Health Benefits of Nut Consumption in Middle-Aged and Elderly Population
Abstract
:1. Introduction
2. Association between Nut Consumption and Cardiometabolic Disorders
2.1. Nut Consumption in Cardiometabolic Morbidity and Mortality
2.2. Nut Consumption and Blood Lipids
2.3. Nut Consumption and Biochemical and Anthropometric Parameters
2.4. Nut Consumption Effect on Endothelial Function and Inflammation Markers
3. Association between Nuts and Cancer
4. Association between Nuts and Cognitive Disorders
5. Other Possible Beneficial Association of Nuts
6. Phytochemicals and Mechanisms Responsible for the Beneficial Activity
7. The Association between Nut Intake and Gastrointestinal Microbiota
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AD | Alzheimer’s disease |
AGEs | advanced glycation end products |
AMD | age-related macular degeneration |
apoB | apolipoprotein B |
BDNF | brain-derived neurotrophic factor |
BMI | body mass index |
BP | blood pressure |
BW | body weight |
CAD | coronary artery disease |
CHD | coronary heart disease |
CI | confidence interval |
CNS | central nervous system |
CRP | C-reactive protein |
CVD | cardiovascular diseases |
EA | ellagic acid |
EGCG | (−)-epigallocatechin-3-gallate |
ER | estrogen receptor |
ETs | ellagitannins |
FMD | flow-mediated dilation |
GLUTs | glucose transporters |
GM | gut microbiota |
HbA1c | hemoglobin A1c |
HDL-C | high density lipoprotein-cholesterol |
HOMA-IR | Homeostatic Model Assessment—Insulin Resistance |
HR | hazard ratio |
IHD | ischemic heart disease |
IL-6 | interleukin 6 |
KBs | ketone bodies |
KDs | ketogenic diets |
LDL-C | low density lipoprotein-cholesterol |
MDD | major depressive disorder |
MD | Mediterranean diet |
MS | metabolic syndrome |
MUFAs | monounsaturated fatty acids |
NO | nitric oxide |
OR | odds ratio |
PD | Parkinson’s disease |
PTS | pterostilbene |
PUFAs | polyunsaturated fatty acids |
RCT | randomized controlled trial |
ROS | reactive oxygen species |
RR | relative risk |
T-C | total cholesterol |
T2DM | type 2 diabetes mellitus |
TG | triglycerides |
TNF-α | tumor necrosis factor-α |
VLDL-C | very-low-density lipoprotein cholesterol |
Wc | waist circumference |
References
- De Almeida, A.; Ribeiro, T.; de Medeiros, I. Aging: Molecular Pathways and Implications on the Cardiovascular System. Oxid. Med. Cell. Longev. 2017, 2017, 7941563. [Google Scholar] [CrossRef] [PubMed]
- Bolling, B.W.; Chen, C.O.; McKay, D.L.; Blumberg, J.B. Tree nut phytochemicals: Composition, antioxidant capacity, bioactivity, impact factors. A systematic review of almonds, Brazils, cashews, hazelnuts, macadamias, pecans, pine nuts, pistachios and walnuts. Nutr. Res. Rev. 2011, 24, 244–275. [Google Scholar] [CrossRef] [PubMed]
- Ros, E. Nuts and CVD. Br. J. Nutr. 2015, 113, S111–S120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blanco Mejia, S.; Kendall, C.; Viguiliouk, E.; Augustin, L.; Ha, V.; Cozma, A.; Mirrahimi, A.; Maroleanu, A.; Chiavaroli, L.; Leiter, L.; et al. Effect of tree nuts on metabolic syndrome criteria: A systematic review and meta-analysis of randomised controlled trials. BMJ Open 2014, 4, e004660. [Google Scholar] [CrossRef] [PubMed]
- Zhou, D.; Yu, H.; He, F.; Reilly, K.H.; Zhang, J.; Li, S.; Zhang, T.; Wang, B.; Ding, Y.; Xi, B. Nut consumption in relation to cardiovascular disease risk and type 2 diabetes: A systematic review and meta-analysis of prospective studies. Am. J. Clin. Nutr. 2014, 100, 270–277. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Wang, Z.; Zhu, J.; Murad, A.L.; Prokop, L.J.; Murad, M.H. Nut consumption and risk of cancer and type 2 diabetes: A systematic review and meta-analysis. Nutr. Rev. 2015, 73, 409–425. [Google Scholar] [CrossRef] [PubMed]
- Grosso, G.; Yang, J.; Marventano, S.; Micek, A.; Galvano, F.; Kales, S. Nut consumption on all-cause, cardiovascular, and cancer mortality risk: A systematic review and meta-analysis of epidemiologic studies. Am. J. Clin. Nutr. 2015, 101, 783–793. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Keogh, J.; Clifton, P.M. Nuts and Cardio-Metabolic Disease: A Review of Meta-Analyses. Nutrients 2018, 10, 1935. [Google Scholar] [CrossRef] [PubMed]
- Bach-Faig, A.; Berry, E.M.; Lairon, D.; Reguant, J.; Trichopoulou, A.; Dernini, S.; Medina, F.X.; Battino, M.; Belahsen, R.; Miranda, G.; et al. Mediterranean diet pyramid today. Science and cultural updates. Public Health Nutr. 2011, 14, 2274–2284. [Google Scholar] [CrossRef] [Green Version]
- Liguori, I.; Russo, G.; Curcio, F.; Bulli, G.; Aran, L.; Della-Morte, D.; Gargiulo, G.; Testa, G.; Cacciatore, F.; Bonaduce, D.; et al. Oxidative stress, aging, and diseases. Clin. Interv. Aging 2018, 13, 757–772. [Google Scholar] [CrossRef]
- Micha, R.; Shulkin, M.L.; Peñalvo, J.L.; Khatibzadeh, S.; Singh, G.M.; Rao, M.; Fahimi, S.; Powles, J.; Mozaffarian, D. Etiologic effects and optimal intakes of foods and nutrients for risk of cardiovascular diseases and diabetes: Systematic reviews and meta-analyses from the nutrition and chronic diseases expert group (NutriCoDE). PLoS ONE 2017, 12, e0175149. [Google Scholar] [CrossRef] [PubMed]
- Carughi, A.; Feeney, M.J.; Kris-Etherton, P.; Fulgoni, V., III; Kendall, C.W.C.; Bulló, M.; Webb, D. Pairing nuts and dried fruit for cardiometabolic health. Nutr. J. 2016, 15, 23. [Google Scholar] [CrossRef] [PubMed]
- Salas-Salvadó, J.; Bulló, M.; Babio, N.; Martínez-González, M.; Ibarrola-Jurado, N.; Basora, J.; Estruch, R.; Covas, M.; Corella, D.; Arós, F.; et al. Reduction in the Incidence of Type 2 Diabetes With the Mediterranean Diet: Results of the PREDIMED-Reus nutrition intervention randomized trial. Diabetes Care 2011, 34, 14–19, Erratum in Diabetes Care 2018, 41, 2259–2260. [Google Scholar] [CrossRef] [PubMed]
- Pan, A.; Sun, Q.; Manson, J.; Willett, W.; Hu, F. Walnut consumption is associated with lower risk of type 2 diabetes in women. J. Nutr. 2013, 143, 512–518. [Google Scholar] [CrossRef] [PubMed]
- Ibarrola-Jurado, N.; Bulló, M.; Guasch-Ferré, M.; Ros, E.; Martínez-González, M.; Corella, D.; Fiol, M.; Wärnberg, J.; Estruch, R.; Román, P.; et al. Cross-sectional assessment of nut consumption and obesity, metabolic syndrome and other cardiometabolic risk factors: The PREDIMED study. PLoS ONE 2013, 8, e57367. [Google Scholar] [CrossRef] [PubMed]
- Guasch-Ferré, M.; Bulló, M.; Martínez-González, M.; Ros, E.; Corella, D.; Estruch, R.; Fitó, M.; Arós, F.; Wärnberg, J.; Fiol, M.; et al. Frequency of nut consumption and mortality risk in the PREDIMED nutrition intervention trial. BMC Med. 2013, 11, 164. [Google Scholar] [CrossRef] [PubMed]
- Hshieh, T.; Petrone, A.; Gaziano, J.; Djoussé, L. Nut consumption and risk of mortality in the Physicians’ Health Study. Am. J. Clin. Nutr. 2015, 101, 407–412. [Google Scholar] [CrossRef] [PubMed]
- Guasch-Ferré, M.; Liu, X.; Malik, V.; Sun, Q.; Willett, W.; Manson, J.; Rexrode, K.; Li, Y.; Hu, F.; Bhupathiraju, S. Nut Consumption and Risk of Cardiovascular Disease. J. Am. Coll. Cardiol. 2017, 70, 2519–2532. [Google Scholar] [CrossRef]
- Larsson, S.C.; Drca, N.; Björck, M.; Bäck, M.; Wolk, A. Nut consumption and incidence of seven cardiovascular diseases. Heart 2018, 104, 1615–1620. [Google Scholar] [CrossRef]
- Estruch, R.; Ros, E.; Salas-Salvadó, J.; Covas, M.-I.; Corella, D.; Arós, F.; Gómez-Gracia, E.; Ruiz-Gutiérrez, V.; Fiol, M.; Lapetra, J.; et al. Primary Prevention of Cardiovascular Disease with a Mediterranean Diet Supplemented with Extra-Virgin Olive Oil or Nuts. N. Engl. J. Med. 2018, 378, e34. [Google Scholar] [CrossRef]
- Liu, G.; Guasch-Ferré, M.; Hu, Y.; Li, Y.; Hu, F.B.; Rimm, E.B.; Manson, J.E.; Rexrode, K.; Sun, Q. Nut Consumption in Relation to Cardiovascular Disease Incidence and Mortality among Patients with Diabetes Mellitus. Circ. Res. 2019, 124, 920–929. [Google Scholar] [CrossRef] [PubMed]
- Aune, D.; Keum, N.; Giovannucci, E.; Fadnes, L.; Boffetta, P.; Greenwood, D.; Tonstad, S.; Vatten, L.; Riboli, E.; Norat, T. Nut consumption and risk of cardiovascular disease, total cancer, all-cause and cause-specific mortality: A systematic review and dose-response meta-analysis of prospective studies. BMC Med. 2016, 14, 207. [Google Scholar] [CrossRef] [PubMed]
- Heffron, S.; Rockman, C.; Gianos, E.; Guo, Y.; Berger, J. Greater Frequency of Nut Consumption is Associated with Lower Prevalence of Peripheral Arterial Disease. Prev. Med. 2015, 72, 15–18. [Google Scholar] [CrossRef] [PubMed]
- Luu, H.; Blot, W.; Xiang, Y.; Cai, H.; Hargreaves, M.; Li, H.; Yang, G.; Signorello, L.; Gao, Y.; Zheng, W.; et al. Prospective Evaluation of the Association of Nut/Peanut Consumption With Total and Cause-Specific Mortality. JAMA Intern. Med. 2015, 175, 755–766. [Google Scholar] [CrossRef] [PubMed]
- Mayhew, A.; de Souza, R.; Meyre, D.; Anand, S.; Mente, A. A systematic review and meta-analysis of nut consumption and incident risk of cardiovascular disease and all-cause mortality. Br. J. Nutr. 2016, 115, 212–225. [Google Scholar] [CrossRef] [PubMed]
- Shao, C.; Tang, H.; Zhao, W.; He, J. Nut intake and stroke risk: A dose-response meta-analysis of prospective cohort studies. Sci Rep. 2016, 6, 30394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, C.; Zhang, Y.; Ding, Y.; Shan, Z.; Chen, S.; Yu, M.; Hu, F.B.; Liu, L. Nut consumption and risk of type 2 diabetes, cardiovascular disease, and all-cause mortality: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2014, 100, 256–269. [Google Scholar] [CrossRef]
- Afshin, A.; Micha, R.; Khatibzadeh, S.; Mozaffarian, D. Consumption of nuts and legumes and risk of incident ischemic heart disease, stroke, and diabetes: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2014, 100, 278–288. [Google Scholar] [CrossRef]
