Exercise-Induced Regulation of Redox Status in Cardiovascular Diseases: The Role of Exercise Training and Detraining
Abstract
:1. Introduction
2. Oxidative Stress and Cardiovascular Disease
3. Antioxidants, Oxidative Stress and Cardiovascular Disease
4. Exercise, Cardiovascular Disease and Oxidative Stress
4.1. Effect of Exercise on Hypertension and Oxidative Stress
4.2. Effect of Exercise on Heart failure and Oxidative Stress
4.3. Effect of Exercise on Atherosclerosis and Oxidative Stress
5. Cardiovascular Exercise and Oxidative Stress
5.1. Acute Cardiovascular Exercise
5.2. Regular Cardiovascular Exercise Training
6. Resistance Exercise and Oxidative Stress
6.1. Acute Resistance Exercise
6.2. Regular Resistance Exercise Training
7. Combined CVE and RE Training and Oxidative Stress
8. Exhaustive/Strenuous Exercise and Oxidative stress
9. Detraining and Oxidative Stress in CVDs
9.1. Resistance Exercise Training and Detraining
9.2. Cardiovascular Exercise Training and Detraining
9.3. Combined Exercise Training and Detraining
10. Physical Inactivity and Oxidative Stress in Cardiovascular Diseases
11. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Csonka, C.; Sarkozy, M.; Pipicz, M.; Dux, L.; Csont, T. Modulation of Hypercholesterolemia-Induced Oxidative/Nitrative Stress in the Heart. Oxid. Med. Cell. Longev. 2016, 2016. [Google Scholar] [CrossRef]
- Molavi, B.; Mehta, J.L. Oxidative stress in cardiovascular disease: Molecular basis of its deleterious effects, its detection, and therapeutic considerations. Curr. Opin. Cardiol. 2004, 19, 488–493. [Google Scholar] [CrossRef]
- Sugamura, K.; Keaney, J.F., Jr. Reactive oxygen species in cardiovascular disease. Free Radic. Biol. Med. 2011, 51, 978–992. [Google Scholar] [CrossRef] [Green Version]
- Strobel, N.A.; Fassett, R.G.; Marsh, S.A.; Coombes, J.S. Oxidative stress biomarkers as predictors of cardiovascular disease. Int. J. Cardiol. 2011, 147, 191–201. [Google Scholar] [CrossRef]
- Chen, A.F.; Chen, D.D.; Daiber, A.; Faraci, F.M.; Li, H.; Rembold, C.M.; Laher, I. Free radical biology of the cardiovascular system. Clin. Sci. 2012, 123, 73–91. [Google Scholar] [CrossRef] [Green Version]
- Chen, K.; Keaney, J.F., Jr. Evolving concepts of oxidative stress and reactive oxygen species in cardiovascular disease. Curr. Atheroscler. Rep. 2012, 14, 476–483. [Google Scholar] [CrossRef] [Green Version]
- Usberti, M.; Gerardi, G.M.; Gazzotti, R.M.; Benedini, S.; Archetti, S.; Sugherini, L.; Valentini, M.; Tira, P.; Bufano, G.; Albertini, A.; et al. Oxidative stress and cardiovascular disease in dialyzed patients. Nephron 2002, 91, 25–33. [Google Scholar] [CrossRef]
- Voghel, G.; Thorin-Trescases, N.; Farhat, N.; Nguyen, A.; Villeneuve, L.; Mamarbachi, A.M.; Fortier, A.; Perrault, L.P.; Carrier, M.; Thorin, E. Cellular senescence in endothelial cells from atherosclerotic patients is accelerated by oxidative stress associated with cardiovascular risk factors. Mech. Ageing Dev. 2007, 128, 662–671. [Google Scholar] [CrossRef]
- Yan, M.; Mehta, J.L.; Zhang, W.; Hu, C. LOX-1, oxidative stress and inflammation: A novel mechanism for diabetic cardiovascular complications. Cardiovasc. Drugs Ther. 2011, 25, 451–459. [Google Scholar] [CrossRef]
- Selvaraju, V.; Joshi, M.; Suresh, S.; Sanchez, J.A.; Maulik, N.; Maulik, G. Diabetes, oxidative stress, molecular mechanism, and cardiovascular disease—An overview. Toxicol. Mech. Methods 2012, 22, 330–335. [Google Scholar] [CrossRef]
- Crujeiras, A.B.; Diaz-Lagares, A.; Carreira, M.C.; Amil, M.; Casanueva, F.F. Oxidative stress associated to dysfunctional adipose tissue: A potential link between obesity, type 2 diabetes mellitus and breast cancer. Free Rad. Res. 2013, 47, 243–256. [Google Scholar] [CrossRef]
- Serra, J.A.; Dominguez, R.O.; Marschoff, E.R.; Guareschi, E.M.; Famulari, A.L.; Boveris, A. Systemic oxidative stress associated with the neurological diseases of aging. Neurochem. Res. 2009, 34, 2122–2132. [Google Scholar] [CrossRef]
- Miller, V.M.; Lawrence, D.A.; Mondal, T.K.; Seegal, R.F. Reduced glutathione is highly expressed in white matter and neurons in the unperturbed mouse brain--implications for oxidative stress associated with neurodegeneration. Brain Res. 2009, 1276, 22–30. [Google Scholar] [CrossRef] [Green Version]
- Powers, S.K.; Ji, L.L.; Kavazis, A.N.; Jackson, M.J. Reactive oxygen species: Impact on skeletal muscle. Compr. Physiol. 2011, 1, 941–969. [Google Scholar] [CrossRef] [Green Version]
- Lee, R.; Margaritis, M.; Channon, K.M.; Antoniades, C. Evaluating oxidative stress in human cardiovascular disease: Methodological aspects and considerations. Curr. Med. Chem. 2012, 19, 2504–2520. [Google Scholar] [CrossRef] [Green Version]
- Pizzino, G.; Irrera, N.; Cucinotta, M.; Pallio, G.; Mannino, F.; Arcoraci, V.; Squadrito, F.; Altavilla, D.; Bitto, A. Oxidative Stress: Harms and Benefits for Human Health. Oxid. Med. Cell. Longev. 2017, 2017. [Google Scholar] [CrossRef]
- Draganidis, D.; Karagounis, L.G.; Athanailidis, I.; Chatzinikolaou, A.; Jamurtas, A.Z.; Fatouros, I.G. Inflammaging and Skeletal Muscle: Can Protein Intake Make a Difference? J. Nutr. 2016. [Google Scholar] [CrossRef]
- Baylis, D.; Bartlett, D.B.; Patel, H.P.; Roberts, H.C. Understanding how we age: Insights into inflammaging. Longev. Healthspan 2013, 2, 8. [Google Scholar] [CrossRef]
- Li, H.; Malhotra, S.; Kumar, A. Nuclear factor-kappa B signaling in skeletal muscle atrophy. J. Mol. Med. 2008, 86, 1113–1126. [Google Scholar] [CrossRef] [Green Version]
- Powers, S.K.; Kavazis, A.N.; McClung, J.M. Oxidative stress and disuse muscle atrophy. J. Appl. Physiol. 2007, 102, 2389–2397. [Google Scholar] [CrossRef]
- Franceschi, C.; Garagnani, P.; Vitale, G.; Capri, M.; Salvioli, S. Inflammaging and ‘Garb-aging’. Trends Endocrinol. Metab. 2016. [Google Scholar] [CrossRef]
- Roxburgh, C.S.; McMillan, D.C. Role of systemic inflammatory response in predicting survival in patients with primary operable cancer. Future Oncol. 2010, 6, 149–163. [Google Scholar] [CrossRef]
- Singh, T.; Newman, A.B. Inflammatory markers in population studies of aging. Ageing Res. Rev. 2011, 10, 319–329. [Google Scholar] [CrossRef] [Green Version]
- De Martinis, M.; Franceschi, C.; Monti, D.; Ginaldi, L. Inflamm-ageing and lifelong antigenic load as major determinants of ageing rate and longevity. FEBS Lett. 2005, 579, 2035–2039. [Google Scholar] [CrossRef] [Green Version]
- Taverne, Y.J.; Bogers, A.J.; Duncker, D.J.; Merkus, D. Reactive oxygen species and the cardiovascular system. Oxid. Med. Cell. Longev. 2013, 2013, 862423. [Google Scholar] [CrossRef]
- Schnackenberg, C.G. Oxygen radicals in cardiovascular-renal disease. Curr. Opin. Pharmacol. 2002, 2, 121–125. [Google Scholar] [CrossRef]
