Capsaicinoids, Polyphenols and Antioxidant Activities of Capsicum annuum: Comparative Study of the Effect of Ripening Stage and Cooking Methods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Pepper Cultivars
2.3. Roasting
2.4. Extraction and Analysis of Capsaicinoid Compounds
2.5. SHU Determination
2.6. Extraction of Phenolic Compounds
2.7. Analysis of Total Phenolics (TP) and Total Flavonoids (TF)
2.8. Extraction and Analysis of Ascorbic Acid
2.9. Antioxidant Activity
2.9.1. DPPH Assay
2.9.2. ABTS Assay
2.10. Statistical Analysis
3. Results and Discussion
3.1. Levels of Capsaicinoid Compounds
3.2. Levels of Bioactive Compounds (Ascorbic Acid, TP, TF, and TA)
3.3. Antioxidant Activities
3.4. Correlation of TP, TF, TA, and Antioxidant Activities
3.5. Effect of Roasting on the Levels of Capsaicin, Dihydrocapsaicin, TP, TF, and Antioxidant Activity
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Taylor, P.; Mega, J.A.; Todd, P.H. Capsicum. CRC Crit. Rev. Food Sci. Nutr. 1975, 6, 37–41. [Google Scholar]
- Ramchiary, N.; Kehie, M.; Brahma, V.; Kumaria, S.; Tandon, P. Application of genetics and genomics towards Capsicum translational research. Plant Biotechnol. Rep. 2013, 8, 101–123. [Google Scholar] [CrossRef]
- Kumar, O.A.; Tata, S.S. Ascorbic acid contents in chilli peppers (Capscium, L.). Nat. Sci. Biol. 2009, 1, 50–52. [Google Scholar]
- Howard, L.R.; Talcott, S.T.; Brenes, C.H.; Villalon, B. Changes in phytochemical and antioxidant activity of selected pepper cultivars (Capsicum species) as influenced by maturity. J. Agric. Food Chem. 2000, 48, 1713–1720. [Google Scholar] [CrossRef] [PubMed]
- Spiller, F.; Alves, M.K.; Vieria, S.; Carvalho, T.A.; Leita, C.E.; Lunardelli, A. Anti-inflammatory effects of red pepper (Capsicum baccatum) on carrageenan and antigen-induced inflammation. J. Pharm. Pharmacol. 2008, 60, 473–478. [Google Scholar] [CrossRef] [PubMed]
- Careaga, M.; Fernandez, E.; Dorantes, L.; Mota, L.; Jaramillo, M.E.; Hernandez-Sanchez, H. Antibacterial activity of Capsicum extract against Salmonella typhirium and Pseudomonas aeruginosa inoculated in raw beef meat. Int. J. Food Microbiol. 2003, 83, 331–335. [Google Scholar] [CrossRef]
- Alvarez-Parrilla, E.; De La Rosa, L.A.; Amarowicz, R.; Shahidi, F. Antioxidant activity of fresh and processed Jalapeno and Serrano peppers. J. Agric. Food Chem. 2011, 59, 163–173. [Google Scholar] [CrossRef] [PubMed]
- Chopan, M.; Littenberg, B. The association of hot red chilli pepper consumption and mortality: A large population-based cohort study. PLoS ONE 2017, 1, 2. [Google Scholar] [CrossRef]
- Sarpras, M.; Gaur, R.; Sharma, V.; Chhapekar, S.S.; Das, J.; Kumar, A.; Yadava, S.K.; Nitin, M.; Brahma, V.; Abraham, S.K.; et al. Comparative analysis of fruit metabolites and pungency candidate genes expression between Bhut Jolokia and other Capsicum species. PLoS ONE 2016, 11, e0167791. [Google Scholar]
- Scoville, W.L. Note on Capsicum. J. Am. Pharm. Assoc. 1912, 1, 453. [Google Scholar] [CrossRef]