- Zhang, Z.; Xu, G.; Wei, Y.; Zhu, W.; Liu, X. Nut consumption and risk of stroke. Eur. J. Epidemiol. 2015, 30, 189–196. [Google Scholar] [CrossRef]
- Domènech, M.; Serra-Mir, M.; Roth, I.; Freitas-Simoes, T.; Valls-Pedret, C.; Cofán, M.; López, A.; Sala-Vila, A.; Calvo, C.; Rajaram, S.; et al. Effect of a Walnut Diet on Office and 24-Hour Ambulatory Blood Pressure in Elderly Individuals. Hypertension 2019, 73, 1049–1057. [Google Scholar] [CrossRef]
- Li, S.; Liu, Y.; Liu, J.; Chang, W.; Chen, C.; Chen, C. Almond consumption improved glycemic control and lipid profiles in patients with type 2 diabetes mellitus. Metabolism 2011, 60, 474–479. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Piotrowski, K.; Rau, T.; Waldmann, E.; Broedl, U.; Demmelmair, H.; Koletzko, B.; Stark, R.G.; Nagel, J.M.; Mantzoros, C.S.; et al. Walnut-enriched diet reduces fasting non-HDL-cholesterol and apolipoprotein B in healthy Caucasian subjects: A randomized controlled cross-over clinical trial. Metabolism 2014, 63, 382–391. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Alonso, P.; Salas-Salvadó, J.; Baldrich-Mora, M.; Mallol, R.; Correig, X.; Bulló, M. Effect of pistachio consumption on plasma lipoprotein subclasses in pre-diabetic subjects. Nutr. Metab. Cardiovasc. Dis. 2015, 25, 396–402. [Google Scholar] [CrossRef] [PubMed]
- Ruisinger, J.F.; Gibson, C.A.; Backes, J.M.; Smith, B.K.; Sullivan, D.K.; Moriarty, P.M.; Kris-Etherton, P. Statins and almonds to lower lipoproteins (the STALL Study). J. Clin. Lipidol. 2015, 9, 58–64. [Google Scholar] [CrossRef] [PubMed]
- Jamshed, H.; Sultan, F.; Iqbal, R.; Gilani, A. Dietary Almonds Increase Serum HDL Cholesterol in Coronary Artery Disease Patients in a Randomized Controlled Trial. J. Nutr. 2015, 145, 2287–2292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Njike, V.Y.; Ayettey, R.; Petraro, P.; Treu, J.A.; Katz, D.L. Walnut ingestion in adults at risk for diabetes: Effects on body composition, diet quality, and cardiac risk measures. BMJ Open Diabetes Res. Care 2015, 3, e000115. [Google Scholar] [CrossRef] [PubMed]
- Huguenin, G.V.; Oliveira, G.M.; Moreira, A.S.; Saint’Pierre, T.D.; Gonçalves, R.A.; Pinheiro-Mulder, A.R.; Teodoro, A.J.; Luiz, R.R.; Rosa, G. Improvement of antioxidant status after Brazil nut intake in hypertensive and dyslipidemic subjects. Nutr. J. 2015, 14, 54. [Google Scholar] [CrossRef] [PubMed]
- Sauder, K.; McCrea, C.; Ulbrecht, J.; Kris-Etherton, P.; West, S. Effects of pistachios on the lipid/lipoprotein profile, glycemic control, inflammation, and endothelial function in type 2 diabetes: A randomized trial. Metabolism 2015, 64, 1521–1529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mah, E.; Schulz, J.A.; Kaden, V.N.; Lawless, A.L.; Rotor, J.; Mantilla, L.B.; Liska, D.J. Cashew consumption reduces total and LDL cholesterol: A randomized, crossover, controlled-feeding trial. Am. J. Clin. Nutr. 2017, 105, 1070–1078. [Google Scholar] [CrossRef] [PubMed]
- Bamberger, C.; Rossmeier, A.; Lechner, K.; Wu, L.; Waldmann, E.; Stark, R.G.; Altenhofer, J.; Henze, K.; Parhofer, K.G. A walnut-enriched diet reduces lipids in healthy caucasian subjects, independent of recommended macronutrient replacement and time point of consumption: A prospective, randomized, controlled trial. Nutrients 2017, 9, 1097. [Google Scholar] [CrossRef]
- McKay, D.L.; Eliasziw, M.; Chen, O.C.; Blumberg, J.B. A pecan-rich diet improves cardiometabolic risk factors in overweight and obese adults: A randomized controlled trial. Nutrients 2018, 10, 339. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, D.J.; Kendall, C.W.; Lamarche, B.; Banach, M.S.; Srichaikul, K.; Vidgen, E.; Mitchell, S.; Parker, T.; Nishi, S.; Bashyam, B.; et al. Nuts as a replacement for carbohydrates in the diabetic diet: A reanalysis of a randomised controlled trial. Diabetologia 2018, 61, 1734–1747. [Google Scholar] [CrossRef] [PubMed]
- Bowen, J.; Luscombe-Marsh, N.D.; Stonehouse, W.; Tran, C.; Rogers, G.B.; Johnson, N.; Thompson, C.H.; Brinkworth, G.D. Effects of almond consumption on metabolic function and liver fat in overweight and obese adults with elevated fasting blood glucose: A randomised controlled trial. Clin. Nutr. ESPEN 2019, 30, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Musa-Veloso, K.; Paulionis, L.; Poon, T.; Lee, H.Y. The effects of almond consumption on fasting blood lipid levels: A systematic review and meta-analysis of randomised controlled trials. J. Nutr. Sci. 2016, 5, 1–15. [Google Scholar] [CrossRef]
- Nishi, S.; Kendall, C.W.C.; Gascoyne, A.-M.; Bazinet, R.P.; Bashyam, B.; Lapsley, K.G.; Augustin, L.S.A.; Sievenpiper, J.L.; Jenkins, D.J.A. Effect of almond consumption on the serum fatty acid profile: A dose–response study. Br. J. Nutr. 2014, 112, 1137–1146. [Google Scholar] [CrossRef]
- Damavandi, D.R.; Mousavi, S.N.; Shidfar, F.; Mohammadi, V.; Rajab, A.; Hosseini, S.; Heshmati, J. Effects of Daily Consumption of Cashews on Oxidative Stress and Atherogenic Indices in Patients with Type 2 Diabetes: A Randomized, Controlled-Feeding Trial. Int. J. Endocrinol. Metab. 2019, 17, e70744. [Google Scholar] [CrossRef]
- Kay, C.D.; Gebauer, S.K.; West, S.G.; Kris-Etherton, P.M. Pistachios increase serum antioxidants and lower serum oxidized-LDL in hypercholesterolemic adults. J. Nutr. 2010, 140, 1093–1098. [Google Scholar] [CrossRef]
- Zibaeenezhad, M.; Farhadi, P.; Attar, A.; Mosleh, A.; Amirmoezi, F.; Azimi, A. Effects of walnut oil on lipid profiles in hyperlipidemic type 2 diabetic patients: A randomized, double-blind, placebo-controlled trial. Nutr. Diabetes 2017, 7, e259. [Google Scholar] [CrossRef]
- Austel, A.; Ranke, C.; Wagner, N.; Görge, J.; Ellrott, T. Weight loss with a modified Mediterranean-type diet using fat modification: A randomized controlled trial. Eur. J. Clin. Nutr. 2015, 69, 878–884. [Google Scholar] [CrossRef]
- Guasch-Ferré, M.; Li, J.; Hu, F.B.; Salas-Salvadó, J.; Tobias, D.K. Effects of walnut consumption on blood lipids and other cardiovascular risk factors: An updated meta-analysis and systematic review of controlled trials. Am. J. Clin. Nutr. 2018, 108, 174–187. [Google Scholar] [CrossRef]
- Del Gobbo, L.; Falk, M.; Feldman, R.; Lewis, K.; Mozaffarian, D. Effects of tree nuts on blood lipids, apolipoproteins, and blood pressure: Systematic review, meta-analysis, and dose-response of 61 controlled intervention trials. Am. J. Clin. Nutr. 2015, 102, 1347–1356. [Google Scholar] [CrossRef]
- Jellinger, P.; Handelsman, Y.; Rosenblit, P.; Bloomgarden, Z.; Fonseca, V.; Garber, A.; Grunberger, G.; Guerin, C.; Bell, D.; Mechanick, J.; et al. American Association of Clinical Endocrinologists and American College of Endocrinology Guidelines for Management of Dyslipidemia and Prevention of Cardiovascular Disease. Endocr. Pr. 2017, 23, 1–87. [Google Scholar] [CrossRef] [PubMed]
- Blesso, C.; Fernandez, M. Dietary Cholesterol, Serum Lipids, and Heart Disease: Are Eggs Working for or Against You? Nutrients 2018, 10, 426. [Google Scholar] [CrossRef] [PubMed]
- Cohen, A.E.; Johnston, C.S. Almond ingestion at mealtime reduces postprandial glycemia and chronic ingestion reduces hemoglobin A(1c) in individuals with well-controlled type 2 diabetes mellitus. Metabolism 2011, 60, 1312–1317. [Google Scholar] [CrossRef] [PubMed]
- Damasceno, N.; Sala-Vila, A.; Cofán, M.; Pérez-Heras, A.; Fitó, M.; Ruiz-Gutiérrez, V.; Martínez-González, M.; Corella, D.; Arós, F.; Estruch, R.; et al. Mediterranean diet supplemented with nuts reduces waist circumference and shifts lipoprotein subfractions to a less atherogenic pattern in subjects at high cardiovascular risk. Atherosclerosis 2013, 230, 347–353. [Google Scholar] [CrossRef] [PubMed]
- Lasa, A.; Miranda, J.; Bulló, M.; Casas, R.; Salas-Salvadó, J.; Larretxi, I.; Estruch, R.; Ruiz-Gutiérrez, V.; Portillo, M. Comparative effect of two Mediterranean diets versus a low-fat diet on glycaemic control in individuals with type 2 diabetes. Eur. J. Clin. Nutr. 2014, 68, 767–772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hernández-Alonso, P.; Salas-Salvadó, J.; Baldrich-Mora, M.; Juanola-Falgarona, M.; Bulló, M. Beneficial effect of pistachio consumption on glucose metabolism, insulin resistance, inflammation, and related metabolic risk markers: A randomized clinical trial. Diabetes Care 2014, 37, 3098–3105. [Google Scholar] [CrossRef]
- Rodríguez-Rejón, A.I.; Castro-Quezada, I.; Ruano-Rodríguez, C.; Ruiz-López, M.D.; Sánchez-Villegas, A.; Toledo, E.; Artacho, R.; Estruch, R.; Salas-Salvadó, J.; Covas, M.I.; et al. Effect of a Mediterranean Diet Intervention on Dietary Glycemic Load and Dietary Glycemic Index: The PREDIMED Study. J. Nutr Metab. 2014, 2014, 985373. [Google Scholar] [CrossRef]
- Chen, C.; Liu, J.; Li, S.; Huang, C.; Hsirh, A.; Weng, S.; Chang, M.; Li, H.; Mohn, E.; Chen, C. Almonds ameliorate glycemic control in Chinese patients with better controlled type 2 diabetes: A randomized, crossover, controlled feeding trial. Nutr. Metab. 2017, 14, 51. [Google Scholar] [CrossRef]
- Hou, Y.-Y.; Ojo, O.; Wang, L.-L.; Wang, Q.; Jiang, Q.; Shao, X.-Y.; Wang, X.-H. A Randomized Controlled Trial to Compare the Effect of Peanuts and Almonds on the Cardio-Metabolic and Inflammatory Parameters in Patients with Type 2 Diabetes Mellitus. Nutrients 2018, 10, 1565. [Google Scholar] [CrossRef]
- Nezhad, M.; Aghasadeghi, K.; Hakimi, H.; Yarmohammadi, H.; Nikaein, F. The Effect of Walnut Oil Consumption on Blood Sugar in Patients With Diabetes Mellitus Type 2. Int. J. Endocrinol. Metab. 2016, 14, e34889. [Google Scholar] [Green Version]
- Li, H.; Li, X.; Yuan, S.; Jin, Y.; Lu, J. Nut consumption and risk of metabolic syndrome and overweight/obesity: A meta-analysis of prospective cohort studies and randomized trials. Nutr. Metab. 2018, 15, 46. [Google Scholar] [CrossRef] [PubMed]