- Baradaran, A.; Nasri, H.; Rafieian-Kopaei, M. Oxidative stress and hypertension: Possibility of hypertension therapy with antioxidants. J. Res. Med. Sci. 2014, 19, 358–367. [Google Scholar]
- Myung, S.K.; Ju, W.; Cho, B.; Oh, S.W.; Park, S.M.; Koo, B.K.; Park, B.J. Efficacy of vitamin and antioxidant supplements in prevention of cardiovascular disease: Systematic review and meta-analysis of randomised controlled trials. BMJ 2013, 346, f10. [Google Scholar] [CrossRef] [Green Version]
- Pellegrino, D. Antioxidants and Cardiovascular Risk Factors. Diseases 2016, 4, 11. [Google Scholar] [CrossRef] [Green Version]
- Goszcz, K.; Deakin, S.J.; Duthie, G.G.; Stewart, D.; Leslie, S.J.; Megson, I.L. Antioxidants in Cardiovascular Therapy: Panacea or False Hope? Front. Cardiovasc. Med. 2015, 2, 29. [Google Scholar] [CrossRef]
- Siti, H.N.; Kamisah, Y.; Kamsiah, J. The role of oxidative stress, antioxidants and vascular inflammation in cardiovascular disease (a review). Vasc. Pharmacol. 2015, 71, 40–56. [Google Scholar] [CrossRef]
- Zembron-Lacny, A.; Dziubek, W.; Rynkiewicz, M.; Morawin, B.; Wozniewski, M. Peripheral brain-derived neurotrophic factor is related to cardiovascular risk factors in active and inactive elderly men. Braz. J. Med. Biol. Res. 2016, 49. [Google Scholar] [CrossRef] [Green Version]
- Narasimhan, M.; Rajasekaran, N.S. Exercise, Nrf2 and Antioxidant Signaling in Cardiac Aging. Front. Physiol. 2016, 7, 241. [Google Scholar] [CrossRef] [Green Version]
- Fetterman, J.L.; Holbrook, M.; Westbrook, D.G.; Brown, J.A.; Feeley, K.P.; Breton-Romero, R.; Linder, E.A.; Berk, B.D.; Weisbrod, R.M.; Widlansky, M.E.; et al. Mitochondrial DNA damage and vascular function in patients with diabetes mellitus and atherosclerotic cardiovascular disease. Cardiovasc. Diabetol. 2016, 15, 53. [Google Scholar] [CrossRef] [Green Version]
- Ungvari, Z.; Kaley, G.; de Cabo, R.; Sonntag, W.E.; Csiszar, A. Mechanisms of vascular aging: New perspectives. J. Gerontol. A Biol. Sci. Med. Sci. 2010, 65, 1028–1041. [Google Scholar] [CrossRef] [Green Version]
- Harrison, D.; Griendling, K.K.; Landmesser, U.; Hornig, B.; Drexler, H. Role of oxidative stress in atherosclerosis. Am. J. Cardiol. 2003, 91, 7a–11a. [Google Scholar] [CrossRef]
- Schulz, E.; Anter, E.; Keaney, J.F., Jr. Oxidative stress, antioxidants, and endothelial function. Curr. Med. Chem. 2004, 11, 1093–1104. [Google Scholar] [CrossRef]
- Machi, J.F.; Dias Dda, S.; Freitas, S.C.; de Moraes, O.A.; da Silva, M.B.; Cruz, P.L.; Mostarda, C.; Salemi, V.M.; Morris, M.; De Angelis, K.; et al. Impact of aging on cardiac function in a female rat model of menopause: Role of autonomic control, inflammation, and oxidative stress. Clin. Interv. Aging 2016, 11, 341–350. [Google Scholar] [CrossRef] [Green Version]
- Ramana, K.V.; Srivastava, S.; Reddy, A.B. Immune, Inflammatory, and Oxidative Responses in Cardiovascular Complications. Oxid. Med. Cell. Longev. 2016, 2016. [Google Scholar] [CrossRef]
- Touyz, R.M. Reactive oxygen species, vascular oxidative stress, and redox signaling in hypertension: What is the clinical significance? Hypertension 2004, 44, 248–252. [Google Scholar] [CrossRef] [Green Version]
- Amrita, J.; Mahajan, M.; Bhanwer, A.J.; Mohan, G. Oxidative Stress: An Effective Prognostic Tool for an Early Detection of Cardiovascular Disease in Menopausal Women. Biochem. Res. Int. 2016, 2016. [Google Scholar] [CrossRef] [Green Version]
- Stringer, M.D.; Gorog, P.G.; Freeman, A.; Kakkar, V.V. Lipid peroxides and atherosclerosis. BMJ 1989, 298, 281–284. [Google Scholar] [CrossRef] [Green Version]
- Plachta, H.; Bartnikowska, E.; Obara, A. Lipid peroxides in blood from patients with atherosclerosis of coronary and peripheral arteries. Clin. Chim. Acta Int. J. Clin. Chem. 1992, 211, 101–112. [Google Scholar] [CrossRef]
- Steinberg, D. Low density lipoprotein oxidation and its pathobiological significance. J. Biol. Chem. 1997, 272, 20963–20966. [Google Scholar] [CrossRef] [Green Version]
- Higashi, Y.; Noma, K.; Yoshizumi, M.; Kihara, Y. Endothelial function and oxidative stress in cardiovascular diseases. Circ. J. 2009, 73, 411–418. [Google Scholar] [CrossRef] [Green Version]
- Aluganti Narasimhulu, C.; Litvinov, D.; Sengupta, B.; Jones, D.; Sai-Sudhakar, C.; Firstenberg, M.; Sun, B.; Parthasarathy, S. Increased presence of oxidized low-density lipoprotein in the left ventricular blood of subjects with cardiovascular disease. Physiol. Rep. 2016, 4. [Google Scholar] [CrossRef] [Green Version]
- Tsutsui, T.; Tsutamoto, T.; Wada, A.; Maeda, K.; Mabuchi, N.; Hayashi, M.; Ohnishi, M.; Kinoshita, M. Plasma oxidized low-density lipoprotein as a prognostic predictor in patients with chronic congestive heart failure. J. Am. Coll. Cardiol. 2002, 39, 957–962. [Google Scholar] [CrossRef] [Green Version]
- Hao, H. Effect effects of Auricularia auricula polysaccharides on exhaustive swimming exercise-induced oxidative stress in mice. Trop. J. Pharm. Res. 2014, 13, 1845–1851. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Li, S.; Wang, X.; Zhang, C.L. Protective effects of Radix Pseudostellariae polysaccharides against exercise-induced oxidative stress in male rats. Exp. Ther. Med. 2013, 5, 1089–1092. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.C.; Lin, T.J.; Lu, Y.F.; Chen, C.C.; Huang, C.Y.; Lin, W.T. Protective effects of L-arginine supplementation against exhaustive exercise-induced oxidative stress in young rat tissues. Chin. J. Physiol. 2009, 52, 306–315. [Google Scholar] [CrossRef] [Green Version]
- Kushwaha, S.; Chawla, P.; Kochhar, A. Effect of supplementation of drumstick (Moringa oleifera) and amaranth (Amaranthus tricolor) leaves powder on antioxidant profile and oxidative status among postmenopausal women. J. Food Sci. Technol. 2014, 51, 3464–3469. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, H.H.; Stocker, R.; Vollbracht, C.; Paulsen, G.; Riley, D.; Daiber, A.; Cuadrado, A. Antioxidants in Translational Medicine. Antioxid. Redox Signal. 2015, 23, 1130–1143. [Google Scholar] [CrossRef] [Green Version]
- Bouayed, J.; Bohn, T. Exogenous antioxidants—Double-edged swords in cellular redox state: Health beneficial effects at physiologic doses versus deleterious effects at high doses. Oxid. Med. Cell. Longev. 2010, 3, 228–237. [Google Scholar] [CrossRef]
- Nunez-Cordoba, J.M.; Martinez-Gonzalez, M.A. Antioxidant vitamins and cardiovascular disease. Curr. Top. Med. Chem. 2011, 11, 1861–1869. [Google Scholar] [CrossRef]
- Hsu, C.Y.; Hsieh, P.L.; Hsiao, S.F.; Chien, M.Y. Effects of Exercise Training on Autonomic Function in Chronic Heart Failure: Systematic Review. BioMed Res. Int. 2015, 2015. [Google Scholar] [CrossRef] [Green Version]