- Castro-Concha, L.; Baas-Espinola, F.; Ancona-Escalante, W.; Vázquez-Flota, F.; Miranda-Ham, M.L. Phenylalanine biosynthesis and its relationship to accumulation of capsaicinoids during Capsicum chinense fruit development. Biol. Plant. 2016, 60, 579–584. [Google Scholar] [CrossRef]
- Reddy, U.K.; Almeida, A.; Abburi, V.L.; Alaparthi, S.B.; Unslet, D.; Hankins, G. Identification of gene-specific polymorphisms and association with capsaicin pathway metabolites in Capsicum annuum L. collections. PLoS ONE 2014, 9, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Stewart, C., Jr.; Mazourek, M.; Stellari, G.M.; O’Connell, M.; Jahn, M. Genetic control of pungency in C. chinense via the Pun1 locus. J. Exp. Bot. 2007, 58, 979–991. [Google Scholar] [CrossRef]
- Islam, M.A.; Sharma, S.S.; Sinha, P.; Negi, M.S.; Neog, B.; Tripathi, S.B. Variability in capsaicinoid content in different landraces of Capsicum cultivated in north-eastern India. Sci. Hortic. 2015, 183, 66–71. [Google Scholar] [CrossRef]
- Kehie, M.; Kumaria, S.; Devi, K.S.; Tandon, P. Genetic diversity and molecular evolution of Naga King Chilli inferred from internal transcribed spacer sequence of nuclear ribosomal DNA. Metab. Gene 2016, 7, 56–63. [Google Scholar] [CrossRef]
- Dubey, R.K.; Singh, V.; Upadhyay, G.; Pandey, A.K.; Prakash, D. Assessment of phytochemical composition and antioxidant potential in some indigenous chilli genotypes from North East India. Food Chem. 2015, 188, 119–125. [Google Scholar] [CrossRef]
- Sivakumar, D.; Chen, L.; Sultanbawa, Y. A comprehensive review on beneficial dietary phytochemicals in common traditional Southern African leafy vegetables. Food Sci. Nutr. 2018, 6, 714–727. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zewdie, Y.; Bosland, P.W. Evaluation of genotype, environment, and genotype-by-environment interaction for capsaicinoids in Capscium annuum L. Euphytica 2000, 111, 185–190. [Google Scholar] [CrossRef]
- Menichini, F.; Tunidis, R.; Bonesi, M.; Loizzo, M.R.; Conforti, F.; Statti, G.; Menichini, F. The influence of fruit ripening on the phytochemical content and biological activity of capsicum Chinense Jacq. Cv Habanero. Food Chem. 2009, 114, 353–560. [Google Scholar] [CrossRef]
- Manikharda, M.; Takahashi, M.; Arakaki, M.; Yonamine, K.; Hashimoto, F.; Takara, K.; Wada, K. Influence of fruit ripening on color, organic acid contents, capsaicinoids, aroma compounds and antioxidant capacity of Shimatogarashi (Capsicum frutescenes). J. Oleo Sci. 2018, 67, 113–123. [Google Scholar] [CrossRef]
- Palma, J.M.; Corpas, F.J.; del Rı’o, L.A. Proteomics as an approach to the understanding of the molecular physiology of fruit development and ripening. J. Proteom. 2011, 74, 1230–1243. [Google Scholar] [CrossRef] [PubMed]
- Harvell, K.P.; Bosland, P.W. The environment produces a significant effect on pungency of chiles. HortScience 1997, 32, 1292. [Google Scholar] [CrossRef]