- Flores-Mateo, G.; Rojas-Rueda, D.; Basora, J.; Ros, E.; Salas-Salvadó, J. Nut intake and adiposity: Meta-analysis of clinical trials. Am. J. Clin. Nutr. 2013, 97, 1346–1355. [Google Scholar] [CrossRef] [PubMed]
- Baer, D.J.; Gebauer, S.K.; Novotny, J.A. Measured energy value of pistachios in the human diet. Br. J. Nutr. 2012, 107, 120–125. [Google Scholar] [CrossRef] [PubMed]
- Baer, D.; Novotny, J. Metabolizable Energy from Cashew Nuts is Less than that Predicted by Atwater Factors. Nutrients 2019, 11, 33. [Google Scholar] [CrossRef] [PubMed]
- Baer, D.J.; Gebauer, S.K.; Novotny, J.A. Walnuts Consumed by Healthy Adults Provide Less Available Energy than Predicted by the Atwater Factors. J. Nutr. 2016, 146, 9–13. [Google Scholar] [CrossRef] [PubMed]
- Novotny, J.A.; Gebauer, S.K.; Baer, D.J. Discrepancy between the Atwater factor predicted and empirically measured energy values of almonds in human diets. Am. J. Clin. Nutr. 2012, 96, 296–301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barbour, J.; Howe, P.; Buckley, J.; Bryan, J.; Coates, A. Effect of 12 Weeks High Oleic Peanut Consumption on Cardio-Metabolic Risk Factors and Body Composition. Nutrients 2015, 7, 7381–7398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Viguiliouk, E.; Kendall, C.W.C.; Blanco Mejia, S.; Cozma, A.I.; Ha, V.; Mirrahimi, A.; Jayalath, V.H.; Augustin, L.S.A.; Chiavaroli, L.; Leiter, L.A.; et al. Effect of tree nuts on glycemic control in diabetes: A systematic review and meta-analysis of randomized controlled dietary trials. PLoS ONE 2014, 9, e103376. [Google Scholar] [CrossRef] [PubMed]
- Tindall, A.M.; Johnston, E.A.; Kris-Etherton, P.M.; Petersen, K.S. The effect of nuts on markers of glycemic control: A systematic review and meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 2019, 109, 297–314. [Google Scholar] [CrossRef] [PubMed]
- Casas-Agustench, P.; Bulló, M.; Ros, E.; Basora, J.; Salas-Salvadó, J. Cross-sectional association of nut intake with adiposity in a Mediterranean population. Nutr. Metab. Cardiovasc. Dis. 2011, 21, 518–525. [Google Scholar] [CrossRef] [PubMed]
- Jaceldo-Siegl, K.; Haddad, E.; Oda, K.; Fraser, G.E.; Sabate, J. Tree Nuts Are Inversely Associated with Metabolic Syndrome and Obesity: The Adventist Health Study-2. PLoS ONE 2014, 9, e85133. [Google Scholar] [CrossRef] [PubMed]
- Arab, L.; Dhaliwal, S.K.; Martin, C.J.; Larios, A.D.; Jackson, N.J.; Elashoff, D. Association between walnut consumption and diabetes risk in NHANES. Diabetes Metab. Res. Rev. 2018, 34, e3031. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, Y.; Njike, V.; Millet, J.; Dutta, S.; Doughty, K.; Treu, J.; Katz, D. Effects of Walnut Consumption on Endothelial Function in Type 2 Diabetic. Diabetes Care 2010, 33, 227–232. [Google Scholar] [CrossRef] [PubMed]
- Katz, D.L.; Davidhi, A.; Ma, Y.; Kavak, Y.; Bifulco, L.; Njike, V.Y. Effects of walnuts on endothelial function in overweight adults with visceral obesity: A randomized, controlled, crossover trial. J. Am. Coll. Nutr. 2012, 31, 415–423. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.F.; Liu, Y.H.; Chen, C.M.; Chang, W.H.; Chen, C.Y.O. The effect of almonds on inflammation and oxidative stress in Chinese patients with type 2 diabetes mellitus: A randomized crossover controlled feeding trial. Eur. J. Nutr. 2013, 52, 927–935. [Google Scholar] [CrossRef] [PubMed]
- Sweazea, K.L.; Johnston, C.S.; Ricklefs, K.D.; Petersen, K.N. Almond supplementation in the absence of dietary advice significantly reduces C-reactive protein in subjects with type 2 diabetes. J. Funct. Foods 2014, 10, 252–259. [Google Scholar] [CrossRef]
- Chen, C.; Holbrook, M.; Duess, M.; Dohadwala, M.; Hamburg, N.; Asztalos, B.; Milbury, P.; Blumberg, J.; Vita, J. Effect of almond consumption on vascular function in patients with coronary artery disease: A randomized, controlled, cross-over trial. Nutr. J. 2015, 14, 61. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Malik, V.; Keum, N.; Hu, F.; Giovannucci, E.; Stampfer, M.; Willett, W.; Fuchs, C.; Bao, Y. Associations between nut consumption and inflammatory biomarkers. Am. J. Clin. Nutr. 2016, 104, 722–728. [Google Scholar] [CrossRef] [PubMed]
- Bitok, E.; Sabaté, J. Nuts and Cardiovascular Disease. Prog. Cardiovasc. Dis. 2018, 61, 33–37. [Google Scholar] [CrossRef] [PubMed]
- West, S.G.; Krick, A.L.; Klein, L.C.; Zhao, G.; Wojtowicz, T.F.; McGuiness, M.; Bagshaw, D.; Wagner, P.; Ceballos, R.M.; Holub, B.J.; et al. Effects of diets high in walnuts and flax oil on hemodynamic responses to stress and vascular endothelial function. J. Am. Coll. Nutr. 2010, 29, 595–603. [Google Scholar] [CrossRef]
- Neale, E.P.; Tapsell, L.C.; Guan, V.; Batterham, M.J. The effect of nut consumption on markers of inflammation and endothelial function: A systematic review and meta-analysis of randomised controlled trials. BMJ Open. 2017, 7, e016863. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Huang, W.; Peng, C.; Zhang, J.; Wong, C.; Kim, J.H.; Yeoh, E.; Su, X. Effect of nut consumption on vascular endothelial function: A systematic review and meta-analysis of randomized controlled trials. Clin. Nutr. 2018, 37, 831–839. [Google Scholar] [CrossRef] [PubMed]
- Bhardwaj, R.; Dod, H.; Sandhu, M.S.; Bedi, R.; Dod, S.; Konat, G.; Chopra, H.; Sharma, R.; Jain, A.C.; Nanda, N. Acute effects of diets rich in almonds and walnuts on endothelial function. Indian Heart J. 2018, 70, 497–501. [Google Scholar] [CrossRef] [PubMed]
- Fogacci, F.; Cicero, A.F.G.; Derosa, G.; Rizzo, M.; Veronesi, M.; Borghi, C. Effect of pistachio on brachial artery diameter and flow-mediated dilatation: A systematic review and meta-analysis of randomized, controlled-feeding clinical studies. Crit. Rev. Food Sci. Nutr. 2019, 59, 328–335. [Google Scholar] [CrossRef] [PubMed]
- Morgillo, S.; Hill, A.M.; Coates, A.M. The Effects of Nut Consumption on Vascular Function. Nutrients 2019, 11, 116. [Google Scholar] [CrossRef] [PubMed]
- Borkowski, K.; Yim, S.J.; Holt, R.R.; Hackman, R.M.; Keen, C.L.; Newman, J.W.; Shearer, G.C. Walnuts change lipoprotein composition suppressing TNFα-stimulated cytokine production by diabetic adipocyte. J. Nutr. Biochem. 2019, 68, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Mazidi, M.; Rezaie, P.; Ferns, G.A.; Gao, H. Impact of different types of tree nut, peanut, and soy nut consumption on serum C-reactive protein (CRP). Medicine 2016, 95, e5165. [Google Scholar] [CrossRef]
- Müllner, E.; Plasser, E.; Brath, H.; Waldschütz, W.; Forster, E.; Kundi, M.; Wagner, K. Impact of polyunsaturated vegetable oils on adiponectin levels, glycaemia and blood lipids in individuals with type 2 diabetes: A randomised, double-blind intervention study. J. Hum. Nutr. Diet. 2014, 27, 468–478. [Google Scholar] [CrossRef]
- Thanikachalam, K.; Khan, G. Colorectal Cancer and Nutrition. Nutrients 2019, 11, 164. [Google Scholar] [CrossRef] [PubMed]
- Raimondi, S.; Mabrouk, J.B.; Shatenstein, B.; Maisonneuve, P.; Ghadirian, P. Diet and prostate cancer risk with specific focus on dairy products and dietary calcium: A case-control study. Prostate 2010, 70, 1054–1065. [Google Scholar] [CrossRef] [PubMed]
- Ibiebele, T.; Nagle, C.; Bain, C.; Webb, P. Intake of omega-3 and omega-6 fatty acids and risk of ovarian cancer. Cancer Causes Control. 2012, 23, 1775–1783. [Google Scholar] [CrossRef] [PubMed]
- Bao, Y.; Hu, F.; Giovannucci, E.; Wolpin, B.; Stampfer, M.; Willett, W.; Fuchs, C. Nut consumption and risk of pancreatic cancer in women. Br. J. Cancer 2013, 109, 2911–2916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van den Brandt, P.; Schouten, L. Relationship of tree nut, peanut and peanut butter intake with total and cause-specific mortality: A cohort study and meta-analysis. Int. J. Epidemiol. 2015, 44, 1038–1049. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Hu, F.; Giovannucci, E.; Stampfer, M.; Willett, W.; Fuchs, C.; Wu, K.; Bao, Y. Nut consumption and risk of colorectal cancer in women. Eur. J. Clin. Nutr. 2016, 70, 333–337. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Yang, M.; Kenfield, S.A.; Hu, F.B.; Stampfer, M.J.; Willett, W.C.; Fuchs, C.S.; Giovannucci, E.L.; Bao, Y. Nut consumption and prostate cancer risk and mortality. Br. J. Cancer 2016, 115, 371–374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.; Lai, G.; Liao, L.; Subar, A.; Bertazzi, P.; Pesatori, A.; Freedman, N.; Landi, M.; Lam, T. Nut Consumption and Lung Cancer Risk: Results from Two Large Observational Studies. Cancer Epidemiol. Biomarkers Prev. 2017, 26, 826–836. [Google Scholar] [CrossRef] [PubMed]
- Hashemian, M.; Murphy, G.; Etemadi, A.; Dawsey, S.M.; Liao, L.M.; Abnet, C.C. Nut and peanut butter consumption and the risk of esophageal and gastric cancer subtypes. Am. J. Clin. Nutr. 2017, 106, 858–864. [Google Scholar] [CrossRef]
- Nieuwenhuis, L.; van den Brandt, P.A. Total nut, tree nut, peanut, and peanut butter consumption and the risk of pancreatic cancer in the Netherlands Cohort Study. Cancer Epidemiol. Biomarkers Prev. 2018, 27, 274–284. [Google Scholar] [CrossRef]
- Nieuwenhuis, L.; van den Brandt, P.A. Tree nut, peanut, and peanut butter consumption and the risk of gastric and esophageal cancer subtypes: The Netherlands Cohort Study. Gastric Cancer. 2018, 21, 900–912. [Google Scholar] [CrossRef]
- Fadelu, T.; Zhang, S.; Niedzwiecki, D.; Ye, X.; Saltz, L.; Mayer, R.; Mowat, R.; Whittom, R.; Hantel, A.; Benson, A.; et al. Nut Consumption and Survival in Patients With Stage III Colon Cancer: Results From CALGB 89803 (Alliance). J. Clin. Oncol. 2018, 36, 1112–1120. [Google Scholar] [CrossRef] [PubMed]