- Tian, D.; Meng, J. Exercise for Prevention and Relief of Cardiovascular Disease: Prognoses, Mechanisms, and Approaches. Oxid. Med. Cell. Longev. 2019, 2019. [Google Scholar] [CrossRef] [Green Version]
- Pinckard, K.; Baskin, K.K.; Stanford, K.I. Effects of Exercise to Improve Cardiovascular Health. Front. Cardiovasc. Med. 2019, 6, 69. [Google Scholar] [CrossRef] [Green Version]
- Da Palma, R.K.; Nonaka, P.N.; Campillo, N.; Uriarte, J.J.; Urbano, J.J.; Navajas, D.; Farre, R.; Oliveira, L.V.F. Behavior of vascular resistance undergoing various pressure insufflation and perfusion on decellularized lungs. J. Biomech. 2016, 49, 1230–1232. [Google Scholar] [CrossRef] [Green Version]
- Gomes, E.C.; Silva, A.N.; de Oliveira, M.R. Oxidants, antioxidants, and the beneficial roles of exercise-induced production of reactive species. Oxid. Med. Cell. Longev. 2012, 2012, 756132. [Google Scholar] [CrossRef]
- Moller, P.; Wallin, H.; Knudsen, L.E. Oxidative stress associated with exercise, psychological stress and life-style factors. Chem. Biol. Interact. 1996, 102, 17–36. [Google Scholar] [CrossRef]
- Li, X.D.; Sun, G.F.; Zhu, W.B.; Wang, Y.H. Effects of high intensity exhaustive exercise on SOD, MDA, and NO levels in rats with knee osteoarthritis. Genet. Mol. Res. 2015, 14, 12367–12376. [Google Scholar] [CrossRef]
- Yan, F.; Wang, B.; Zhang, Y. Polysaccharides from Cordyceps sinensis mycelium ameliorate exhaustive swimming exercise-induced oxidative stress. Pharm. Biol. 2014, 52, 157–161. [Google Scholar] [CrossRef]
- Steinbacher, P.; Eckl, P. Impact of oxidative stress on exercising skeletal muscle. Biomolecules 2015, 5, 356–377. [Google Scholar] [CrossRef]
- Radak, Z.; Chung, H.Y.; Goto, S. Systemic adaptation to oxidative challenge induced by regular exercise. Free Radic. Biol. Med. 2008, 44, 153–159. [Google Scholar] [CrossRef]
- Tang, Z.; Wang, Y.; Zhu, X.; Ni, X.; Lu, J. Exercise Increases Cystathionine-gamma-lyase Expression and Decreases the Status of Oxidative Stress in Myocardium of Ovariectomized Rats. Int. Heart J. 2016, 57, 96–103. [Google Scholar] [CrossRef] [Green Version]
- Alvarez, P.; Hannawi, B.; Guha, A. Exercise And Heart Failure: Advancing Knowledge And Improving Care. Methodist DeBakey Cardiovasc. J. 2016, 12, 110–115. [Google Scholar] [CrossRef] [Green Version]
- Fulghum, K.; Hill, B.G. Metabolic Mechanisms of Exercise-Induced Cardiac Remodeling. Front. Cardiovasc. Med. 2018, 5, 127. [Google Scholar] [CrossRef] [Green Version]
- Sibilitz, K.L.; Berg, S.K.; Tang, L.H.; Risom, S.S.; Gluud, C.; Lindschou, J.; Kober, L.; Hassager, C.; Taylor, R.S.; Zwisler, A.D. Exercise-based cardiac rehabilitation for adults after heart valve surgery. Cochrane Database Syst. Rev. 2016, 3. [Google Scholar] [CrossRef] [Green Version]
- Lavie, C.J.; Arena, R.; Swift, D.L.; Johannsen, N.M.; Sui, X.; Lee, D.C.; Earnest, C.P.; Church, T.S.; O’Keefe, J.H.; Milani, R.V.; et al. Exercise and the cardiovascular system: Clinical Science and cardiovascular outcomes. Circ. Res. 2015, 117, 207–219. [Google Scholar] [CrossRef] [Green Version]
- Gao, L.; Wang, W.; Liu, D.; Zucker, I.H. Exercise training normalizes sympathetic outflow by central antioxidant mechanisms in rabbits with pacing-induced chronic heart failure. Circulation 2007, 115, 3095–3102. [Google Scholar] [CrossRef] [Green Version]
- Thomas, A.W.; Davies, N.A.; Moir, H.; Watkeys, L.; Ruffino, J.S.; Isa, S.A.; Butcher, L.R.; Hughes, M.G.; Morris, K.; Webb, R. Exercise-associated generation of PPARgamma ligands activates PPARgamma signaling events and upregulates genes related to lipid metabolism. J. Appl. Physiol. 2012, 112, 806–815. [Google Scholar] [CrossRef] [Green Version]
- Butcher, L.R.; Thomas, A.; Backx, K.; Roberts, A.; Webb, R.; Morris, K. Low-intensity exercise exerts beneficial effects on plasma lipids via PPARgamma. Med. Sci. Sports Exerc. 2008, 40, 1263–1270. [Google Scholar] [CrossRef]
- Ruffino, J.S.; Davies, N.A.; Morris, K.; Ludgate, M.; Zhang, L.; Webb, R.; Thomas, A.W. Moderate-intensity exercise alters markers of alternative activation in circulating monocytes in females: A putative role for PPARgamma. Eur. J. Appl. Physiol. 2016, 116, 1671–1682. [Google Scholar] [CrossRef] [Green Version]
- Nikolaidis, M.G.; Jamurtas, A.Z.; Paschalis, V.; Fatouros, I.G.; Koutedakis, Y.; Kouretas, D. The effect of muscle-damaging exercise on blood and skeletal muscle oxidative stress: Magnitude and time-course considerations. Sports Med. 2008, 38, 579–606. [Google Scholar] [CrossRef]
- Radak, Z.; Chung, H.Y.; Goto, S. Exercise and hormesis: Oxidative stress-related adaptation for successful aging. Biogerontology 2005, 6, 71–75. [Google Scholar] [CrossRef]
- Ristow, M.; Zarse, K.; Oberbach, A.; Kloting, N.; Birringer, M.; Kiehntopf, M.; Stumvoll, M.; Kahn, C.R.; Bluher, M. Antioxidants prevent health-promoting effects of physical exercise in humans. Proc. Natl. Acad. Sci. USA 2009, 106, 8665–8670. [Google Scholar] [CrossRef] [Green Version]
- Davies, N.A.; Watkeys, L.; Butcher, L.; Potter, S.; Hughes, M.G.; Moir, H.; Morris, K.; Thomas, A.W.; Webb, R. The contributions of oxidative stress, oxidised lipoproteins and AMPK towards exercise-associated PPARgamma signalling within human monocytic cells. Free Rad. Res. 2015, 49, 45–56. [Google Scholar] [CrossRef]
- Webb, R.; Hughes, M.G.; Thomas, A.W.; Morris, K. The Ability of Exercise-Associated Oxidative Stress to Trigger Redox-Sensitive Signalling Responses. Antioxidants 2017, 6, 63. [Google Scholar] [CrossRef] [Green Version]
- Hegde, S.M.; Solomon, S.D. Influence of Physical Activity on Hypertension and Cardiac Structure and Function. Curr. Hypertens. Rep. 2015, 17, 77. [Google Scholar] [CrossRef] [Green Version]
- Diaz, K.M.; Shimbo, D. Physical activity and the prevention of hypertension. Curr. Hypertens. Rep. 2013, 15, 659–668. [Google Scholar] [CrossRef] [Green Version]
- Touyz, R.M. Oxidative stress and vascular damage in hypertension. Curr. Hypertens. Rep. 2000, 2, 98–105. [Google Scholar] [CrossRef]
- Moreno-Ruiz, L.A.; Ibarra-Quevedo, D.; Rodriguez-Martinez, E.; Maldonado, P.D.; Sarabia-Ortega, B.; Hernandez-Martinez, J.G.; Espinosa-Caleti, B.; Mendoza-Perez, B.; Rivas-Arancibia, S. Oxidative Stress State Is Associated with Left Ventricular Mechanics Changes, Measured by Speckle Tracking in Essential Hypertensive Patients. Oxid. Med. Cell. Longev. 2015, 2015. [Google Scholar] [CrossRef] [Green Version]
- Polovina, M.M.; Ostojic, M.C.; Potpara, T.S. Relation of Biomarkers of Inflammation and Oxidative Stress with Hypertension Occurrence in Lone Atrial Fibrillation. Med. Inflamm. 2015, 2015. [Google Scholar] [CrossRef]