- Chuah, A.J.; Lee, Y.-C.; Yamaguchi, T.; Takamura, H.; Yin, L.-J.; Matoba, T. Effect of cooking on the antioxidant properties of colored peppers. Food Chem. 2008, 111, 20–28. [Google Scholar] [CrossRef]
- Ornelas-Paz, J.J.; Martínez-Burrola, J.M.; Ruiz-Cruz, S.; Santana- Rodríguez, V.; Ibarra-Junquera, V.; Olivas, G.I.; Pérez-Martínez, J.D. Effect of cooking on the capsaicinoids and phenolics contents of Mexican peppers. Food Chem. 2010, 119, 1619–1625. [Google Scholar] [CrossRef]
- Hwang, I.G.; Shin, Y.J.; Lee, S.; Lee, J.; Yoo, S.M. Effects of Different Cooking Methods on the Antioxidant Properties of Red Pepper (Capsicum annuum L.). Prev. Nutr. Food Sci. 2012, 17, 286–292. [Google Scholar] [CrossRef] [PubMed]
- De Jesús Ornelas-Paz, J.; Cira-Chávez, L.A.; Gardea-Béjar, A.A.; Guevara-Arauza, J.C. Effect of heat treatment on the content of some bioactive compounds and free radical-scavenging activity in pungent and non-pungent peppers. Food Res. Int. 2013, 50, 519–525. [Google Scholar] [CrossRef]
- Collins, M.D.; Mayer, W.L.; Bosland, P.W. Improved method for quantifying capsaicinoids in Capsicum using high-performance liquid chromatography. Hortic. Sci. 1995, 30, 137–139. [Google Scholar] [CrossRef]
- Kalita, D.; Jayanty, S.S. Comparison of Polyphenol Content and Antioxidant Capacity of Colored Potato Tubers, Pomegranate and Blueberries. J. Food Process. Technol. 2014, 5, 8. [Google Scholar]
- Watada, E.A. A High-performance Liquid Chromatography Method for Determining Ascorbic Acid Content of Fresh Fruits and Vegetables. HortScience 1982, 17, 334–335. [Google Scholar]
- Canto-Flick, A.; Balam-Uc, E.; Bello-Bello, J.J.; Lecona-Guzmán, C.; Solís-Marroquín, D.; Avilés-Viñas, S.; Gómez-Uc, E.; López-Puc, G.; Santana-Buzzy, N.; Iglesias-Andreu, L.G. Capsaicinoids Content in Habanero Pepper (Capsicum chinense Jacq.): Hottest Known Cultivars. HortScience 2008, 43, 1344–1349. [Google Scholar] [CrossRef]
- Wang, D.; Bosland, P.W. The genes of Capsicum. HortScience 2006, 41, 1169–1187. [Google Scholar] [CrossRef]
- Weiss, E.A. Spice Crops; CABI Publishing International: New York, NY, USA, 2002; p. 411. [Google Scholar]
- Bae, H.; Jayprakasha, G.K.; Crosby, K.; Yoo, K.S.; Leskovar, D.I.; Jifon, J.; Patil, B.S. Ascorbic acid, capsaicinoids, and flavonoid aglycone concentrations as a function of fruit maturity stage in greenhouse- grown peppers. J. Food Comp. Anal. 2014, 33, 195–202. [Google Scholar] [CrossRef]
- Marín, A.; Ferreres, F.; Tómas-Barberán, F.A.; Gill, M.I. Characterization and quantitation ofantioxidant constituents of sweet pepper (Capsicum annuum L.). J. Agric. Food Chem. 2004, 52, 3861–3869. [Google Scholar]
- Zhang, D.; Hamauzu, Y. Phenolic compounds, ascorbic acid and antioxidant properties of green, red and yellow bell peppers. J. Food Agric. Environ. 2003, 2, 22–27. [Google Scholar]
- Mozafar, A. Plant Vitamins: Agronomic, Physiological and Nutritional Aspects; CRC Press: Boca Raton, FL, USA, 1994. [Google Scholar]
- Antonious, G.F.; Kochhar, T.S.; Jarret, R.L.; Snyder, J.C. Antioxidants in hot pepper: Variation among accessions. J. Environ. Sci. Health 2006, 41, 1237–1243. [Google Scholar] [CrossRef] [PubMed]