- Van den Brandt, P.A.; Nieuwenhuis, L. Tree nut, peanut, and peanut butter intake and risk of postmenopausal breast cancer: The Netherlands Cohort Study. Cancer Causes Control 2018, 29, 63–75. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Zhao, L.; Hu, Z.; Wu, J.; Li, J.; Qu, C.; He, Y.; Song, Q. Peanut consumption associated with a reduced risk of esophageal squamous cell carcinoma: A case–control study in a high-risk area in China. Thorac Cancer 2018, 9, 30–36. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Shin, A.; Oh, J.; Kim, J. The relationship between nut intake and risk of colorectal cancer: A case control study. Nutr. J. 2018, 17, 37. [Google Scholar] [CrossRef] [PubMed]
- Hardman, W.E.; Primerano, D.A.; Legenza, M.T.; Morgan, J.; Fan, J.; Denvir, J. Dietary walnut altered gene expressions related to tumor growth, survival, and metastasis in breast cancer patients: A pilot clinical trial. Nutr. Res. 2019, 66, 82–94. [Google Scholar] [CrossRef] [PubMed]
- Sui, J.; Yang, W.; Ma, Y.; Li, T.Y.; Simon, T.G.; Meyerhardt, J.A.; Liang, G.; Giovannucci, E.L.; Chan, A.T.; Zhang, X. A prospective study of nut consumption and risk of primary hepatocellular carcinoma in the U.S. women and men. Cancer Prev. Res. 2019, 12, 367–374. [Google Scholar] [CrossRef] [PubMed]
- Nieuwenhuis, L.; van den Brandt, P.A. Nut and peanut butter consumption and the risk of lung cancer and its subtypes: A prospective cohort study. Lung Cancer 2019, 128, 57–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Batirel, S.; Yilmaz, A.M.; Sahin, A.; Perakakis, N.; Kartal Ozer, N.; Mantzoros, C.S. Antitumor and antimetastatic effects of walnut oil in esophageal adenocarcinoma cells. Clin. Nutr. 2018, 37, 2166–2171. [Google Scholar] [CrossRef]
- Yin, X.; Bostick, R.M. Associations of Nut Intakes with Incident Sporadic Colorectal Adenoma: A Pooled Case-Control Study. Nutr. Cancer 2019, 71, 731–738. [Google Scholar] [CrossRef]
- Casari, I.; Falasca, M. Diet and Pancreatic Cancer Prevention. Cancers 2015, 7, 2309–2317. [Google Scholar] [CrossRef] [Green Version]
- Toledo, E.; Salas-Salvadó, J.; Donat-Vargas, C.; Buil-Cosiales, P.; Estruch, R.; Ros, E.; Corella, D.; Fitó, M.; Hu, F.; Arós, F.; et al. Mediterranean Diet and Invasive Breast Cancer Risk Among Women at High Cardiovascular Risk in the PREDIMED Trial: A Randomized Clinical Trial. JAMA Intern. Med. 2015, 175, 1752–1760. [Google Scholar] [CrossRef] [PubMed]
- Soriano-Hernandez, A.; Madrigal-Perez, D.; Galvan-Salazar, H.; Arreola-Cruz, A.; Briseño-Gomez, L.; Guzmán-Esquivel, J.; Dobrovinskaya, O.; Lara-Esqueda, A.; Rodríguez-Sanchez, I.; Baltazar-Rodriguez, L.; et al. The Protective Effect of Peanut, Walnut, and Almond Consumption on the Development of Breast Cancer. Gynecol. Obs. Investig. 2015, 80, 89–92. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Subar, A.F.; Bosire, C.; Dawsey, S.M.; Kahle, L.L.; Zimmerman, T.P.; Abnet, C.C.; Heller, R.; Graubard, B.I.; Cook, M.B.; et al. Dietary Flavonoid Intake Reduces the Risk of Head and Neck but Not Esophageal or Gastric Cancer in US Men and Women. J. Nutr. 2017, 147, 1729–1738. [Google Scholar] [PubMed]
- Rusu, M.E.; Mocan, A.; Fizesan, I.; Popa, D.S.; Vlase, L.; Pop, A. Bioactive compounds from walnut (Juglans regia L.) septum extracts: Antioxidant and cytotoxic activity. In Proceedings of the Functional and Medical Foods for Chronic Diseases: Bioactive Compounds and Biomarkers, Boston, MA, USA, 22–23 September 2017. [Google Scholar]
- Rusu, M.E.; Gheldiu, A.-M.; Mocan, A.; Moldovan, C.; Popa, D.-S.; Tomuta, I.; Vlase, L. Process Optimization for Improved Phenolic Compounds Recovery from Walnut (Juglans regia L.) Septum: Phytochemical Profile and Biological Activities. Molecules 2018, 23, 2814. [Google Scholar] [CrossRef] [PubMed]
- Shah, U.N.; Mir, J.I.; Ahmed, N.; Jan, S.; Fazili, K.M. Bioefficacy potential of different genotypes of walnut Juglans regia L. J. Food Sci. Technol. 2018, 55, 605–618. [Google Scholar] [CrossRef]
- Frankish, H.; Horton, R. Prevention and management of dementia: A priority for public health. Lancet 2017, 390, 2614–2615. [Google Scholar] [CrossRef]
- Sánchez-Villegas, A.; Galbete, C.; Martinez-González, M.A.; Martinez, J.A.; Razquin, C.; Salas-Salvadó, J.; Estruch, R.; Buil-Cosiales, P.; Martí, A. The effect of the Mediterranean diet on plasma brain-derived neurotrophic factor (BDNF) levels: The PREDIMED-NAVARRA randomized trial. Nutr. Neurosci. 2011, 14, 195–201. [Google Scholar] [CrossRef]
- Nooyens, A.; Bueno-De-Mesquita, H.; van Boxtel, M.; van Gelder, B.; Verhagen, H.; Verschuren, W. Fruit and vegetable intake and cognitive decline in middle-aged men and women: The Doetinchem Cohort Study. Br. J. Nutr. 2011, 106, 752–761. [Google Scholar] [CrossRef]
- Valls-Pedret, C.; Lamuela-Raventós, R.; Medina-Remón, A.; Quintana, M.; Corella, D.; Pintó, X.; Martínez-González, M.; Estruch, R.; Ros, E. Polyphenol-rich foods in the Mediterranean diet are associated with better cognitive function in elderly subjects at high cardiovascular risk. J. Alzheimers Dis. 2012, 29, 773–782. [Google Scholar] [CrossRef]
- Martínez-Lapiscina, E.H.; Clavero, P.; Toledo, E.; Estruch, R.; Salas-Salvadó, J.; Julián, B.S.; Sanchez-Tainta, A.; Ros, E.; Valls-Pedret, C.; Martinez-Gonzalez, M.Á. Mediterranean diet improves cognition: The PREDIMED-NAVARRA randomised trial. J. Neurol Neurosurg. Psychiatry 2013, 84, 1318–1325. [Google Scholar] [CrossRef]
- O’Brien, J.; Okereke, O.; Devore, E.; Rosner, B.; Breteler, M.; Grodstein, F. Long-term intake of nuts in relation to cognitive function in older women. J. Nutr. Health Aging 2014, 18, 496–502. [Google Scholar] [CrossRef] [PubMed]
- Valls-Pedret, C.; Sala-Vila, A.; Serra-Mir, M.; Corella, D.; de la Torre, R.; Martínez-González, M.; Martínez-Lapiscina, E.; Fitó, M.; Pérez-Heras, A.; Salas-Salvadó, J.; et al. Mediterranean Diet and Age-Related Cognitive Decline: A Randomized Clinical Trial. JAMA Intern. Med. 2015, 175, 1094–1103. [Google Scholar] [CrossRef] [PubMed]
- Barbour, J.A.; Howe, P.R.C.; Buckley, J.D.; Bryan, J.; Coates, A.M. Cerebrovascular and cognitive benefits of high-oleic peanut consumption in healthy overweight middle-aged adults. Nutr. Neurosci. 2017, 20, 555–562. [Google Scholar] [CrossRef] [PubMed]
- Dong, L.; Xiao, R.; Cai, C.; Xu, Z.; Wang, S.; Pan, L.; Yuan, L. Diet, lifestyle and cognitive function in old Chinese adults. Arch. Gerontol. Geriatr. 2016, 63, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Arab, L.; Ang, A. A cross sectional study of the association between walnut consumption and cognitive function among adult US populations represented in NHANES. J. Nutr. Health Aging 2015, 19, 284–290. [Google Scholar] [CrossRef] [PubMed]
- Rajaram, S.; Valls-Pedret, C.; Cofan, M.; Sabaté, J.; Serra-Mir, M.; Perez-Heras, A.M.; Arechiga, A.; Casaroli-Marano, R.P.; Alforja, S.; Sala-Vila, A.; et al. The Walnuts and Healthy Aging Study (WAHA): Protocol for a Nutritional Intervention Trial with Walnuts on Brain Aging. Front. Aging Neurosci. 2017, 8, 333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cutuli, D. Functional and Structural Benefits Induced by Omega-3 Polyunsaturated Fatty Acids During Aging. Curr. Neuropharmacol. 2017, 15, 534–542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blondeau, N.; Lipsky, R.H.; Bourourou, M.; Duncan, M.W.; Gorelick, P.B.; Marini, A.M. Alpha-Linolenic Acid: An Omega-3 Fatty Acid with Neuroprotective Properties—Ready for Use in the Stroke Clinic? Biomed. Res. Int. 2015, 2015, 519830. [Google Scholar] [CrossRef] [PubMed]
- Opie, R.; Itsiopoulos, C.; Parletta, N.; Sanchez-Villegas, A.; Akbaraly, T.; Ruusunen, A.; Jacka, F. Dietary recommendations for the prevention of depression. Nutr. Neurosci. 2017, 20, 161–171. [Google Scholar] [CrossRef] [PubMed]
- Ali-Sisto, T.; Tolmunen, T.; Viinamäki, H.; Mäntyselkä, P.; Valkonen-Korhonen, M.; Koivumaa-Honkanen, H.; Honkalampi, K.; Ruusunen, A.; Nandania, J.; Velagapudi, V.; et al. Global arginine bioavailability ratio is decreased in patients with major depressive disorder. J. Affect. Disord. 2018, 229, 145–151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, Q.; Yu, B.; He, H.; Zhang, Q.; Meng, G.; Wu, H.; Du, H.; Liu, L.; Shi, H.; Xia, Y.; et al. Nut Consumption Is Associated With Depressive Symptoms Among Chinese Adults. Depress Anxiety 2016, 33, 1065–1072. [Google Scholar] [CrossRef] [PubMed]
- Arab, L.; Guo, R.; Elashoff, D. Lower Depression Scores among Walnut Consumers in NHANES. Nutrients 2019, 11, 275. [Google Scholar] [CrossRef] [PubMed]
- Miller, M.G.; Thangthaeng, N.; Poulose, S.M.; Shukitt-Hale, B. Role of fruits, nuts, and vegetables in maintaining cognitive health. Exp. Gerontol. 2017, 94, 24–28. [Google Scholar] [CrossRef] [PubMed]
- Miller, H.C.; Struyf, D.; Baptist, P.; Dalile, B.; Van Oudenhove, L.; Van Diest, I. A mind cleared by walnut oil: The effects of polyunsaturated and saturated fat on extinction learning. Appetite 2018, 126, 147–155. [Google Scholar] [CrossRef] [PubMed]
- Robinson, S.; Reginster, J.; Rizzoli, R.; Shaw, S.; Kanis, J.; Bautmans, I.; Bischoff-Ferrari, H.; Bruyère, O.; Cesari, M.; Dawson-Hughes, B.; et al. Does nutrition play a role in the prevention and management of sarcopenia? Clin. Nutr. 2018, 37, 1121–1132. [Google Scholar] [CrossRef] [PubMed]
- Stocks, J.; Valdes, A.M. Effect of dietary omega-3 fatty acid supplementation on frailty-related phenotypes in older adults: A systematic review and meta-analysis protocol. BMJ Open 2018, 8, e021344. [Google Scholar] [CrossRef] [PubMed]
- Tachtsis, B.; Camera, D.; Lacham-Kaplan, O. Potential Roles of n-3 PUFAs during Skeletal Muscle Growth and Regeneration. Nutrients 2018, 10, 309. [Google Scholar] [CrossRef] [PubMed]
- Rusu, M.E.; Gheldiu, A.-M.; Mocan, A.; Vlase, L.; Popa, D.-S. Anti-aging potential of tree nuts with a focus on phytochemical composition, molecular mechanisms and thermal stability of major bioactive compounds. Food Funct. 2018, 9, 2554–2575. [Google Scholar] [CrossRef] [PubMed]