- Reis, G.S.; Augusto, V.S.; Silveira, A.P.; Jordao, A.A., Jr.; Baddini-Martinez, J.; Poli Neto, O.; Rodrigues, A.J.; Evora, P.R. Oxidative-stress biomarkers in patients with pulmonary hypertension. Pulm. Circ. 2013, 3, 856–861. [Google Scholar] [CrossRef] [Green Version]
- Korsager Larsen, M.; Matchkov, V.V. Hypertension and physical exercise: The role of oxidative stress. Medicina 2016, 52, 19–27. [Google Scholar] [CrossRef]
- Higashi, Y.; Yoshizumi, M. Exercise and endothelial function: Role of endothelium-derived nitric oxide and oxidative stress in healthy subjects and hypertensive patients. Pharmacol. Ther. 2004, 102, 87–96. [Google Scholar] [CrossRef]
- Jia, L.L.; Kang, Y.M.; Wang, F.X.; Li, H.B.; Zhang, Y.; Yu, X.J.; Qi, J.; Suo, Y.P.; Tian, Z.J.; Zhu, Z.; et al. Exercise training attenuates hypertension and cardiac hypertrophy by modulating neurotransmitters and cytokines in hypothalamic paraventricular nucleus. PLoS ONE 2014, 9, e85481. [Google Scholar] [CrossRef] [Green Version]
- Zago, A.S.; Park, J.Y.; Fenty-Stewart, N.; Kokubun, E.; Brown, M.D. Effects of aerobic exercise on the blood pressure, oxidative stress and eNOS gene polymorphism in pre-hypertensive older people. Eur. J. Appl. Physiol. 2010, 110, 825–832. [Google Scholar] [CrossRef]
- Trape, A.A.; Jacomini, A.M.; Muniz, J.J.; Sertorio, J.T.; Tanus-Santos, J.E.; do Amaral, S.L.; Zago, A.S. The relationship between training status, blood pressure and uric acid in adults and elderly. BMC Cardiovasc. Disord. 2013, 13, 44. [Google Scholar] [CrossRef] [Green Version]
- Gilbert, J.S.; Banek, C.T.; Bauer, A.J.; Gingery, A.; Needham, K. Exercise training attenuates placental ischemia-induced hypertension and angiogenic imbalance in the rat. Hypertension 2012, 60, 1545–1551. [Google Scholar] [CrossRef] [Green Version]
- Cook, M.D.; Heffernan, K.S.; Ranadive, S.; Woods, J.A.; Fernhall, B. Effect of resistance training on biomarkers of vascular function and oxidative stress in young African-American and Caucasian men. J. Hum. Hypertens. 2013, 27, 388–392. [Google Scholar] [CrossRef] [Green Version]
- Gupt, A.M.; Kumar, M.; Sharma, R.K.; Misra, R.; Gupt, A. Effect of Moderate Aerobic Exercise Training on Autonomic Functions and its Correlation with the Antioxidant Status. Indian J. physiol. Pharmacol. 2015, 59, 162–169. [Google Scholar]
- Craighead, D.H.; Heinbockel, T.C.; Hamilton, M.N.; Bailey, E.F.; MacDonald, M.J.; Gibala, M.J.; Seals, D.R. Time-efficient physical training for enhancing cardiovascular function in mid-life and older adults: Promise and current research gaps. J. Appl. Physiol. 2019. [Google Scholar] [CrossRef]
- Roque, F.R.; Briones, A.M.; Garcia-Redondo, A.B.; Galan, M.; Martinez-Revelles, S.; Avendano, M.S.; Cachofeiro, V.; Fernandes, T.; Vassallo, D.V.; Oliveira, E.M.; et al. Aerobic exercise reduces oxidative stress and improves vascular changes of small mesenteric and coronary arteries in hypertension. Br. J. Pharmacol. 2013, 168, 686–703. [Google Scholar] [CrossRef] [Green Version]
- Campos, J.C.; Fernandes, T.; Bechara, L.R.; da Paixao, N.A.; Brum, P.C.; de Oliveira, E.M.; Ferreira, J.C. Increased clearance of reactive aldehydes and damaged proteins in hypertension-induced compensated cardiac hypertrophy: Impact of exercise training. Oxid. Med. Cell. Longev. 2015, 2015. [Google Scholar] [CrossRef] [Green Version]
- Garciarena, C.D.; Pinilla, O.A.; Nolly, M.B.; Laguens, R.P.; Escudero, E.M.; Cingolani, H.E.; Ennis, I.L. Endurance training in the spontaneously hypertensive rat: Conversion of pathological into physiological cardiac hypertrophy. Hypertension 2009, 53, 708–714. [Google Scholar] [CrossRef] [Green Version]
- Roberts, C.K.; Vaziri, N.D.; Barnard, R.J. Effect of diet and exercise intervention on blood pressure, insulin, oxidative stress, and nitric oxide availability. Circulation 2002, 106, 2530–2532. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, D.; Dange, R.B.; Vila, J.; Otamendi, A.J.; Francis, J. Detraining differentially preserved beneficial effects of exercise on hypertension: Effects on blood pressure, cardiac function, brain inflammatory cytokines and oxidative stress. PLoS ONE 2012, 7, e52569. [Google Scholar] [CrossRef] [Green Version]
- Ferguson, A.V.; Latchford, K.J.; Samson, W.K. The paraventricular nucleus of the hypothalamus—A potential target for integrative treatment of autonomic dysfunction. Expert Opin. Ther. Targets 2008, 12, 717–727. [Google Scholar] [CrossRef]
- Dampney, R.A.; Michelini, L.C.; Li, D.P.; Pan, H.L. Regulation of sympathetic vasomotor activity by the hypothalamic paraventricular nucleus in normotensive and hypertensive states. Am. J. Physiol. Heart Circ. Physiol. 2018, 315, H1200–H1214. [Google Scholar] [CrossRef] [Green Version]
- Sturgeon, K.M.; Fenty-Stewart, N.M.; Diaz, K.M.; Brinkley, T.E.; Dowling, T.C.; Brown, M.D. The relationship of oxidative stress and cholesterol with dipping status before and after aerobic exercise training. Blood Press. 2009, 18, 171–179. [Google Scholar] [CrossRef] [Green Version]
- Pialoux, V.; Brown, A.D.; Leigh, R.; Friedenreich, C.M.; Poulin, M.J. Effect of cardiorespiratory fitness on vascular regulation and oxidative stress in postmenopausal women. Hypertension 2009, 54, 1014–1020. [Google Scholar] [CrossRef]
- Schuster, A.; Thakur, A.; Wang, Z.; Borowski, A.G.; Thomas, J.D.; Tang, W.H. Increased exhaled nitric oxide levels after exercise in patients with chronic systolic heart failure with pulmonary venous hypertension. J. Card. Fail. 2012, 18, 799–803. [Google Scholar] [CrossRef] [Green Version]
- Tsutsui, H.; Kinugawa, S.; Matsushima, S. Oxidative stress and heart failure. Am. J. Physiol. Heart Circ. Physiol. 2011, 301, H2181–H2190. [Google Scholar] [CrossRef] [Green Version]
- Gullestad, L.; Aukrust, P. Review of trials in chronic heart failure showing broad-spectrum anti-inflammatory approaches. Am. J. Cardiol. 2005, 95. [Google Scholar] [CrossRef]
- Castro, P.; Vukasovic, J.L.; Chiong, M.; Diaz-Araya, G.; Alcaino, H.; Copaja, M.; Valenzuela, R.; Greig, D.; Perez, O.; Corbalan, R.; et al. Effects of carvedilol on oxidative stress and chronotropic response to exercise in patients with chronic heart failure. Eur. J. Heart Fail. 2005, 7, 1033–1039. [Google Scholar] [CrossRef]
- Sawyer, D.B.; Siwik, D.A.; Xiao, L.; Pimentel, D.R.; Singh, K.; Colucci, W.S. Role of oxidative stress in myocardial hypertrophy and failure. J. Mol. Cell. Cardiol. 2002, 34, 379–388. [Google Scholar] [CrossRef]
- Heinonen, I.; Sorop, O.; de Beer, V.J.; Duncker, D.J.; Merkus, D. What can we learn about treating heart failure from the heart’s response to acute exercise? Focus on the coronary microcirculation. J. Appl. Physiol. 2015, 119, 934–943. [Google Scholar] [CrossRef] [Green Version]