- Belwal, T.; Pandey, A.; Bhat, I.D.; Rawal, R.S.; Luo, Z. Trends of polyphenolics and anthocyanins accumulation along ripening stages of wild edible fruits of Indian Himalayan region. Sci. Rep. 2019, 9, 5894. [Google Scholar] [CrossRef]
- Arnnok, P.; Ruangviriyachai, C.; Mhachai, R.; Techawongstien, S.; Chanthai, S. Determination of total phenolics and anthocyanin contents in the pericarp of hot chilli pepper (Capsicum annuum L.). Int. Food Res. J. 2011, 19, 235–243. [Google Scholar]
- Khoo, H.E.; Azlan, A.; Tang, S.T.; Lim, S.M. Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr. Res. 2017, 61, 1361779. [Google Scholar] [CrossRef] [PubMed]
- Sora, G.T.S.; Haminiuk, C.W.I.; Vieira da Silva, M.; Zielinski, A.A.F.; Gonçalves, G.A.; Adelar Bracht, A.; Peralta, R.M. A comparative study of the capsaicinoid and phenolic contents and in vitro antioxidant activities of the peppers of the genus Capsicum: An application of chemometrics. J. Food Sci. Technol. 2015, 2, 8086–8094. [Google Scholar] [CrossRef]
- Gómez-García Mdel, R.; Ochoa-Alejo, N. Biochemistry and molecular biology of carotenoid biosynthesis in chili peppers (Capsicum spp.). Int. J. Mol. Sci. 2013, 14, 19025–19053. [Google Scholar] [CrossRef]
- Srinivasan, K.; Sambaiah, K.; Chandrasekhara, N. Loss of active principles of common spices during domestic cooking. Food Chem. 1992, 43, 271–274. [Google Scholar] [CrossRef]
- Topuz, A.; Ozdemir, F. Influences of gamma irradiation and storage on the capsaicinoids of sun-dried and dehydrated paprika. Food Chem. 2004, 86, 509–515. [Google Scholar] [CrossRef]
- Howard, L.R.; Wildman, R.E. Handbook of Nutraceuticals and Functional Foods, 2nd ed.; Wildman, R.E.C., Ed.; CRC Press: Boca Raton, FL, USA, 2006; pp. 165–191. [Google Scholar]
- Igwemmar, N.C.; Kolawole, S.A.; Imran, I.A. Effect of Heating on Vitamin C Content of Some Selected Vegetables. Int. J. Sci. Technol. Res. 2013, 2, 209–212. [Google Scholar]
- Gregory, J.F. Vitamins. In Food Chemistry, 3rd ed.; Fennema, O.R., Ed.; Marcell Dekker: New York, NY, USA, 1996; pp. 531–616. [Google Scholar]
- Yadav, S.K.; Shegal, S. Effect of home processing on ascorbic acid and beta-carotene content of spinach (Spinacia oleracia) and amaranth (Amaranthus tricolor) leaves. Plant Foods Hum. Nutr. 1995, 47, 125–3150. [Google Scholar] [CrossRef] [PubMed]
- Shaimaa, G.A.; Mahmoud, M.S.; Mohamed, M.R.; Emam, A.A. Effect of Heat Treatment on Phenolic and Flavonoid Compounds and Antioxidant Activities of Some Egyptian Sweet and Chilli Pepper. Nat. Prod. Chem Res. 2016, 4, 218. [Google Scholar] [CrossRef]
- Turkmen, N.; Sari, F.; Velioglu, Y.S. The effect of cooking methods on total phenolics and antioxidant activity of selected green vegetables. Food Chem. 2005, 93, 713–718. [Google Scholar] [CrossRef]
Cultivars | Maturation Stage | Capsaicin (µg/g) | Dihydrocapsaicin (µg/g) | Vit.C (mg/100 g DW) | Total Phenolic (µg/g) | Total Flavonoids (µg/g) | Antioxidant Activity | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DPPH (%) | ABTS (µg/g) | ||||||||||||||
