E.; Jansen, O.; Bordignon, A.; Illien, B.; Di Giovanni, N.; Marvilliers, A.; Hoareau, F.; Pendeville, H.; et al. Antimalarial Activities of Alkyl Cyclohexenone Derivatives Isolated from the Leaves of Poupartia borbonica. J. Prod. 2017, 80, 1750–1757. [Google Scholar] [CrossRef] [Green Version]
- Jansen, O.; Tchinda, A.T.; Loua, J.; Esters, V.; Cieckiewicz, E.; LeDoux, A.; Toukam, P.D.; Angenot, L.; Tits, M.; Balde, A.M.; et al. Antiplasmodial activity of Mezoneuron benthamianum leaves and identification of its active constituents. J. Ethnopharmacol. 2017, 203, 20–26. [Google Scholar] [CrossRef]
- Jansen, O.; Tits, M.; Angenot, L.; Nicolas, J.-P.; De Mol, P.; Nikiema, J.-B.; Frédérich, M. Anti-plasmodial activity of Dicoma tomentosa (Asteraceae) and identification of urospermal A-15-O-acetate as the main active compound. Malar. J. 2012, 11, 289. [Google Scholar] [CrossRef]
- Krauze-Baranowska, M.; Cisowski, W. Flavone C-glycosides from Bryonia alba and B. dioica. Phytochemistry 1995, 39, 727–729. [Google Scholar] [CrossRef]
- Krauze-Baranowska, M.; Cisowski, W. C-glucosides of apigenin from Bryonia alba L. Pol. J Chem. 1992, 66, 951–957. [Google Scholar]
- Ielciu, I.I. Comparative Pharmacobotanical Study of Some Species Belonging to Cucurbitaceae Family. Ph.D. Thesis, “Iuliu Haţieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania, University of Liège, Liège, Belgium, 2017. [Google Scholar]
- Ablain, J.; Zon, L.I. Of fish and men: using zebrafish to fight human diseases. Trends Cell Boil. 2013, 23, 584–586. [Google Scholar] [CrossRef]
- Strähle, U.; Scholz, S.; Geisler, R.; Greiner, P.; Hollert, H.; Rastegar, S.; Schumacher, A.; Selderslaghs, I.; Weiss, C.; Witters, H.; et al. Zebrafish embryos as an alternative to animal experiments—A commentary on the definition of the onset of protected life stages in animal welfare regulations. Reprod. Toxicol. 2012, 33, 128–132. [Google Scholar] [CrossRef]
Compound | Peak Number | Retention Time |
---|---|---|
Lutonarin | 1 | 22.55 ± 0.27 min |
Saponarin | 2 | 24.78 ± 0.16 min |
Isoorientin | 3 | 25.98 ± 1.01 min |
Isovitexin | 4 | 28.87 min |
Sample | TPC (mg GAE/100 g dvp) | TFC (mg RE/100 g dvp) |
---|---|---|
Bryonia alba aerial parts | 3125 ± 0.31 | 2472 ± 0.94 |
Sample | Bryonia alba Aerial Parts |
---|---|
DPPH (IC50 * μg/mL) | 99.8 ± 0.92 |
CUPRAC (μM TE/100 mL) | 238 ± 2.24 |
FRAP (μM TE/100 mL) | 217 ± 2.45 |
TEAC (IC50 ** μg/mL) | 19.9 ± 0.89 |
SNPAC (μM TE/100 mL) | 427 ± 2.46 |
EPR (Integral intensity ***) | 401.96 ± 2.72 |
Assay | Bryonia alba Aerial Parts | Artemisinin/Camptothecin |
---|---|---|
Anti-plasmodial 3D7 (μg/mL) | >50 | 0.009 ± 0.006 |
Anti-plasmodial W2 (μg/mL) | >50 | 0.017 ± 0.003 |
Cytotoxic A549 (μg/mL) | >50 | 0.167 ± 0.04 |
Cytotoxic HeLa (μg/mL) | >50 | 0.207 ± 0.27 |
Cytotoxic WI38 (μg/mL) | >50 | 0.076 ± 0.19 |
Sample | Zebrafish Assay Results 24 hpf | Zebrafish Assay Results 48 hpf | Zebrafish Assay 72 hpf |
---|---|---|---|
Bryonia alba aerial parts 100 μg/mL | |||
Bryonia alba aerial parts 10 μg/mL | |||
Bryonia alba aerial parts 1μg/mL | |||
Bryonia alba aerial parts 0.1μg/mL | |||
Non-treated zebrafish |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ielciu, I.; Frédérich, M.; Hanganu, D.; Angenot, L.; Olah, N.-K.; Ledoux, A.; Crișan, G.; Păltinean, R. Flavonoid Analysis and Antioxidant Activities of the Bryonia alba L. Aerial Parts. Antioxidants 2019, 8, 108. https://doi.org/10.3390/antiox8040108
Ielciu I, Frédérich M, Hanganu D, Angenot L, Olah N-K, Ledoux A, Crișan G, Păltinean R. Flavonoid Analysis and Antioxidant Activities of the Bryonia alba L. Aerial Parts. Antioxidants. 2019; 8(4):108. https://doi.org/10.3390/antiox8040108
Chicago/Turabian StyleIelciu, Irina, Michel Frédérich, Daniela Hanganu, Luc Angenot, Neli-Kinga Olah, Allison Ledoux, Gianina Crișan, and Ramona Păltinean. 2019. "Flavonoid Analysis and Antioxidant Activities of the Bryonia alba L. Aerial Parts" Antioxidants 8, no. 4: 108. https://doi.org/10.3390/antiox8040108
APA StyleIelciu, I., Frédérich, M., Hanganu, D., Angenot, L., Olah, N.-K., Ledoux, A., Crișan, G., & Păltinean, R. (2019). Flavonoid Analysis and Antioxidant Activities of the Bryonia alba L. Aerial Parts. Antioxidants, 8(4), 108. https://doi.org/10.3390/antiox8040108