- Gomes, M.J.; Martinez, P.F.; Campos, D.H.; Pagan, L.U.; Bonomo, C.; Lima, A.R.; Damatto, R.L.; Cezar, M.D.; Damatto, F.C.; Rosa, C.M.; et al. Beneficial Effects of Physical Exercise on Functional Capacity and Skeletal Muscle Oxidative Stress in Rats with Aortic Stenosis-Induced Heart Failure. Oxid. Med. Cell. Longev. 2016, 2016. [Google Scholar] [CrossRef] [Green Version]
- Nagayoshi, Y.; Kawano, H.; Hokamaki, J.; Uemura, T.; Soejima, H.; Kaikita, K.; Sugiyama, S.; Yamabe, H.; Shioji, I.; Sasaki, S.; et al. Differences in oxidative stress markers based on the aetiology of heart failure: Comparison of oxidative stress in patients with and without coronary artery disease. Free Rad. Res. 2009, 43, 1159–1166. [Google Scholar] [CrossRef]
- Kono, Y.; Nakamura, K.; Kimura, H.; Nishii, N.; Watanabe, A.; Banba, K.; Miura, A.; Nagase, S.; Sakuragi, S.; Kusano, K.F.; et al. Elevated levels of oxidative DNA damage in serum and myocardium of patients with heart failure. Circ. J. 2006, 70, 1001–1005. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, S.; Susa, T.; Tanaka, T.; Wada, Y.; Okuda, S.; Doi, M.; Nao, T.; Yoshiga, Y.; Yamada, J.; Okamura, T.; et al. Urinary 8-hydroxy-2′-deoxyguanosine reflects symptomatic status and severity of systolic dysfunction in patients with chronic heart failure. Eur. J. Heart Fail. 2011, 13, 29–36. [Google Scholar] [CrossRef]
- Nakamura, T.; Ranek, M.J.; Lee, D.I.; Shalkey Hahn, V.; Kim, C.; Eaton, P.; Kass, D.A. Prevention of PKG1alpha oxidation augments cardioprotection in the stressed heart. J. Clin. Investig. 2015, 125, 2468–2472. [Google Scholar] [CrossRef] [Green Version]
- Tang, W.H.; Wu, Y.; Mann, S.; Pepoy, M.; Shrestha, K.; Borowski, A.G.; Hazen, S.L. Diminished antioxidant activity of high-density lipoprotein-associated proteins in systolic heart failure. Circ. Heart Fail. 2011, 4, 59–64. [Google Scholar] [CrossRef] [Green Version]
- Nunes, R.B.; Tonetto, M.; Machado, N.; Chazan, M.; Heck, T.G.; Veiga, A.B.; Dall’Ago, P. Physical exercise improves plasmatic levels of IL-10, left ventricular end-diastolic pressure, and muscle lipid peroxidation in chronic heart failure rats. J. Appl. Physiol. 2008, 104, 1641–1647. [Google Scholar] [CrossRef] [Green Version]
- Adams, V.; Niebauer, J. Reversing heart failure-associated pathophysiology with exercise: What actually improves and by how much? Heart Fail. Clin. 2015, 11, 17–28. [Google Scholar] [CrossRef]
- Piepoli, M.F. Exercise training in chronic heart failure: Mechanisms and therapies. Neth. Heart J. 2013, 21, 85–90. [Google Scholar] [CrossRef] [Green Version]
- Roveda, F.; Middlekauff, H.R.; Rondon, M.U.; Reis, S.F.; Souza, M.; Nastari, L.; Barretto, A.C.; Krieger, E.M.; Negrao, C.E. The effects of exercise training on sympathetic neural activation in advanced heart failure: A randomized controlled trial. J. Am. Coll. Cardiol. 2003, 42, 854–860. [Google Scholar] [CrossRef] [Green Version]
- Negrao, C.E.; Middlekauff, H.R.; Gomes-Santos, I.L.; Antunes-Correa, L.M. Effects of exercise training on neurovascular control and skeletal myopathy in systolic heart failure. Am. J. Physiol. Heart Circ. Physiol. 2015, 308, H792–H802. [Google Scholar] [CrossRef] [Green Version]
- Gielen, S.; Adams, V.; Mobius-Winkler, S.; Linke, A.; Erbs, S.; Yu, J.; Kempf, W.; Schubert, A.; Schuler, G.; Hambrecht, R. Anti-inflammatory effects of exercise training in the skeletal muscle of patients with chronic heart failure. J. Am. Coll. Cardiol. 2003, 42, 861–868. [Google Scholar] [CrossRef]
- Bacurau, A.V.; Jardim, M.A.; Ferreira, J.C.; Bechara, L.R.; Bueno, C.R., Jr.; Alba-Loureiro, T.C.; Negrao, C.E.; Casarini, D.E.; Curi, R.; Ramires, P.R.; et al. Sympathetic hyperactivity differentially affects skeletal muscle mass in developing heart failure: Role of exercise training. J. Appl. Physiol. 2009, 106, 1631–1640. [Google Scholar] [CrossRef] [Green Version]
- Niess, A.M.; Simon, P. Response and adaptation of skeletal muscle to exercise—The role of reactive oxygen species. Front. Biosci. 2007, 12, 4826–4838. [Google Scholar] [CrossRef] [Green Version]
- Zucker, I.H.; Schultz, H.D.; Patel, K.P.; Wang, H. Modulation of angiotensin II signaling following exercise training in heart failure. Am. J. Physiol. Heart Circ. Physiol. 2015, 308, H781–H791. [Google Scholar] [CrossRef]
- Koba, S.; Hisatome, I.; Watanabe, T. Central command dysfunction in rats with heart failure is mediated by brain oxidative stress and normalized by exercise training. J. Physiol. 2014, 592, 3917–3931. [Google Scholar] [CrossRef] [Green Version]
- Linke, A.; Adams, V.; Schulze, P.C.; Erbs, S.; Gielen, S.; Fiehn, E.; Mobius-Winkler, S.; Schubert, A.; Schuler, G.; Hambrecht, R. Antioxidative effects of exercise training in patients with chronic heart failure: Increase in radical scavenger enzyme activity in skeletal muscle. Circulation 2005, 111, 1763–1770. [Google Scholar] [CrossRef] [Green Version]
- Adams, V.; Linke, A.; Krankel, N.; Erbs, S.; Gielen, S.; Mobius-Winkler, S.; Gummert, J.F.; Mohr, F.W.; Schuler, G.; Hambrecht, R. Impact of regular physical activity on the NAD(P)H oxidase and angiotensin receptor system in patients with coronary artery disease. Circulation 2005, 111, 555–562. [Google Scholar] [CrossRef] [Green Version]
- Bozi, L.H.; Jannig, P.R.; Rolim, N.; Voltarelli, V.A.; Dourado, P.M.; Wisloff, U.; Brum, P.C. Aerobic exercise training rescues cardiac protein quality control and blunts endoplasmic reticulum stress in heart failure rats. J. Cell. Mol. Med. 2016, 20, 2208–2212. [Google Scholar] [CrossRef] [Green Version]
- Kraljevic, J.; Hoydal, M.A.; Ljubkovic, M.; Moreira, J.B.; Jorgensen, K.; Ness, H.O.; Baekkerud, F.H.; Dujic, Z.; Wisloff, U.; Marinovic, J. Role of KATP Channels in Beneficial Effects of Exercise in Ischemic Heart Failure. Med. Sci. Sports Exerc. 2015, 47, 2504–2512. [Google Scholar] [CrossRef]
- Niebauer, J.; Clark, A.L.; Webb-Peploe, K.M.; Boger, R.; Coats, A.J. Home-based exercise training modulates pro-oxidant substrates in patients with chronic heart failure. Eur. J. Heart Fail. 2005, 7, 183–188. [Google Scholar] [CrossRef]
- Tsarouhas, K.; Tsitsimpikou, C.; Haliassos, A.; Georgoulias, P.; Koutsioras, I.; Kouretas, D.; Kogias, J.; Liosis, I.; Rentoukas, E.; Kyriakides, Z. Study of insulin resistance, TNF-alpha, total antioxidant capacity and lipid profile in patients with chronic heart failure under exercise. In Vivo 2011, 25, 1031–1037. [Google Scholar]
- Klempfner, R.; Tzur, B.; Sabbag, A.; Nahshon, A.; Gang, N.; Hay, I.; Kamerman, T.; Hod, H.; Goldenberg, I.; Rott, D. Participation in an Exercise-Based Cardiac Rehabilitation Program and Functional Improvement of Heart Failure Patients with Preserved Versus Reduced Left Ventricular Systolic Function. Isr. Med. Assoc. J. 2018, 20, 358–362. [Google Scholar]