Raw | Roasted | Raw | Roasted | Raw | Roasted | Raw | Roasted | Raw | Roasted | Raw | Roasted | Raw | Roasted | ||
Flavorburst | Green | UDL | UDL | UDL | UDL | 401 a | 163↓ | 4279 a | 6749↑ | 756 a | 554↓ | 76 a | 55↓ | 129 a | 86↓ |
Yellow | UDL | UDL | UDL | UDL | 478 b | 275↓ | 5398 b | 6183↑ | 794 b | 671↓ | 87 b | 70↓ | 139 a | 123↓ | |
Canrio | Green | UDL | UDL | UDL | UDL | 693 a | 328↓ | 5578 a | 5783↑ | 500 a | 697↑ | 87 a | 61↓ | 110 a | 85↓ |
Yellow | UDL | UDL | UDL | UDL | 1025 b | 315↓ | 6316 b | 6225↓ | 573 b | 798↑ | 86 a | 71↓ | 157 b | 103↓ | |
Sweet Delilah | Green | UDL | UDL | UDL | UDL | 420 a | 148↓ | 3314 a | 3226↓ | 547 a | 660↑ | 63 a | 50↓ | 113 a | 105↓ |
Red | UDL | UDL | UDL | UDL | 481 b | 250↓ | 5115 b | 6489↑ | 625 b | 880↑ | 72 b | 58↓ | 152 b | 82↓ | |
Aristotle | Green | UDL | UDL | UDL | UDL | 480 a | 180↓ | 2599 a | 3252↑ | 329 a | 405↑ | 64 a | 54↓ | 107 a | 93↓ |
Red | UDL | UDL | UDL | UDL | 418 b | 217↓ | 4729 b | 5318↑ | 556 b | 727↑ | 59 a | 41↓ | 156 b | 118↓ | |
Serrano Mild | Green | 26 a | 57↑ | 13 a | 12↓ | 243 a | 193↓ | 2096 a | 3899↑ | 415 a | 755↑ | 65 a | 52↓ | 72 a | 108↓ |
Red | 49 a | 71↑ | 14 a | 26↑ | 467 b | 82↓ | 7689 b | 8188↑ | 643 b | 887↑ | 75 b | 64↓ | 101 b | 98↓ | |
CSU 321 | Green | 48 a | 19↓ | 16 a | 9↓ | 335 a | 175↓ | 2841 a | 3277↑ | 443 a | 636↑ | 66 a | 62↓ | 106 a | 76↓ |
Red | 60 a | 61↑ | 19 a | 21↑ | 648 b | 405↓ | 5074 b | 7117↑ | 557 b | 785↑ | 71 b | 55↓ | 126 b | 83↓ | |
CSU 274 | Green | 92 a | 25↓ | 26 a | 10↓ | 327 a | 94↓ | 3165 a | 3537↑ | 484 a | 745↑ | 67 a | 31↓ | 146 a | 93↓ |
Red | 152 b | 188↑ | 94 b | 182↑ | 496 b | 245↓ | 5941 b | 7406↑ | 626 b | 865↑ | 78 b | 56↓ | 154 a | 128↓ | |
Pueblo Chile | Green | 108 a | 89↓ | 28 a | 27↓ | 337 a | 114↓ | 3208 a | 4232↑ | 695 a | 784↑ | 69 a | 58↓ | 75 a | 67↓ |
Red | 47 b | 45↓ | 16 a | 17↑ | 386 a | 231↓ | 3670 b | 5845↑ | 725 a | 844↑ | 79 b | 62↓ | 104 b | 85↓ | |
Numex Joe E. Parker | Green | 99 a | 225↑ | 50 a | 154↑ | 494 a | 105↓ | 3845 a | 5958↑ | 656 a | 984↑ | 70 a | 65↓ | 111 a | 77↓ |
Red | 177 b | 251↑ | 97 b | 130↑ | 333 b | 243↓ | 4360 b | 5019↑ | 962 b | 740 | 81 b | 68↓ | 144 b | 125↓ | |
CSU 290 | Green | 117 a | 84↓ | 56 a | 29↓ | 643 a | 357↓ | 2769 a | 5730↑ | 586 a | 874↑ | 61 a | 69↓ | 155 a | 104↓ |
Red | 109 a | 87↓ | 19 b | 24↑ | 628 a | 358↓ | 4448 b | 6584↑ | 714 b | 745↑ | 82 b | 63↓ | 110 b | 97↓ | |
CSU RLC | Green | 162 a | 338↑ | 62 a | 130↑ | 252 a | 167↓ | 3893 a | 5783↑ | 619 a | 828↑ | 73 a | 56↓ | 152 a | 78↓ |
Red | 522 b | 446↓ | 387 b | 377↓ | 345 b | 144↓ | 5441 b | 7190↑ | 777 b | 865↑ | 75 a | 66↓ | 123 b | 95↓ | |
Mosco | Green | 379 a | 252↓ | 141 a | 84↓ | 567 a | 351↓ | 3417 a | 4350↑ | 415 a | 883↑ | 65 a | 51↓ | 94 a | 79↓ |
Red | 256 b | 254↓ | 112 b | 118↑ | 314 b | 232↓ | 3876 b | 4603↑ | 643 b | 804↑ | 75 b | 55↓ | 157 b | 74↓ | |