- Ros, E. Health benefits of nut consumption. Nutrients 2010, 2, 652–682. [Google Scholar] [CrossRef] [PubMed]
- Thomas, S.; Browne, H.; Mobasheri, A.; Rayman, M.P. What is the evidence for a role for diet and nutrition in osteoarthritis? Rheumatology 2018, 57 (Suppl. 4), iv61–iv74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, B.; Driban, J.B.; Xu, C.; Lapane, K.L.; McAlindon, T.E.; Eaton, C.B. Dietary Fat Intake and Radiographic Progression of Knee Osteoarthritis: Data From the Osteoarthritis Initiative. Arthritis Care Res. 2017, 69, 368–375. [Google Scholar] [CrossRef] [PubMed]
- Rivas, A.; Romero, A.; Mariscal-Arcas, M.; Monteagudo, C.; Feriche, B.; Lorenzo, M.L.; Olea, F. Mediterranean diet and bone mineral density in two age groups of women. Int. J. Food Sci. Nutr. 2013, 64, 155–161. [Google Scholar] [CrossRef] [PubMed]
- Papagrigoraki, A.; Maurelli, M.; del Giglio, M.; Gisondi, P.; Girolomoni, G. Advanced Glycation End Products in the Pathogenesis of Psoriasis. Int. J. Mol. Sci. 2017, 18, 2471. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Lin, X.; Bu, C.; Zhang, X. Role of advanced glycation end products in mobility and considerations in possible dietary and nutritional intervention strategies. Nutr. Metab. 2018, 15, 72. [Google Scholar] [CrossRef] [PubMed]
- Wei, Q.; Liu, T.; Sun, D. Advanced glycation end-products (AGEs) in foods and their detecting techniques and methods: A review. Trends Food Sci. Technol. 2018, 82, 32–45. [Google Scholar] [CrossRef]
- Bonfigli, A.; Spazzafumo, L.; Prattichizzo, F.; Bonafè, M.; Mensà, E.; Micolucci, L.; Giuliani, A.; Fabbietti, P.; Testa, R.; Boemi, M.; et al. Leukocyte telomere length and mortality risk in patients with type 2 diabetes. Oncotarget 2016, 7, 50835–50844. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stefler, D.; Malyutina, S.; Maximov, V.; Orlov, P.; Ivanoschuk, D.; Nikitin, Y.; Gafarov, V.; Ryabikov, A.; Voevoda, M.; Bobak, M.; et al. Leukocyte telomere length and risk of coronary heart disease and stroke mortality: Prospective evidence from a Russian cohort. Sci. Rep. 2018, 8, 16627. [Google Scholar] [CrossRef] [PubMed]
- Song, S.; Johnson, F. Epigenetic Mechanisms Impacting Aging: A Focus on Histone Levels and Telomeres. Genes 2018, 9, 201. [Google Scholar] [CrossRef] [PubMed]
- Sack, M.; Fyhrquist, F.; Saijonmaa, O.; Fuster, V.; Kovacic, J. Basic Biology of Oxidative Stress and the Cardiovascular System: Part 1 of a 3-Part Series. J. Am. Coll. Cardiol. 2017, 70, 196–211. [Google Scholar] [CrossRef] [PubMed]
- Tucker, L. Consumption of Nuts and Seeds and Telomere Length in 5,582 Men and Women of the National Health and Nutrition Examination Survey (NHANES). J. Nutr. Health Aging 2017, 21, 233–240. [Google Scholar] [CrossRef] [PubMed]
- Tucker, L. Dietary Fiber and Telomere Length in 5674 U.S. Adults: An NHANES Study of Biological Aging. Nutrients 2018, 10, 400. [Google Scholar] [CrossRef] [PubMed]
- Freitas-Simoes, T.; Cofán, M.; Blasco, M.; Soberón, N.; Foronda, M.; Serra-Mir, M.; Roth, I.; Valls-Pedret, C.; Doménech, M.; Ponferrada-Ariza, E.; et al. Walnut Consumption for Two Years and Leukocyte Telomere Attrition in Mediterranean Elders: Results of a Randomized Controlled Trial. Nutrients 2018, 10, 1907. [Google Scholar] [CrossRef] [PubMed]
- Rusu, M.E.; Simedrea, R.; Gheldiu, A.-M.; Mocan, A.; Vlase, L.; Popa, D.-S.; Ferreira, I.C.F.R. Benefits of tree nut consumption on aging and age-related diseases: Mechanisms of actions. Trends Food Sci. Technol. 2019, 88, 104–120. [Google Scholar] [CrossRef]
- Zhou, Y.; Zheng, J.; Li, Y.; Xu, D.-P.; Li, S.; Chen, Y.-M.; Li, H.-B. Natural Polyphenols for Prevention and Treatment of Cancer. Nutrients 2016, 8, 515. [Google Scholar] [CrossRef] [PubMed]
- Shahidi, F.; Yeo, J. Bioactivities of Phenolics by Focusing on Suppression of Chronic Diseases: A Review. Int. J. Mol. Sci. 2018, 19, 1573. [Google Scholar] [CrossRef] [PubMed]
- Kang, I.; Buckner, T.; Shay, N.F.; Gu, L.; Chung, S. Improvements in Metabolic Health with Consumption of Ellagic Acid and Subsequent Conversion into Urolithins: Evidence and Mechanisms. Adv. Nutr. 2016, 7, 961–972. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seong, Y.; Shin, P.; Kim, G. Anacardic acid induces mitochondrial-mediated apoptosis in the A549 human lung adenocarcinoma cells. Int. J. Oncol. 2013, 42, 1045–1051. [Google Scholar] [CrossRef] [PubMed]
- Hamad, F.; Mubofu, E. Potential Biological Applications of Bio-Based Anacardic Acids and Their Derivatives. Int. J. Mol. Sci. 2015, 16, 8569–8590. [Google Scholar] [CrossRef] [PubMed]
- Lall, R.; Syed, D.; Adhami, V.; Khan, M.; Mukhtar, H. Dietary Polyphenols in Prevention and Treatment of Prostate Cancer. Int. J. Mol. Sci. 2015, 16, 3350–3376. [Google Scholar] [CrossRef] [PubMed]
- Popa, D.-S.; Rusu, M.E. Isoflavones: Vegetable Sources, Biological Activity, and Analytical Methods for Their Assessment. In Superfood and Functional Food—The Development of Superfoods and Their Roles as Medicine; Shiomi, N., Waisundara, V., Eds.; InTech: London, UK, 2017; ISBN 978-953-51-2942-4. [Google Scholar] [Green Version]
- Mayr, C.; Wagner, A.; Neureiter, D.; Pichler, M.; Jakab, M.; Illig, R.; Berr, F.; Kiesslich, T. The green tea catechin epigallocatechin gallate induces cell cycle arrest and shows potential synergism with cisplatin in biliary tract cancer cells. BMC Complement. Altern. Med. 2015, 15, 194. [Google Scholar] [CrossRef] [PubMed]
- Bimonte, S.; Leongito, M.; Barbieri, A.; Vecchio, V.D.; Barbieri, M.; Albino, V.; Piccirillo, M.; Amore, A.; Giacomo, R.D.; Nasto, A.; et al. Inhibitory effect of (−)-epigallocatechin-3-gallate and bleomycin on human pancreatic cancer MiaPaca-2 cell growth. Infect. Agent Cancer 2015, 10, 22. [Google Scholar] [CrossRef] [PubMed]
- Budisan, L.; Gulei, D.; Zanoaga, O.M.; Irimie, A.I.; Chira, S.; Braicu, C.; Gherman, C.D.; Berindan-Neagoe, I. Dietary Intervention by Phytochemicals and Their Role in Modulating Coding and Non-Coding Genes in Cancer. Int. J. Mol. Sci. 2017, 18, 1178. [Google Scholar] [CrossRef] [PubMed]
- Varoni, E.; Lo Faro, A.; Sharifi-Rad, J.; Iriti, M. Anticancer Molecular Mechanisms of Resveratrol. Front. Nutr. 2016, 3, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poulose, S.M.; Miller, M.G.; Scott, T.; Shukitt-Hale, B. Nutritional Factors Affecting Adult Neurogenesis and Cognitive Function. Adv. Nutr. 2017, 8, 804–811. [Google Scholar] [CrossRef] [PubMed]
- Pei, H.L.; Mu, D.M.; Zhang, B. Anticancer Activity of Pterostilbene in Human Ovarian Cancer Cell Lines. Med. Sci. Monit. 2017, 23, 3192–3199. [Google Scholar] [CrossRef] [Green Version]
- Reiter, R.J.; Manchester, L.; Tan, D.X. Melatonin in walnuts: Influence on levels of melatonin and total antioxidant capacity of blood. Nutrition 2005, 21, 920–924. [Google Scholar] [CrossRef] [PubMed]
- Cui, Z.; Liu, D.; Liu, C.; Liu, G. Serum selenium levels and prostate cancer risk: A MOOSE-compliant meta-analysis. Medicine 2017, 96, e5944. [Google Scholar] [CrossRef] [PubMed]
- Hughes, D.J.; Duarte-Salles, T.; Hybsier, S.; Trichopoulou, A.; Stepien, M.; Aleksandrova, K.; Overvad, K.; Tjønneland, A.; Olsen, A.; Affret, A.; et al. Prediagnostic selenium status and hepatobiliary cancer risk in the European Prospective Investigation into Cancer and Nutrition cohort. Am. J. Clin. Nutr. 2016, 104, 406–414. [Google Scholar] [CrossRef]
- Kris-Etherton, P.M.; Hu, F.B.; Ros, E.; Sabaté, J. The Role of Tree Nuts and Peanuts in the Prevention of Coronary Heart Disease: Multiple Potential Mechanisms. J. Nutr. 2008, 138, 1746S–1751S. [Google Scholar] [CrossRef]
- Gylling, H.; Plat, J.; Turley, S.; Ginsberg, H.N.; Ellegård, L.; Jessup, W.; Jones, P.J.; Lütjohann, D.; Maerz, W.; Masana, L.; et al. Plant sterols and plant stanols in the management of dyslipidaemia and prevention of cardiovascular disease. Atherosclerosis 2014, 232, 346–360. [Google Scholar] [CrossRef]
- Malinowski, J.; Gehret, M. Phytosterols for dyslipidemia. Am. J. Health Syst. Pharm. 2010, 67, 1165–1173. [Google Scholar] [CrossRef] [Green Version]
- Marangoni, F.; Poli, A. Phytosterols and cardiovascular health. Pharmacol. Res. 2010, 61, 193–199. [Google Scholar] [CrossRef] [PubMed]
- Eussen, S.R.B.M.; Rompelberg, C.J.M.; Klungel, O.H.; van Eijkeren, J.C.H. Modelling approach to simulate reductions in LDL cholesterol levels after combined intake of statins and phytosterols/-stanols in humans. Lipids Health Dis. 2011, 10, 187. [Google Scholar] [CrossRef] [PubMed]
- Ros, E.; Izquierdo-Pulido, M.; Sala-Vila, A. Beneficial effects of walnut consumption on human health: Role of micronutrients. Curr. Opin. Clin. Nutr. Metab. Care 2018, 21, 498–504. [Google Scholar] [CrossRef] [PubMed]
- Micallef, M.A.; Garg, M.L. The lipid-lowering effects of phytosterols and (n-3) polyunsaturated fatty acids are synergistic and complementary in hyperlipidemic men and women. J. Nutr. 2008, 138, 1086–1090. [Google Scholar] [CrossRef] [PubMed]
- Mangialasche, F.; Kivipelto, M.; Mecocci, P.; Rizzuto, D.; Palmer, K.; Winblad, B.; Fratiglioni, L. High plasma levels of vitamin E forms and reduced Alzheimer’s disease risk in advanced age. J. Alzheimers Dis. 2010, 20, 1029–1037. [Google Scholar] [CrossRef] [PubMed]
- Mangialasche, F.; Westman, E.; Kivipelto, M.; Muehlboeck, J.; Cecchetti, R.; Baglioni, M.; Tarducci, R.; Gobbi, G.; Floridi, P.; Soininen, H.; et al. Classification and prediction of clinical diagnosis of Alzheimer’s disease based on MRI and plasma measures of α-/γ-tocotrienols and γ-tocopherol. J. Intern. Med. 2013, 273, 602–621. [Google Scholar] [CrossRef]