- Zile, M.R.; Kjellstrom, B.; Bennett, T.; Cho, Y.; Baicu, C.F.; Aaron, M.F.; Abraham, W.T.; Bourge, R.C.; Kueffer, F.J. Effects of exercise on left ventricular systolic and diastolic properties in patients with heart failure and a preserved ejection fraction versus heart failure and a reduced ejection fraction. Circ. Heart Fail. 2013, 6, 508–516. [Google Scholar] [CrossRef] [Green Version]
- McKelvie, R.S. Exercise training in patients with heart failure: Clinical outcomes, safety, and indications. Heart Fail. Rev. 2008, 13, 3–11. [Google Scholar] [CrossRef]
- Morris, J.H.; Chen, L. Exercise Training and Heart Failure: A Review of the Literature. Card. Fail. Rev. 2019, 5, 57–61. [Google Scholar] [CrossRef]
- Li, W.; Jeong, J.H.; Park, H.G.; Lee, Y.R.; Li, M.; Lee, S.K. Endurance exercise training inhibits neointimal formation via enhancement of FOXOs expression in balloon-induced atherosclerosis rat model. J. Exerc. Nutr. Biochem. 2014, 18, 105–110. [Google Scholar] [CrossRef] [Green Version]
- Gimbrone, M.A., Jr.; Garcia-Cardena, G. Endothelial Cell Dysfunction and the Pathobiology of Atherosclerosis. Circ. Res. 2016, 118, 620–636. [Google Scholar] [CrossRef] [Green Version]
- Lubrano, V.; Balzan, S. Enzymatic antioxidant system in vascular inflammation and coronary artery disease. World J. Exp. Med. 2015, 5, 218–224. [Google Scholar] [CrossRef]
- Davignon, J.; Ganz, P. Role of endothelial dysfunction in atherosclerosis. Circulation 2004, 109, Iii27–Iii32. [Google Scholar] [CrossRef] [Green Version]
- Teodoro, B.G.; Natali, A.J.; Fernandes, S.A.; Silva, L.A.; Pinho, R.A.; Matta, S.L.; Peluzio Mdo, C. Improvements of atherosclerosis and hepatic oxidative stress are independent of exercise intensity in LDLr(−/−) mice. J. Atheroscl. Thromb. 2012, 19, 904–911. [Google Scholar] [CrossRef] [Green Version]
- Pellegrin, M.; Aubert, J.F.; Bouzourene, K.; Amstutz, C.; Mazzolai, L. Voluntary Exercise Stabilizes Established Angiotensin II-Dependent Atherosclerosis in Mice through Systemic Anti-Inflammatory Effects. PLoS ONE 2015, 10, e0143536. [Google Scholar] [CrossRef]
- Bachi, A.L.L.; Barros, M.P.; Vieira, R.P.; Rocha, G.A.; de Andrade, P.B.M.; Victorino, A.B.; Ramos, L.R.; Gravina, C.F.; Lopes, J.D.; Vaisberg, M.; et al. Combined Exercise Training Performed by Elderly Women Reduces Redox Indexes and Proinflammatory Cytokines Related to Atherogenesis. Oxid. Med. Cell. Longev. 2019, 2019. [Google Scholar] [CrossRef] [Green Version]
- Jakovljevic, B.; Nikolic Turnic, T.; Jeremic, N.; Jeremic, J.; Bradic, J.; Ravic, M.; Jakovljevic, V.L.; Jelic, D.; Radovanovic, D.; Pechanova, O.; et al. The impact of aerobic and anaerobic training regimes on blood pressure in normotensive and hypertensive rats: Focus on redox changes. Mol. Cell. Biochem. 2019, 454, 111–121. [Google Scholar] [CrossRef]
- Beck, D.T.; Casey, D.P.; Martin, J.S.; Emerson, B.D.; Braith, R.W. Exercise training improves endothelial function in young prehypertensives. Exp. Biol. Med. 2013, 238, 433–441. [Google Scholar] [CrossRef] [Green Version]
- Shing, C.M.; Fassett, R.G.; Peake, J.M.; Coombes, J.S. Voluntary exercise decreases atherosclerosis in nephrectomised ApoE knockout mice. PLoS ONE 2015, 10, e0120287. [Google Scholar] [CrossRef] [Green Version]
- Kadoglou, N.P.; Moustardas, P.; Kapelouzou, A.; Katsimpoulas, M.; Giagini, A.; Dede, E.; Kostomitsopoulos, N.; Karayannacos, P.E.; Kostakis, A.; Liapis, C.D. The anti-inflammatory effects of exercise training promote atherosclerotic plaque stabilization in apolipoprotein E knockout mice with diabetic atherosclerosis. Eur. J. Histochem. 2013, 57. [Google Scholar] [CrossRef]
- Okabe, T.A.; Shimada, K.; Hattori, M.; Murayama, T.; Yokode, M.; Kita, T.; Kishimoto, C. Swimming reduces the severity of atherosclerosis in apolipoprotein E deficient mice by antioxidant effects. Cardiovasc. Res. 2007, 74, 537–545. [Google Scholar] [CrossRef] [Green Version]
- Laufs, U.; Wassmann, S.; Czech, T.; Munzel, T.; Eisenhauer, M.; Bohm, M.; Nickenig, G. Physical inactivity increases oxidative stress, endothelial dysfunction, and atherosclerosis. Arterioscl. Thromb. Vasc. Biol. 2005, 25, 809–814. [Google Scholar] [CrossRef] [Green Version]
- Walther, C.; Gielen, S.; Hambrecht, R. The effect of exercise training on endothelial function in cardiovascular disease in humans. Exerc. Sports Sci. Rev. 2004, 32, 129–134. [Google Scholar] [CrossRef]
- Garelnabi, M.; Mahini, H.; Wilson, T. Quercetin intake with exercise modulates lipoprotein metabolism and reduces atherosclerosis plaque formation. J. Int. Soc. Sports Nutr. 2014, 11, 22. [Google Scholar] [CrossRef] [Green Version]
- Cesar, L.; Suarez, S.V.; Adi, J.; Adi, N.; Vazquez-Padron, R.; Yu, H.; Ma, Q.; Goldschmidt-Clermont, P.J.; Agatston, A.; Kurlansky, P.; et al. An essential role for diet in exercise-mediated protection against dyslipidemia, inflammation and atherosclerosis in ApoE(−)/(−) mice. PLoS ONE 2011, 6, e17263. [Google Scholar] [CrossRef]
- Lee, J.; Cho, J.Y.; Kim, W.K. Anti-inflammation effect of Exercise and Korean red ginseng in aging model rats with diet-induced atherosclerosis. Nutr. Res. Prac. 2014, 8, 284–291. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Parsons, K.K.; Chi, L.; Malakauskas, S.M.; Le, T.H. Glutathione S-transferase-micro1 regulates vascular smooth muscle cell proliferation, migration, and oxidative stress. Hypertension 2009, 54, 1360–1368. [Google Scholar] [CrossRef] [Green Version]
- Lewis, P.; Stefanovic, N.; Pete, J.; Calkin, A.C.; Giunti, S.; Thallas-Bonke, V.; Jandeleit-Dahm, K.A.; Allen, T.J.; Kola, I.; Cooper, M.E.; et al. Lack of the antioxidant enzyme glutathione peroxidase-1 accelerates atherosclerosis in diabetic apolipoprotein E-deficient mice. Circulation 2007, 115, 2178–2187. [Google Scholar] [CrossRef] [Green Version]
- Vendrov, A.E.; Vendrov, K.C.; Smith, A.; Yuan, J.; Sumida, A.; Robidoux, J.; Runge, M.S.; Madamanchi, N.R. NOX4 NADPH Oxidase-Dependent Mitochondrial Oxidative Stress in Aging-Associated Cardiovascular Disease. Antioxid. Redox Signal. 2015, 23, 1389–1409. [Google Scholar] [CrossRef]
- Chen, S.D.; Yang, D.I.; Lin, T.K.; Shaw, F.Z.; Liou, C.W.; Chuang, Y.C. Roles of oxidative stress, apoptosis, PGC-1alpha and mitochondrial biogenesis in cerebral ischemia. Int. J. Mol. Sci. 2011, 12, 7199–7215. [Google Scholar] [CrossRef] [Green Version]
- Maulik, N.; Watanabe, M.; Engelman, D.T.; Engelman, R.M.; Das, D.K. Oxidative stress adaptation improves postischemic ventricular recovery. Mol. Cell. Biochem. 1995, 144, 67–74. [Google Scholar] [CrossRef]
- Mastaloudis, A.; Leonard, S.W.; Traber, M.G. Oxidative stress in athletes during extreme endurance exercise. Free Radic. Biol. Med. 2001, 31, 911–922. [Google Scholar] [CrossRef]