Numex Big Jim | Green | 398 a | 385↓ | 181 a | 138↓ | 410 a | 365↓ | 3341 a | 4392↑ | 423 a | 606↑ | 63 a | 65↓ | 152 a | 99↓ |
Red | 222 b | 297↑ | 212 b | 114↓ | 465 b | 240↓ | 6335 b | 7613↑ | 653 b | 753↑ | 82 b | 56↓ | 111 b | 106↓ | |
Anaheim 118 | Green | 484 a | 454↓ | 90 a | 86↓ | 339 a | 211↓ | 3276 a | 6367↑ | 504 a | 508↑ | 80 a | 68↓ | 121 a | 102↓ |
Red | 235 b | 325↑ | 282 b | 148↓ | 391 b | 254↓ | 4676 b | 5580↑ | 641 b | 743↑ | 85 a | 69↓ | 150 b | 103↓ | |
CSU 256 | Green | 550 a | 281↓ | 141 a | 75↓ | 223 a | 159↓ | 2758 a | 2795↑ | 498 a | 564↑ | 68 a | 40↓ | 85 a | 67↓ |
Red | 703 b | 912↑ | 332 b | 464↑ | 753 b | 205↓ | 5256 b | 6718↑ | 747 b | 741 | 78 b | 54↓ | 136 b | 112↓ | |
CSU 243 | Green | 867 a | 512↓ | 183 a | 92↓ | 338 a | 79↓ | 4472 a | 5538↑ | 634 a | 708↑ | 61 a | 49↓ | 120 a | 95↓ |
Red | 819 a | 514↓ | 337 b | 249↓ | 370 a | 214↓ | 5186 b | 7950↑ | 704 b | 935↑ | 77 b | 60↓ | 145 b | 109↓ | |
Fresno | Green | 848 a | 729↓ | 489 a | 394↓ | 945 a | 464↓ | 3549 a | 4624↑ | 713 a | 807↑ | 85 a | 72↓ | 159 a | 121↓ |
Red | 735 b | 599↓ | 359 b | 331↓ | 366 b | 167↓ | 4527 b | 6444↑ | 792 b | 861↑ | 74 b | 67↓ | 137 b | 121↓ | |
Habanero | Green | 3636 a | 3834↑ | 2148 a | 1441↓ | 820 a | 160↓ | 4679 a | 5041↑ | 204 a | 838↑ | 74 a | 59↓ | 153 a | 98↓ |
Yellow | 4820 b | 4876↑ | 2162 a | 1572↓ | 349 b | 249↓ | 6505 b | 6703↑ | 467 b | 627↑ | 86 b | 68↓ | 155 a | 122↓ |
Variables | Capsaicin | Dihydro Capsaicin | Total Phenolics | Total Flavonoids | Ascorbic Acid | AA1 (DPPH) | AA2 (ABTS) |
---|---|---|---|---|---|---|---|
Capsaicin | 1 | ||||||
Dihydro Capsaicin | 1 | 1 | |||||
<0.0001 | |||||||
Total Phenolics | 0.4464 | 0.4464 | 1 | ||||
0.0173 | 0.0173 | ||||||
Total Flavonoids | −0.3906 | −0.3906 | 0.1474 | 1 | |||
0.0399 | 0.0399 | 0.4541 | |||||
Ascorbic Acid | 0.1986 | 0.1986 | 0.2387 | −0.0209 | 1 | ||
0.3109 | 0.3109 | 0.2212 | 0.916 | ||||
AA1 (DPPH) | 0.2898 | 0.2898 | 0.5594 | 0.3389 | 0.0446 | 1 | |
0.1347 | 0.1347 | 0.002 | 0.0777 | 0.8218 | |||
AA2 (ABTS) | 0.2981 | 0.2981 | 0.3292 | −0.0695 | −0.0758 | 0.1725 | 1 |
0.1234 | 0.1234 | 0.0872 | 0.7253 | 0.7013 | 0.3801 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hamed, M.; Kalita, D.; Bartolo, M.E.; Jayanty, S.S. Capsaicinoids, Polyphenols and Antioxidant Activities of Capsicum annuum: Comparative Study of the Effect of Ripening Stage and Cooking Methods. Antioxidants 2019, 8, 364. https://doi.org/10.3390/antiox8090364
Hamed M, Kalita D, Bartolo ME, Jayanty SS. Capsaicinoids, Polyphenols and Antioxidant Activities of Capsicum annuum: Comparative Study of the Effect of Ripening Stage and Cooking Methods. Antioxidants. 2019; 8(9):364. https://doi.org/10.3390/antiox8090364
Chicago/Turabian StyleHamed, Mansor, Diganta Kalita, Michael E. Bartolo, and Sastry S. Jayanty. 2019. "Capsaicinoids, Polyphenols and Antioxidant Activities of Capsicum annuum: Comparative Study of the Effect of Ripening Stage and Cooking Methods" Antioxidants 8, no. 9: 364. https://doi.org/10.3390/antiox8090364