- Khanna, S.; Parinandi, N.; Kotha, S.; Roy, S.; Rink, C.; Bibus, D.; Sen, C. Nanomolar vitamin E alpha-tocotrienol inhibits glutamate-induced activation of phospholipase A2 and causes neuroprotection. J. Neurochem. 2010, 112, 1249–1260. [Google Scholar] [CrossRef]
- Park, H.; Kubicki, N.; Gnyawali, S.; Chan, Y.; Roy, S.; Khanna, S.; Sen, C. Natural vitamin E α-tocotrienol protects against ischemic stroke by induction of multidrug resistance-associated protein 1. Stroke 2011, 42, 2308–2314. [Google Scholar] [CrossRef]
- Eisenhauer, B.; Natoli, S.; Liew, G.; Flood, V. Lutein and zeaxanthin—Food sources, bioavailability and dietary variety in age-related macular degeneration protection. Nutrients 2017, 9, 120. [Google Scholar] [CrossRef]
- Buscemi, S.; Corleo, D.; Di Pace, F.; Petroni, M.L.; Satriano, A.; Marchesini, G. The Effect of Lutein on Eye and Extra-Eye Health. Nutrients 2018, 10, 1321. [Google Scholar] [CrossRef] [PubMed]
- Vishwanathan, R.; Iannaccone, A.; Scott, T.; Kritchevsky, S.; Jennings, B.; Carboni, G.; Forma, G.; Satterfield, S.; Harris, T.; Johnson, K.; et al. Macular pigment optical density is related to cognitive function in older people. Age Ageing 2014, 43, 271–275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mewborn, C.M.; Lindbergh, C.A.; Robinson, T.L.; Gogniat, M.A.; Terry, D.P.; Jean, K.R.; Hammond, B.R.; Renzi-Hammond, L.M.; Miller, L.S. Lutein and Zeaxanthin Are Positively Associated with Visual–Spatial Functioning in Older Adults: An fMRI Study. Nutrients 2018, 10, 458. [Google Scholar] [CrossRef] [PubMed]
- Cho, K.; Shin, M.; Kim, S.; Lee, S. Recent Advances in Studies on the Therapeutic Potential of Dietary Carotenoids in Neurodegenerative Diseases. Oxid. Med. Cell. Longev. 2018, 2018, 4120458. [Google Scholar] [CrossRef] [PubMed]
- Berryman, C.E.; Grieger, J.A.; West, S.G.; Chen, C.-Y.O.; Blumberg, J.B.; Rothblat, G.H.; Sankaranarayanan, S.; Kris-Etherton, P.M. Acute consumption of walnuts and walnut components differentially affect postprandial lipemia, endothelial function, oxidative stress, and cholesterol efflux in humans with mild hypercholesterolemia. J. Nutr. 2013, 143, 788–794. [Google Scholar] [CrossRef] [PubMed]
- Tuccinardi, D.; Farr, O.; Upadhyay, J.; Oussaada, S.; Klapa, M.; Candela, M.; Rampelli, S.; Lehoux, S.; Lázaro, I.; Sala-Vila, A.; et al. Mechanisms underlying the cardiometabolic protective effect of walnut consumption in obese people: A cross-over, randomized, double-blind, controlled inpatient physiology study. Diabetes Obes. Metab. 2019. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, P.; Silva, A.; Almeida, A.; Hermsdorff, H.; Alfenas, R. Effect of chronic consumption of pistachios (Pistacia vera L.) on glucose metabolism in pre-diabetics and type 2 diabetics: A systematic review. Crit. Rev. Food Sci. Nutr. 2019, 59, 1115–1123. [Google Scholar] [CrossRef]
- Hashim, S.A.; VanItallie, T.B. Ketone body therapy: From the ketogenic diet to the oral administration of ketone ester. J. Lipid Res. 2014, 55, 1818–1826. [Google Scholar] [CrossRef] [PubMed]
- Puchalska, P.; Crawford, P.A. Multi-dimensional Roles of Ketone Bodies in Fuel Metabolism, Signaling, and Therapeutics. Cell Metab. 2017, 25, 262–284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pinto, A.; Bonucci, A.; Maggi, E.; Corsi, M.; Businaro, R. Anti-Oxidant and Anti-Inflammatory Activity of Ketogenic Diet: New Perspectives for Neuroprotection in Alzheimer’s Disease. Antioxidants 2018, 7, 63. [Google Scholar] [CrossRef] [PubMed]
- Claesson, M.; Jeffery, I.; Conde, S.; Power, S.; O’Connor, E.; Cusack, S.; Harris, H.; Coakley, M.; Lakshminarayanan, B.; O’Sullivan, O.; et al. Gut microbiota composition correlates with diet and health in the elderly. Nature 2012, 488, 178–184. [Google Scholar] [CrossRef] [PubMed]
- Bian, G.; Gloor, G.B.; Gong, A.; Jia, C.; Zhang, W.; Hu, J.; Zhang, H.; Zhang, Y.; Zhou, Z.; Zhang, J.; et al. The Gut Microbiota of Healthy Aged Chinese Is Similar to That of the Healthy Young. mSphere 2017, 2, e00327-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.; Jazwinski, S. The Gut Microbiota and Healthy Aging: A Mini-Review. Gerontology 2018, 64, 513–520. [Google Scholar] [CrossRef] [PubMed]
- Voreades, N.; Kozil, A.; Weir, T.L. Diet and the development of the human intestinal microbiome. Front. Microbiol. 2014, 5, 494. [Google Scholar] [CrossRef] [PubMed]
- Koh, A.; De Vadder, F.; Kovatcheva-Datchary, P.; Bäckhed, F. From Dietary Fiber to Host Physiology: Short-Chain Fatty Acids as Key Bacterial Metabolites. Cell 2016, 165, 1332–1345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Vadder, F.; Kovatcheva-Datchary, P.; Goncalves, D.; Vinera, J.; Zitoun, C.; Duchampt, A.; Bäckhed, F.; Mithieux, G. Microbiota-Generated Metabolites Promote Metabolic Benefits via Gut-Brain Neural Circuits. Cell 2014, 156, 84–96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dinan, T.G.; Cryan, J.F. Gut Instincts: Microbiota as a key regulator of brain development, ageing and neurodegeneration. J. Physiol. 2017, 595, 489–503. [Google Scholar] [CrossRef] [PubMed]
- Perez-Pardo, P.; Hartog, M.; Garssen, J.; Kraneveld, A.D. Microbes Tickling Your Tummy: The Importance of the Gut-Brain Axis in Parkinson’s Disease. Curr. Behav. Neurosci. Rep. 2017, 4, 361–368. [Google Scholar] [CrossRef] [PubMed]
- Killinger, B.A.; Labrie, V. Vertebrate food products as a potential source of prion-like α-synuclein. NPJ Park. Dis. 2017, 3, 33. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.K.; Chang, H.W.; Yan, D.; Lee, K.M.; Ucmak, D.; Wong, K.; Abrouk, M.; Farahnik, B.; Nakamura, M.; Zhu, T.H.; et al. Influence of diet on the gut microbiome and implications for human health. J. Transl. Med. 2017, 15, 73. [Google Scholar] [CrossRef]
- Tzounis, X.; Vulevic, J.; Kuhnle, G.G.; George, T.; Leonczak, J.; Gibson, G.R.; Kwik-Uribe, C.; Spencer, J.P. Flavanol monomer-induced changes to the human faecal microflora. Br. J. Nutr. 2008, 99, 782–792. [Google Scholar] [CrossRef] [PubMed]
- Byerley, L.O.; Samuelson, D.; Blanchard, E., 4th; Luo, M.; Lorenzen, B.N.; Banks, S.; Ponder, M.A.; Welsh, D.A.; Taylor, C.M. Changes in the gut microbial communities following addition of walnuts to the diet. J. Nutr. Biochem. 2017, 48, 94–102. [Google Scholar] [CrossRef] [PubMed]
- Holscher, H.D.; Guetterman, H.M.; Swanson, K.S.; An, R.; Matthan, N.R.; Lichtenstein, A.H.; Novotny, J.A.; Baer, D.J. Walnut consumption alters the gastrointestinal microbiota, microbially derived secondary bile acids, and health markers in healthy adults: A randomized controlled trial. J. Nutr. 2018, 148, 861–867. [Google Scholar] [CrossRef] [PubMed]
- Bamberger, C.; Rossmeier, A.; Lechner, K.; Wu, L.; Waldmann, E.; Fischer, S.; Stark, R.G.; Altenhofer, J.; Henze, K.; Parhofer, K.G. A walnut-enriched diet affects gut microbiome in healthy caucasian subjects: A randomized, controlled trial. Nutrients 2018, 10, 244. [Google Scholar] [CrossRef] [PubMed]
- Ukhanova, M.; Wang, X.; Baer, D.J.; Novotny, J.A.; Fredborg, M.; Mai, V. Effects of almond and pistachio consumption on gut microbiota composition in a randomised cross-over human feeding study. Br. J. Nutr. 2014, 111, 2146–2152. [Google Scholar] [CrossRef] [PubMed]
- Holscher, H.D.; Taylor, A.M.; Swanson, K.S.; Novotny, J.A.; Baer, D.J. Almond consumption and processing affects the composition of the gastrointestinal microbiota of healthy adult men and women: A randomized controlled trial. Nutrients 2018, 10, 126. [Google Scholar] [CrossRef] [PubMed]
- Tindall, A.M.; Petersen, K.S.; Skulas-Ray, A.C.; Richter, C.K.; Proctor, D.N.; Kris-Etherton, P.M. Replacing Saturated Fat With Walnuts or Vegetable Oils Improves Central Blood Pressure and Serum Lipids in Adults at Risk for Cardiovascular Disease: A Randomized Controlled-Feeding Trial. J. Am. Heart Assoc. 2019, 8, e011512. [Google Scholar] [CrossRef] [PubMed]
- Di Daniele, N.; Noce, A.; Vidiri, M.; Moriconi, E.; Marrone, G.; Annicchiarico-Petruzzelli, M.; D’Urso, G.; Tesauro, M.; Rovella, V.; De Lorenzo, A. Impact of Mediterranean diet on metabolic syndrome, cancer and longevity. Oncotarget 2017, 8, 8947–8979. [Google Scholar] [CrossRef] [PubMed]
Author, Year, Country [Ref] | Design | Subjects (F:M) Mean Age (Range) | Length of Study | Comparison Group | Intake of Nuts | Findings |
---|---|---|---|---|---|---|
Salas-Salvadó et al., 2011,2018 Spain [13] | RCT | 418 (293:125) 67 (55–80) y | 4 y | Control (low-fat diet *) | MD + 30 g/d nuts (15 g W, 7.5 g H, 7.5 g A) | ↓ diabetes incidence, HR 0.47 (95% CI: 0.23–0.98) (vs. control) |
Estruch et al., 2018, Spain [20] | RCT, Parallel, multicenter | 2454 (1326:1128) 66.7 ± 6.1 | 4.8 y | Control (nut free diet) | MD + 30 g/d mixed nuts (15 g W, 7.5 g A, 7.5 g H) | ↓ incidence of CV events (myocardial infarction, stroke, death from CV causes) (vs. control) HR 0.64 (95% CI: 0.47–0.88) |
Pan et al., 2013, USA [14] | Prospective (NHS) | 58,063 F 52–77 y | 22 y | Tree nuts and peanuts (1) Never/rarely (2) <1 serving/wk (3) 1 serving/wk (4) 2–4 servings/wk (5) ≥5 servings/wk | ↓ T2DM risk (p-trend < 0.001) for tree nuts and peanuts HR 0.80 (95% CI: 0.71–0.90) for (2) to (4) vs. (1) HR 0.74 (95% CI: 0.65–0.84) for (5) vs. (1) ↓ T2DM risk (p-trend = 0.002) for walnuts HR 0.76 (95% CI: 0.62–0.94) for (4),(5) vs. (1) | |
Ibarrola-Jurado et al., 2013, Spain [15] | Cross-sectional (PREDIMED) | 7210 (4143:3067) 67 (55–80) y | Tree nuts and peanuts (1) <1 serving/wk (2) 1–3 servings/wk (3) >3 servings/wk | ↓ prevalence of diabetes (3) vs. (1): OR 0.87 (95% CI: 0.78–0.99), p-trend = 0.043 ↓ prevalence of MS (3) vs. (1): OR 0.74 (95% CI: 0.65–0.85), p-trend < 0.001 ↓ prevalence of obesity (3) vs. (1): OR 0.61 (95% CI: 0.54–0.68), p-trend < 0.001 | ||