- Powers, S.K.; Jackson, M.J. Exercise-induced oxidative stress: Cellular mechanisms and impact on muscle force production. Physiol. Rev. 2008, 88, 1243–1276. [Google Scholar] [CrossRef] [Green Version]
- Smuder, A.J.; Kavazis, A.N.; Min, K.; Powers, S.K. Exercise protects against doxorubicin-induced markers of autophagy signaling in skeletal muscle. J. Appl. Physiol. 2011, 111, 1190–1198. [Google Scholar] [CrossRef] [Green Version]
- Boveris, A.; Navarro, A. Systemic and mitochondrial adaptive responses to moderate exercise in rodents. Free Radic. Biol. Med. 2008, 44, 224–229. [Google Scholar] [CrossRef]
- Ljubicic, V.; Joseph, A.M.; Saleem, A.; Uguccioni, G.; Collu-Marchese, M.; Lai, R.Y.; Nguyen, L.M.; Hood, D.A. Transcriptional and post-transcriptional regulation of mitochondrial biogenesis in skeletal muscle: Effects of exercise and aging. Biochim. Biophys. Acta 2010, 1800, 223–234. [Google Scholar] [CrossRef]
- Boveris, A.; Navarro, A. Brain mitochondrial dysfunction in aging. IUBMB Life 2008, 60, 308–314. [Google Scholar] [CrossRef]
- Kaczor, J.J.; Hall, J.E.; Payne, E.; Tarnopolsky, M.A. Low intensity training decreases markers of oxidative stress in skeletal muscle of mdx mice. Free Radic. Biol. Med. 2007, 43, 145–154. [Google Scholar] [CrossRef]
- Taylor, B.A.; Zaleski, A.L.; Capizzi, J.A.; Ballard, K.D.; Troyanos, C.; Baggish, A.L.; D’Hemecourt, P.A.; Dada, M.R.; Thompson, P.D. Influence of chronic exercise on carotid atherosclerosis in marathon runners. BMJ Open 2014, 4, e004498. [Google Scholar] [CrossRef] [Green Version]
- Kliszczewicz, B.; Quindry, C.J.; Blessing, L.D.; Oliver, D.G.; Esco, R.M.; Taylor, J.K. Acute Exercise and Oxidative Stress: CrossFit(TM) vs. Treadmill Bout. J. Hum. Kinet. 2015, 47, 81–90. [Google Scholar] [CrossRef] [Green Version]
- Francescato, M.P.; Stel, G.; Geat, M.; Cauci, S. Oxidative stress in patients with type 1 diabetes mellitus: Is it affected by a single bout of prolonged exercise? PLoS ONE 2014, 9, e99062. [Google Scholar] [CrossRef]
- Tossige-Gomes, R.; Costa, K.B.; Ottone Vde, O.; Magalhaes Fde, C.; Amorim, F.T.; Rocha-Vieira, E. Lymphocyte Redox Imbalance and Reduced Proliferation after a Single Session of High Intensity Interval Exercise. PLoS ONE 2016, 11, e0153647. [Google Scholar] [CrossRef]
- Brito, A.F.; Silva, A.S.; Souza, I.L.; Pereira, J.C.; Martins, I.R.; Silva, B.A. Intensity of swimming exercise influences tracheal reactivity in rats. J. Smooth Muscle Res. 2015, 51, 70–81. [Google Scholar] [CrossRef] [Green Version]
- Brito, A.F.; Silva, A.S.; Souza, I.L.; Pereira, J.C.; Silva, B.A. Intensity of swimming exercise influences aortic reactivity in rats. Braz. J. Med. Biol. Res. 2015, 48, 996–1003. [Google Scholar] [CrossRef] [Green Version]
- Bouzid, M.A.; Hammouda, O.; Matran, R.; Robin, S.; Fabre, C. Changes in oxidative stress markers and biological markers of muscle injury with aging at rest and in response to an exhaustive exercise. PLoS ONE 2014, 9, e90420. [Google Scholar] [CrossRef]
- Seifi-Skishahr, F.; Damirchi, A.; Farjaminezhad, M.; Babaei, P. Physical Training Status Determines Oxidative Stress and Redox Changes in Response to an Acute Aerobic Exercise. Biochem. Res. Int. 2016, 2016. [Google Scholar] [CrossRef] [Green Version]
- Cardoso, A.M.; Bagatini, M.D.; Roth, M.A.; Martins, C.C.; Rezer, J.F.; Mello, F.F.; Lopes, L.F.; Morsch, V.M.; Schetinger, M.R. Acute effects of resistance exercise and intermittent intense aerobic exercise on blood cell count and oxidative stress in trained middle-aged women. Braz. J. Med. Biol. Res. 2012, 45, 1172–1182. [Google Scholar] [CrossRef] [Green Version]
- Ramel, A.; Wagner, K.H.; Elmadfa, I. Correlations between plasma noradrenaline concentrations, antioxidants, and neutrophil counts after submaximal resistance exercise in men. Br. J. Sports Med. 2004, 38, E22. [Google Scholar] [CrossRef] [Green Version]
- Deminice, R.; Sicchieri, T.; Payao, P.O.; Jordao, A.A. Blood and salivary oxidative stress biomarkers following an acute session of resistance exercise in humans. Int. J. Sports Med. 2010, 31, 599–603. [Google Scholar] [CrossRef]
- Cakir-Atabek, H.; Ozdemir, F.; Colak, R. Oxidative stress and antioxidant responses to progressive resistance exercise intensity in trained and untrained males. Biol. Sports 2015, 32, 321–328. [Google Scholar] [CrossRef]
- Park, S.Y.; Kwak, Y.S. Impact of aerobic and anaerobic exercise training on oxidative stress and antioxidant defense in athletes. J. Exerc. Rehabil. 2016, 12, 113–117. [Google Scholar] [CrossRef]
- Esgalhado, M.; Stockler-Pinto, M.B.; de Franca Cardozo, L.F.; Costa, C.; Barboza, J.E.; Mafra, D. Effect of acute intradialytic strength physical exercise on oxidative stress and inflammatory responses in hemodialysis patients. Kidney Res. Clin. Prac. 2015, 34, 35–40. [Google Scholar] [CrossRef] [Green Version]
- Bouzid, M.A.; Hammouda, O.; Matran, R.; Robin, S.; Fabre, C. Low intensity aerobic exercise and oxidative stress markers in older adults. J. Aging Phys. Act. 2014, 22, 536–542. [Google Scholar] [CrossRef]
- McKenzie, M.J.; Goldfarb, A.; Garten, R.S.; Vervaecke, L. Oxidative stress and inflammation response following aerobic exercise: Role of ethnicity. Int. J. Sports Med. 2014, 35, 822–827. [Google Scholar] [CrossRef]
- Canale, R.E.; Farney, T.M.; McCarthy, C.G.; Bloomer, R.J. Influence of acute exercise of varying intensity and duration on postprandial oxidative stress. Eur. J. Appl. Physiol. 2014, 114, 1913–1924. [Google Scholar] [CrossRef]
- Rahimi, R. Creatine supplementation decreases oxidative DNA damage and lipid peroxidation induced by a single bout of resistance exercise. J. Strength Cond. Res. 2011, 25, 3448–3455. [Google Scholar] [CrossRef]
- Wetzstein, C.J.; Shern-Brewer, R.A.; Santanam, N.; Green, N.R.; White-Welkley, J.E.; Parthasarathy, S. Does acute exercise affect the susceptibility of low density lipoprotein to oxidation? Free Radic. Biol. Med. 1998, 24, 679–682. [Google Scholar] [CrossRef]
- Chis, I.C.; Coseriu, A.; Simedrea, R.; Oros, A.; Nagy, A.L.; Clichici, S. In Vivo Effects of Quercetin in Association with Moderate Exercise Training in Improving Streptozotocin-Induced Aortic Tissue Injuries. Molecules 2015, 20, 21770–21786. [Google Scholar] [CrossRef] [Green Version]
- Gimenes, C.; Gimenes, R.; Rosa, C.M.; Xavier, N.P.; Campos, D.H.; Fernandes, A.A.; Cezar, M.D.; Guirado, G.N.; Cicogna, A.C.; Takamoto, A.H.; et al. Low Intensity Physical Exercise Attenuates Cardiac Remodeling and Myocardial Oxidative Stress and Dysfunction in Diabetic Rats. J. Diabetes Res. 2015, 2015. [Google Scholar] [CrossRef] [Green Version]