Guasch-Ferré et al., 2013, Spain [16] | Prospective (PREDIMED) | 7216 (4145:3071) 67 y | 4.8 y | Tree nuts and peanuts (1) none (2) 1–3 servings/wk (3) >3 servings/wk | ↓ CV mortality (3) vs. (1) for walnuts HR 0.53 (95% CI: 0.29–0.98), p-trend = 0.047 ↓ CV mortality (3) vs. (1) for tree nuts (no walnuts) and peanuts HR 0.42 (95% CI: 0.20–0.89), p-trend = 0.031 ↓ total mortality risk (3) vs. (1) for tree nuts (walnuts included) and peanuts HR 0.61 (95% CI: 0.45–0.83), p-trend = 0.01 | |
Hshieh et al., 2015, USA [17] | Prospective | 20,742 M 67 y | 9.6 y | Tree nuts and peanuts (1) <1 serving/mo (2) 1–3 servings/mo (3) 1 serving/wk (4) 2–4 servings/wk (5) ≥5 servings/wk | ↓ CVD deaths (5) vs. (1) HR 0.74 (95% CI: 0.55–1.02), p-trend = 0.015 | |
Guasch-Ferré et al., 2017, USA [18] | Prospective (a) NHS (b) NHS II (c) HPFS | (a) 76,364 F (b) 92,946 F (c) 41,526 M 56 y | 28.7 y 21.5 y 22.5 y | Tree nuts and peanuts (1) Never/almost never (2) <1 time/wk (3) 1 time/wk (4) 2–4 times/wk (5) ≥5 times/wk | (5) vs. (1) for tree nuts and peanuts ↓ CVD-HR 0.86 (95% CI: 0.79–0.93, p-trend < 0.001) ↓ CHD-HR 0.80 (95% CI: 0.72–0.89, p-trend < 0.001) ≥2 times/wk tree nuts and peanuts ↓ 13–19% CVD risk ↓ 15–23% CHD risk | |
Larsson et al., 2018, Sweden [19] | Prospective | 61,364 (28,453:32,911) 58 (45–83) y | 17 y | Tree nuts and peanuts (1) none (2) 1–3 times/mo (3) 1–2 times/wk (4) ≥3 times/wk | ↓ risk of atrial fibrillation for (4) vs. (1) (linear association) HR 0.82 (95% CI: 0.68–0.99), p-trend = 0.004 ↓ risk of heart failure for (3) vs. (1) (non-linear association) HR 0.80 (95% CI: 0.67–0.97), p-trend = 0.003 (fully adjusted models) | |
Liu et al., 2019, USA [21] | Prospective (NHS, HPFS) | 16,217 (12,006:4211) 64.7–69.4 y | 34 y 28 y | Tree nuts and peanuts (1) <1 serving/mo (2) <1 serving/wk (3) 1 serving/wk (4) 2–4 servings/wk (5) ≥5 servings/wk | (5) vs. (1) HRs ↓ CVD incidence, 0.83 (0.71–0.98), p-trend = 0.01 ↓ CHD incidence, 0.80 (0.67–0.96), p-trend = 0.005 ↓ CVD mortality, 0.66 (0.52–0.84), p-trend < 0.001 ↓ all-cause mortality 0.69 (0.61–0.77), p-trend < 0.001 |
Author, Year, Country [Ref] | Design | Subjects (F:M) Mean Age (±SD) | Length of Study | COMPARISON GROUP | Intake of Nuts | Findings |
---|---|---|---|---|---|---|
Li et al., 2011, Taiwan [31] | RCT, Crossover | 20 (11:9) T2DM patients 58 y | 12 wk | Control (diet without A) | 56 g/d A | ↓ T-C 6.0% (95% CI: 1.6–9.4), p ≤ 0.0025 ↓ LDL-C 11.6% (95% CI: 2.8–19.1), p ≤ 0.0117 ↓ LDL-C/HDL-C ratio 9.7% (95% CI: 0.3–20.9), p ≤ 0.0128 (vs. control) |
Wu et al., 2014, Germany [32] | RCT, Crossover | 40 (30:10) 60 ± 1 y | 8 wk | Control (nut-free Western-type diet) | 43 g/d W | ↓ non-HDL-C (−10 ± 3 mg/dL, p = 0.025) ↓ apoB (−5.0 ± 1.3 mg/dL, p = 0.009) (vs. baseline) |
Hernández-Alonso et al., 2015, Spain [33] | RCT, Crossover | 54 (25:29) prediabetics 55 y | 9 mo | Control (diet without pistachios) | 57 g/d pistachio | ↓ LDL-C (P) −28.07 nM (95% CI: −60.43 to 4.29) vs. baseline; p = 0.02 ↓ Non-HDL-C (P) −36.02 nM (95% CI: −77.56 to 5.52) vs. baseline; p = 0.04 |
Ruisinger et al., 2015, USA [34] | RCT, Parallel | 48 (24:24) on statin therapy 60 y | 4 wk | Control (diet without A) | 100 g/d A | ↓ non-HDL-C (113.4 ± 24.5 vs. 124.7 ± 20.8 mg/dL, p = 0.024) ↓ LDL-C (95.6 ± 23.9 vs. 104.3 ± 18.7 mg/dL, p = 0.068) ↓ TG (102.1 ± 38.3 vs. 115.0 ± 42.6 mg/dL, p = 0.068) (vs. control) |
Jamshed et al., 2015, Pakistan [35] | RCT | 150 (37:113) CAD patients 60 (32–86) y | 12 wk | Control (diet without A) | 10 g/d A before breakfast | ↑ HDL-C (40 ± 6 vs. 33 ± 5 mg/dL) ↓ TG (118 ± 18 vs. 130 ± 20 mg/dL) (vs. baseline; p all < 0.05) |
Njike et al., 2015, USA [36] | RCT, Parallel | 112 (81:31) 55 y | 6 mo | Control (diet without W) | 56 g/d W | ↓ T-C (−16.04 ± 27.34 mg/dL vs. baseline, p < 0.0001) ↓ LDL-C (−14.52 ± 24.11 mg/dL vs. baseline, p < 0.0001) |
Huguenin et al., 2015, Brazil, [37] | RCT, Crossover | 91 (44:47) hypertensive 62 y | 12 wk | Control (nut-free diet) | 13 g/d Granulated Brazil nut | ↓ Ox LDL-C (60.68 ± 20.88 from 66.31 ± 23.59 U/L) (vs. baseline, p < 0.05) |
Sauder et al., 2015, USA [38] | RCT, Crossover | 30 (15:15) 56.1 ± 7.8 y | 4 wk | Control (diet without pistachios) | pistachios (20% of total energy) | ↓ T-C (4.00 ± 0.06 vs. 4.15 ± 0.06 mmol/L, p = 0.048) ↓ T-C/HDL-C (4.06 ± 0.08 vs. 4.37 ± 0.08, p = 0.0004) ↓ TG (1.56 ± 0.10 vs. 1.84 ± 0.10, p = 0.003) (vs. control) |
Mah et al., 2017, USA [39] | RCT, Crossover | 51 (31:20) 56 y | 4 wk | Control (diet without cashews) | 28–64 g/d cashews | ↓ T-C 23.9% (95% CI: 29.3–1.7) vs. 0.8% (95% CI: 21.5–4.5) ↓ LDL-C 24.8% (95% CI: 212.6–3.1) vs. 1.2% (95% CI: 22.3–7.8) ↓ non-HDL-C 25.3% (95% CI: 28.6–2.1) vs. 1.7% (95% CI: 20.9–5.6%)(vs. baseline compared with control, p < 0.05) |
Bamberger et al., 2017, Germany [40] | RCT, Crossover | 194 (134:60) 63 ± 0.54 y | 24 wk | Control (diet without W) | 43 g/d W | ↓ T-C (−9.5 vs. −2.2 mg/dL, p = 0.0003) ↓ LDL-C (−7.3 vs. −1.9 mg/dL, p = 0.0009) ↓ non-HDL-C (−9.4 vs. −1.5 mg/dL, p < 0.001) ↓ TG (−5.5 vs. 3.4 mg/dL, p = 0.0943) ↓ apoB (−6.8 vs. −0.9 mg/dL, p < 0.0001) (vs. control) |
McKay et al., 2018, USA [41] | RCT, Crossover | 26 (5:21) 59.7 (57–70) y | 12 wk | Control (isocaloric, no pecans) | 42.5 g/d pecans | ↓ T-C (−8.89 ± 4.41, p = 0.056) ↓ LDL-C (−7.41 ± 3.85, p = 0.067) |
Jenkins et al., 2018, Canada [42] | RCT, Parallel | 117 (39:78) diabetics 62 y | 3 mo | Controls (isocaloric (1) carbs diet and (2) carbs and nut diet) | 75 g/d mixed nuts (tree nuts and peanuts) | ↓ T-C −0.06 mmol/L (95% CI: −0.12 to −0.01), p = 0.026 ↓ non HDL-C −0.09 mmol/L (95% CI: −0.17 to −0.01), p = 0.026 ↓ apoB −0.09 g/L (95% CI: −0.16 to −0.02), p = 0.015 vs. control (1) |
Bowen et al., 2019, Australia [43] | RCT | 76 (31:45) 61 y | 8 wk | Control (nut free diet) | 56 g/d A | ↓ TC/HDL-C ratio (in women, but not in men) |
Author, Year, Country [Ref] | Design | Subjects (F:M) Mean Age (Range) | Length of Study | Comparison Group | Intake of Nuts | Findings |
---|---|---|---|---|---|---|
Li et al., 2011, Taiwan [31] | RCT, Crossover | 20 (11:9) diabetics 58 y | 12 wk | Control (diet without A) | 60 g/d A | ↓ fasting insulin 4.1% (95% CI: 0.9–12.5), p ≤ 0.0184 ↓ fasting glucose 0.8% (95% CI: 0.4–6.3), p ≤ 0.0238 ↓ HOMA-IR 9.2% (95% CI: 4.4–13.2), p ≤ 0.0039 (vs. control) |
Cohen & Johnston, 2011, USA [54] | RCT | 13 (6:7) diabetics 66 y | 12 wk | Control (diet without A) | 28 g/d A | ↓ HbA1c (−4% vs. +1% for almond group vs. control), p = 0.045 ↓ BMI (−4% vs. 0% for almond group vs. control), p = 0.047 |
Damasceno et al., 2013, Spain [55] | RCT | 169 (95:74) 67 (55–80) y | 1 y | Baseline and Control (low-fat diet *) | MD + 30 g/d nuts (15 g W, 7.5 g H, 7.5 g A) | ↓ Wc −5.1cm (95% CI: −6.8 to −3.4) vs. baseline; p ≤ 0.006 ↓VLDL-C −111 nmol/l (95% CI: −180 to −42) vs. baseline |
Lasa et al., 2014, Spain [56] | RCT | 191 (114:77) diabetics 67 (55–80) y | 1 y | Baseline and Control (low-fat diet) | 30 g/d nuts (15 g W, 7.5 g H, 7.5 g A) | ↓ BW (−0.71 ± 2.41 kg vs. baseline of 75.2 ± 11.5 kg, p = 0.021) ↓ Wc (−4.84 ± 7.50 cm vs. baseline of 99.1 ± 8.96 cm, p = 0.001 for women) |
Hernández-Alonso et al., 2014, Spain [57] | RCT, Crossover | 54 (25:29) prediabetics 55 y | 9 mo | Control (diet without pistachios) | 57 g/d pistachio | ↓ fasting glucose −5.17 mg/dL (95% CI: −8.14 to −2.19) vs. baseline; p < 0.001 ↓ fasting insulin −2.04 mU/mL (95% CI: −3.17 to −0.92) vs. baseline; p < 0.001 ↓HOMA-IR −0.69 (95% CI: −1.07 to −0.31) vs. baseline; p < 0.001 ↑ GLP−1 4.09 pg/mL (95% CI: 1.25–6.94) vs. baseline; p = 0.01 |
Rodríguez-Rejón et al., 2014, Spain [58] | RCT | 2866 (1781:1085) non-diabetics 67 (55–80) y | 1 y | Control (low-fat diet) | MD + 30 g/d nuts (15 g W, 7.5 g H, 7.5 g A) | ↓ dietary GL −10.34 (95% CI: −12.69 to −8.00) ↓dietary GI −1.06 (95% CI: −1.51 to −0.62) |
Chen et al., 2017, China [59] | RCT, Crossover | 33 (20:13) diabetics 55 y | 12 wk | Control (isocaloric diet no A) | 60 g/d A | ↓ fasting glucose 129.3 ± 25.6 (fast) vs. 132.8 ± 24.8 (pre) p = 0.011 ↓ HbA1c (%) 7.01 ± 0.62 (fast) vs. 7.18 ± 0.64 (pre) p = 0.043 |
Hou et al., 2018, China [60] | RCT | 25 (10:15) diabetics 70 (40–80) y | 3 mo | Compared to baseline | (1) Peanuts (60 g/d men, 50 g/d women) (2) A (55 g/d men, 45 g/d women) | ↓ fasting glucose–in (1) and (2) ↓ postprandial 2-h blood glucose–in (1) and (2) (compared to baseline) (p < 0.05) |
Jenkins et al., 2018, Canada [42] | RCT, Parallel | 117 (39:78) diabetics 62 y | 3 mo | Controls (isocaloric (1) carbs diet and (2) carbs and nut diet) | 75 g/d mixed nuts (tree nuts and peanuts) | ↓ HbA1c −2.0 mmol/mol (95% CI: −3.8 to −0.3), p = 0.026 vs. control (1) |
McKay et al., 2018, USA [41] | RCT, Crossover | 26 (5:21) 59.7 (57–70) y | 12 wk | Control (isocaloric, no pecans) | 42.5 g/d pecans | ↓ fasting insulin (−2.00 ± 0.83 µIU/mL, p = 0.024) ↓ HOMA-IR (−0.51 ± 0.23, p = 0.037) |
Author, Year, Country [Ref] | Design | Subjects (F:M)Mean Age (±SD) | Length of Study | Comparison Group | Intake of Nuts | Findings |
---|---|---|---|---|---|---|
Ma et al., 2010, USA [74] | RCT, Crossover | 24 (14:10) 58.1 ± 9.2 y | 8 wk | Control (diet without W) | 56 g/d W | ↑ FMD (2.2 ± 1.7 vs. 1.2 ± 1.6%, p = 0.04) (vs. control) |
Katz et al., 2012, USA [75] | RCT, Crossover | 46 (28:18) 57.4 ± 11.9 y | 8 wk | Control (diet without nuts) | 56 g/d W | ↑ FMD 1.1% (95% CI: 0.2–2.0), p = 0.019 (vs. control) |
Liu et al., 2013, Taiwan [76] | RCT, Crossover | 20 (11:9) diabetics 58 y | 12 wk | Control (diet without A) | 56 g/d A | ↓ IL-6 10.3% (95% CI: 5.2–12.6) ↓ TNF-α 15.7 % (95% CI: −0.3 to 29.9) ↓ CRP 10.3% (95% CI: −24.1 to 40.5), p = 0.0455 (vs. control) |
Sweazea et al., 2014, USA [77] | RCT, Parallel | 21 (12:9) 56.2 y | 12 wk | Control (diet without A) | 43 g/d A | ↓ CRP in almond group vs. control (−1.2 vs. +4.33 mg/L, p = 0.029) |
Chen et al. 2015, USA [78] | RCT Crossover | 45 (26:18) 61.8 ± 8.6 y CAD patients | 22 wk | Control (diet without A) | 85 g/d A | ↑ FMD, % (7.7 ± 3.3 vs. 8.3 ± 3.8%) (vs. control) |
Yu et al., 2016, USA [79] | Cross-sectional (a)NHS (b)HPFS | (a) 3654 F; 59 y (b) 1359 M; 65 y | 4 y | Tree nuts and peanuts (1) Never or almost never (2) <1 time/wk (3) 1 time/wk (4) 2–4 times/wk (5) ≥5 times/wk | ↓ CRP–RR 0.90 (0.84–0.97) for (4) vs. (1); RR 0.84 (0.74–0.95) for (5) vs. (1) (p-trend = 0.006) ↓ IL-6–RR 0.88 (0.83–0.94) for (4) vs. (1); RR 0.88 (0.79–0.99) for (5) vs. (1) (p-trend = 0.016) |
Author, Year, Country [Ref] | Design | Subjects (F:M) Mean Age (Range) | Length of Intervention | Intake of Nuts | Findings |
---|---|---|---|---|---|
Hardman et al., 2019, USA [105] | RCT | 10 women 55 y | 2 to 3 wk | 56 g/d walnuts | ↓ growth and survival of breast cancer cells in walnut-diet group vs. control (no walnut) |
Raimondi et al., 2010, Canada, [91] | Case-control study | 394 men 69 y | Total nuts (g/d) (1) 0 (2) 0.1–1.2 (3) 1.3–3.0 (4) >3 | ↓ prostate cancer risk (4) vs. (1): OR 0.43 (95% CI: 0.22–0.85), p-trend = 0.01 | |
Ibiebele et al., 2012, Australia [92] | Case-control study | 2780 women 57 y | n-6 fatty acid (g) from total nuts (1) 0.13 (0.0–0.29) (2) 0.45 (0.29–0.68) (3) 1.48 (0.73–2.59) (4) 3.35 (2.59–25.9) | ↓ ovarian cancer risk (4) vs. (1) OR 0.72 (95% CI: 0.57–0.92), p-trend = 0.02 | |
Guasch-Ferré et al., 2013, Spain [16] | Prospective | 7216 (4145:3071) high CV risk 67 y | 4.8 y | Tree nuts and peanuts (1) none (2) 1–3 servings/wk (3) >3 servings/wk | ↓ cancer mortality (3) vs. (1) for walnuts HR 0.46 (0.27–0.79), p-trend = 0.005 ↓ cancer mortality (3) vs. (1) for all nuts HR 0.60 (0.37–0.98), p-trend = 0.064 |
Bao et al., 2013, USA [93] | Prospective | 75,680 women 59 y | 30 y | Tree nuts and peanuts (1) never/almost never (2) 1–3 times/mo (3) 1 time/wk (4) ≥2 times/wk | ↓ pancreatic cancer risk (p-trend = 0.01) RR 0.71 (95% CI: 0.51–0.99) for (3) vs. (1) RR 0.68 (95% CI: 0.48–0.96) for (4) vs. (1) |
van den Brandt and Schouten, 2015, the Netherlands [94] | Prospective | 120,852 (62,573:58,279) 61 y | 10 y | Tree nuts and peanuts (1) 0 g/d (2) 0.1–5 g/d (3) 5–10 g/d (4) 10+ g/d | ↓ cancer mortality (p-trend = 0.002) HR 0.82 (95% CI: 0.68–0.98) for (3) vs. (1) HR 0.79 (95% CI: 0.67–0.93) for (4) vs. (1) |
Yang et al., 2016, USA [95] | Prospective | 75,680 women 59 y | 30 y | Tree nuts and peanuts (1) never/almost never (2) 1–3 times/mo (3) once/wk (4) ≥2 times/wk | ↓ colorectal cancer risk (p-trend = 0.06), RR 0.87 (95% CI: 0.72–1.05) for (4) vs. (1) |
Wang et al., 2016, USA [96] | Prospective | 47,299 men 65 y | 26 y | Tree nuts and peanuts (1) Never or almost never (2) <1 time/wk (3) 1 time/wk (4) 2–4 times/wk (5) ≥5 times/wk | ↓ overall mortality after being diagnosed with non-metastatic prostate cancer (5) vs. (1) HR 0.66 (95% CI: 0.52–0.83), p-trend = 0.0005 |
Lee et al., 2017, Italy/USA [97] | EAGLE case-control study; NIH-AARP Diet and Health cohort study | 3639—65 y 495,785—62 y | 16 y | Tree nuts and peanuts 10 categories, ranging from “never” to ≥2 times per day; 3 categories for portion size | ↓ lung cancer risk (highest vs. lowest nut intake) OREAGLE 0.74 (95% CI: 0.57–0.95), p-trend = 0.017 HRAARP 0.86 (95% CI: 0.81–0.91), p-trend < 0.001 |
Hashemian et al., 2017, USA [98] | Prospective | 566,407 (59.6% men) 63 (50–71) y | 15.5 y | Tree nuts, peanuts, peanut butter Expressed in g/1000 kcal: (C0) 0 (C1) 0.11 (0.05, 0.16) (C2) 0.51 (0.36, 0.68) (C3) 2.20 (1.35, 4.12) | ↓ gastric noncardia adenocarcinoma risk (C3) vs. (C0): HR 0.73 (95% CI: 0.57–0.94, p-trend 0.004) for tree nuts and peanuts HR 0.75 (95% CI: 0.60–0.94, p-trend 0.02) for peanut butter |
Nieuwenhuis and van den Brandt 2018, the Netherlands [99] | Prospective | 120,852 (62,573:58,279) 62 (55–69) y | 20.3 y | Tree nuts and peanuts: (1) non-consumers (2) 0.1–5 g/d (3) 5–10 g/d (4) >10 g/d | ↓ pancreatic cancer risk in men—(3), (4) vs. (1) HR 0.53 (95% CI: 0.28–1.00), p-trend = 0.047 |
Nieuwenhuis and van den Brandt 2018, the Netherlands [100] | Prospective | 120,852 (62,573:58,279) 62 (55–69) y | 20.3 y | Tree nuts and peanuts: (1) non-consumers (2) 0.1–5 g/d (3) 5–10 g/d (4) >10 g/d | ↓ esophageal squamous cell carcinoma risk(4) vs. (1) HR 0.54 (95% CI: 0.30–0.96), p-trend = 0.050 |
Fadelu et al., 2018, USA [101] | Prospective | 826 patients with stage III colon cancer | 6.5 y | Tree nuts and peanuts (1) none (2) ≥2 servings/wk | ↑ disease-free survival (2) vs. (1) HR 0.58 (95% CI: 0.37–0.92), p-trend = 0.03 ↑ overall survival (2) vs. (1) HR 0.43 (95% CI: 0.25–0.74), p-trend = 0.01 ↓ cancer recurrence and mortality |
van den Brandt and Nieuwenhuis 2018, the Netherlands [102] | Prospective | 62,573 women 61 (55–69) y | 20.3 y | Tree nuts and peanuts: (1) non-consumers (2) 0.1–5 g/d (3) 5–10 g/d (4) >10 g/d | ↓ (ER -) breast cancer risk (4) vs. (1) HR 0.55 (95% CI: 0.33–0.93), p-trend = 0.025 ↓ ER–PR breast cancer risk (4) vs. (1) HR 0.53 (95% CI: 0.29–0.99), p-trend = 0.037 |
Zhao et al., 2018, China [103] | Case-control study | 444 (152:292) 59 (40–69) y | Peanuts: (1) <1/mo (2) 1–3 times/mo (3) 1–3 times /wk (4) 4–6 times/wk | ↓ esophageal squamous cell carcinoma risk(4) vs. (1) OR 0.31 (95% CI: 0.16–0.59), p-trend < 0.001 | |
Lee et al., 2018, Korea [104] | Case-control study | 2769 (894:1875) 57 (48–66) y | Tree nuts and peanuts (1) None (2) <1 serving (15g)/wk (3) 1–3 servings/wk (4) ≥3 servings/wk | ↓ colorectal cancer risk (F,M) (4) vs. (1) OR 0.30 (95% CI: 0.20–0.45), p-trend < 0.001 ↓ distal colon cancer risk (4) vs. (1) OR 0.13 (95% CI: 0.04–0.48), p < 0.001 for F OR 0.39 (95% CI: 0.19–0.80), p = 0.004 for M ↓ rectal cancer risk (4) vs. (1) OR 0.40 (95% CI: 0.17–0.95), p = 0.006 for F OR 0.23 (95% CI: 0.12–0.46), p < 0.001 for M | |
Sui et al., 2019, USA [106] | Prospective, NHS and HPFS | 88,783 women 51,492 men 63 y | 27.9 y | Tree nuts, servings/wk (1) 0.01 (2) 0.23 (3) 1.25 | ↓ hepatocellular carcinoma (3) vs. (1) HR 0.64 (95% CI: 0.43–0.95), p-trend = 0.07 |
Nieuwenhuis and van den Brandt 2019, the Netherlands [107] | Prospective | 120,852 (62,573:58,279) 62 (55–69) y | 20.3 y | Tree nuts and peanuts: (1) non-consumers (2) 0.1–5 g/d (3) 5–10 g/d (4) >10 g/d | ↓ small cell carcinoma (lung cancer subtype) in men—(4) vs. (1) HR 0.62 (95% CI: 0.43–0.89), p-trend = 0.024 ↓ lung cancer risk in men (non-significantly) |
Author, Year, Country [Ref] | Design | Subjects (F:M) Mean Age (Range) | Length of Intervention | Comparison Group | Intake of Nuts | Findings |
---|---|---|---|---|---|---|
Sánchez-Villegas et al., 2011, Spain [118] | RCT | 152 (76:76) 68 y | 3 y | Control (low-fat diet *) | MD + 30 g/d nuts (15 g W + 15 g A) | ↓ risk for low plasma BDNF values OR 0.22 (95% CI: 0.05–0.90, p = 0.04) vs. control |
Martínez-Lapiscina et al., 2013, Spain [121] | RCT, multicenter | 522 (289:233) 67 y | 6.5 y | Control (low-fat diet *) | MD + 30 g/d nuts (15 g W, 7.5 g H, 7.5 g A) | ↑ cognition ↑ MMSE 0.57 (95% CI: 0.11–1.03, p = 0.015) vs. control ↑ CDT 0.33 (95% CI: 0.003–0.67, p = 0.048) vs. control |
Valls-Pedret et al., 2015, Spain [123] | RCT | 334 (170:164) 67 (55–80) y | 4.1 y | Control (low-fat diet *) | MD + 30 g/d nuts (15 g W, 7.5 g H, 7.5 g A) | ↓ age-related cognitive decline ↑ memory composite 0.09 (95% CI: −0.05 to 0.23, p = 0.04) vs. control ↑ frontal cognition composite 0.03 (95% CI: −0.25 to 0.31, p = 0.03) vs. control |
Barbour et al., 2017, Australia [124] | RCT, Crossover | 61 (32:29) 65 y | 12 wk | Control (nut free diet) | 56–84 g peanut/d | ↑ cognitive functions (short-term memory, verbal fluency, processing speed) vs. control |
Nooyens et al., 2011, the Netherlands [119] | Prospective | 2613 (1325:1288) 55 (43–70) y | Ongoing since 1995 | Tree nuts and peanuts 5 quintiles of nut consumption | ↑ cognitive function at baseline ↓ cognitive decline: memory (highest vs. lowest nut intake, p = 0.03); global cognitive function (highest vs. lowest nut intake, p = 0.02) | |
Valls-Pedret et al., 2012, Spain [120] | Cross-sectional | 447 (233:214) 67 (55–80) y | 30 g W/d | ↑ cognitive function (working memory, p = 0.039) | ||
O’Brien et al., 2014, USA [122] | Prospective | 15,467 women 74 y | 6 y | Tree nuts and peanuts (1) never, <1/mo (2) 1–3/mo (3) 1/wk (4) 2–4/wk (5) 5/wk | ↑ cognitive performance ↑ cognition (4), (5) vs. (1) |
Mean Value (g/100 g) | Almond | Brazil Nut | Cashew | Hazelnut | Macadamia | Pecan | Pine Nuts | Pistachio | Walnut | Peanut |
---|---|---|---|---|---|---|---|---|---|---|
Total fat | 49.9 | 67.1 | 43.8 | 60.7 | 75.8 | 72.0 | 68.4 | 45.3 | 65.2 | 49.2 |
SFA | 3.8 | 16.1 | 7.8 | 4.5 | 12.1 | 6.2 | 4.9 | 5.9 | 6.1 | 6.8 |
MUFA | 31.6 | 23.9 | 23.8 | 45.7 | 58.9 | 40.8 | 18.8 | 23.3 | 8.9 | 24.4 |
PUFA | 12.3 | 24.4 | 7.8 | 7.9 | 1.5 | 21.6 | 34.1 | 14.4 | 47.2 | 15.6 |
(MUFA + PUFA)/SFA | 11.6 | 3.0 | 4.1 | 11.9 | 5.0 | 10.1 | 8.8 | 6.4 | 9.2 | 5.9 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rusu, M.E.; Mocan, A.; Ferreira, I.C.F.R.; Popa, D.-S. Health Benefits of Nut Consumption in Middle-Aged and Elderly Population. Antioxidants 2019, 8, 302. https://doi.org/10.3390/antiox8080302
Rusu ME, Mocan A, Ferreira ICFR, Popa D-S. Health Benefits of Nut Consumption in Middle-Aged and Elderly Population. Antioxidants. 2019; 8(8):302. https://doi.org/10.3390/antiox8080302
Chicago/Turabian StyleRusu, Marius Emil, Andrei Mocan, Isabel C. F. R. Ferreira, and Daniela-Saveta Popa. 2019. "Health Benefits of Nut Consumption in Middle-Aged and Elderly Population" Antioxidants 8, no. 8: 302. https://doi.org/10.3390/antiox8080302
APA StyleRusu, M. E., Mocan, A., Ferreira, I. C. F. R., & Popa, D.-S. (2019). Health Benefits of Nut Consumption in Middle-Aged and Elderly Population. Antioxidants, 8(8), 302. https://doi.org/10.3390/antiox8080302