- Riahi, S.; Mohammadi, M.T.; Sobhani, V.; Soleimany, M. Chronic effects of aerobic exercise on gene expression of LOX-1 receptor in the heart of rats fed with high fat diet. Iran. J. Basic Med. Sci. 2015, 18, 805–812. [Google Scholar]
- Coelho, C.W.; Jannig, P.R.; Souza, A.B.; Fronza, H., Jr.; Westphal, G.A.; Petronilho, F.; Constantino, L.; Dal-Pizzol, F.; Ferreira, G.K.; Streck, E.E.; et al. Exercise training prevents skeletal muscle damage in an experimental sepsis model. Clinics 2013, 68, 107–114. [Google Scholar] [CrossRef]
- Naderi, R.; Mohaddes, G.; Mohammadi, M.; Ghaznavi, R.; Ghyasi, R.; Vatankhah, A.M. Voluntary Exercise Protects Heart from Oxidative Stress in Diabetic Rats. Adv. Pharm. Bull. 2015, 5, 231–236. [Google Scholar] [CrossRef]
- Holland, A.M.; Hyatt, H.W.; Smuder, A.J.; Sollanek, K.J.; Morton, A.B.; Roberts, M.D.; Kavazis, A.N. Influence of endurance exercise training on antioxidant enzymes, tight junction proteins, and inflammatory markers in the rat ileum. BMC Res. Notes 2015, 8, 514. [Google Scholar] [CrossRef] [Green Version]
- Hoffman-Goetz, L.; Pervaiz, N.; Guan, J. Voluntary exercise training in mice increases the expression of antioxidant enzymes and decreases the expression of TNF-alpha in intestinal lymphocytes. Brain Behav. Immun. 2009, 23, 498–506. [Google Scholar] [CrossRef]
- Alghadir, A.H.; Gabr, S.A.; Al-Eisa, E.S. Effects of Moderate Aerobic Exercise on Cognitive Abilities and Redox State Biomarkers in Older Adults. Oxid. Med. Cell. Longev. 2016, 2016. [Google Scholar] [CrossRef] [Green Version]
- Arikawa, A.Y.; Thomas, W.; Gross, M.; Smith, A.; Phipps, W.R.; Kurzer, M.S.; Schmitz, K.H. Aerobic training reduces systemic oxidative stress in young women with elevated levels of F2-isoprostanes. Contemp. Clin. Trials 2013, 34, 212–217. [Google Scholar] [CrossRef] [Green Version]
- Claudio, E.R.; Endlich, P.W.; Santos, R.L.; Moyses, M.R.; Bissoli, N.S.; Gouvea, S.A.; Silva, J.F.; Lemos, V.S.; Abreu, G.R. Effects of chronic swimming training and oestrogen therapy on coronary vascular reactivity and expression of antioxidant enzymes in ovariectomized rats. PLoS ONE 2014, 8, e64806. [Google Scholar] [CrossRef] [Green Version]
- Youssef, H.; Groussard, C.; Lemoine-Morel, S.; Pincemail, J.; Jacob, C.; Moussa, E.; Fazah, A.; Cillard, J.; Pineau, J.C.; Delamarche, A. Aerobic training suppresses exercise-induced lipid peroxidation and inflammation in overweight/obese adolescent girls. Pediatr. Exerc. Sci. 2015, 27, 67–76. [Google Scholar] [CrossRef]
- Kelly, A.S.; Steinberger, J.; Olson, T.P.; Dengel, D.R. In the absence of weight loss, exercise training does not improve adipokines or oxidative stress in overweight children. Metabolism 2007, 56, 1005–1009. [Google Scholar] [CrossRef]
- Vincent, H.K.; Bourguignon, C.; Vincent, K.R. Resistance training lowers exercise-induced oxidative stress and homocysteine levels in overweight and obese older adults. Obesity 2006, 14, 1921–1930. [Google Scholar] [CrossRef]
- Parise, G.; Phillips, S.M.; Kaczor, J.J.; Tarnopolsky, M.A. Antioxidant enzyme activity is up-regulated after unilateral resistance exercise training in older adults. Free Radic. Biol. Med. 2005, 39, 289–295. [Google Scholar] [CrossRef]
- Cakir-Atabek, H.; Demir, S.; PinarbaSili, R.D.; Gunduz, N. Effects of different resistance training intensity on indices of oxidative stress. J. Strength Cond. Res. 2010, 24, 2491–2497. [Google Scholar] [CrossRef]
- Flack, K.D.; Davy, B.M.; DeBerardinis, M.; Boutagy, N.E.; McMillan, R.P.; Hulver, M.W.; Frisard, M.I.; Anderson, A.S.; Savla, J.; Davy, K.P. Resistance exercise training and in vitro skeletal muscle oxidative capacity in older adults. Physiol. Rep. 2016, 4. [Google Scholar] [CrossRef] [Green Version]
- Ghiasi, R.; Mohammadi, M.; Ashrafi Helan, J.; Jafari Jozani, S.R.; Mohammadi, S.; Ghiasi, A.; Naderi, R. Influence of Two Various Durations of Resistance Exercise on Oxidative Stress in the Male Rat’s Hearts. J. Cardiovasc. Thorac. Res. 2015, 7, 149–153. [Google Scholar] [CrossRef] [Green Version]
- Azizbeigi, K.; Stannard, S.; Atashak, S.; Haghighi, M.M. Antioxidant enzymes and oxidative stress adaptation to exercise training: Comparison of endurance, resistance, and concurrent training in untrained males. J. Exerc. Sci. Fit. 2014, 12, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Soares, J.P.; Silva, A.M.; Oliveira, M.M.; Peixoto, F.; Gaivao, I.; Mota, M.P. Effects of combined physical exercise training on DNA damage and repair capacity: Role of oxidative stress changes. Age 2015, 37, 9799. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vinetti, G.; Mozzini, C.; Desenzani, P.; Boni, E.; Bulla, L.; Lorenzetti, I.; Romano, C.; Pasini, A.; Cominacini, L.; Assanelli, D. Supervised exercise training reduces oxidative stress and cardiometabolic risk in adults with type 2 diabetes: A randomized controlled trial. Sci. Rep. 2015, 5, 9238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bartfay, W.; Bartfay, E. A case-control study examining the effects of active versus sedentary lifestyles on measures of body iron burden and oxidative stress in postmenopausal women. Biol. Res. Nurs. 2014, 16, 38–45. [Google Scholar] [CrossRef] [PubMed]
- Wadley, A.J.; Veldhuijzen van Zanten, J.J.; Stavropoulos-Kalinoglou, A.; Metsios, G.S.; Smith, J.P.; Kitas, G.D.; Aldred, S. Three months of moderate-intensity exercise reduced plasma 3-nitrotyrosine in rheumatoid arthritis patients. Eur. J. Appl. Physiol. 2014, 114, 1483–1492. [Google Scholar] [CrossRef]
- Krause, M.; Rodrigues-Krause, J.; O’Hagan, C.; Medlow, P.; Davison, G.; Susta, D.; Boreham, C.; Newsholme, P.; O’Donnell, M.; Murphy, C.; et al. The effects of aerobic exercise training at two different intensities in obesity and type 2 diabetes: Implications for oxidative stress, low-grade inflammation and nitric oxide production. Eur. J. Appl. Physiol. 2014, 114, 251–260. [Google Scholar] [CrossRef] [Green Version]
- Eleuterio-Silva, M.A.; Sa da Fonseca, L.J.; Velloso, E.P.; da Silva Guedes, G.; Sampaio, W.O.; da Silva, W.F.; Mota-Gomes, M.A.; da Silva Lima, L.V.; Santos, R.A.; Rabelo, L.A. Short-term cardiovascular physical programme ameliorates arterial stiffness and decreases oxidative stress in women with metabolic syndrome. J. Rehabil. Med. 2013, 45, 572–579. [Google Scholar] [CrossRef] [Green Version]
- Azizbeigi, K.; Azarbayjani, M.A.; Peeri, M.; Agha-alinejad, H.; Stannard, S. The effect of progressive resistance training on oxidative stress and antioxidant enzyme activity in erythrocytes in untrained men. Int. J. Sports Nutr. Exerc. Metab. 2013, 23, 230–238. [Google Scholar] [CrossRef] [Green Version]
- Azizbeigi, K.; Azarbayjani, M.A.; Atashak, S.; Stannard, S.R. Effect of moderate and high resistance training intensity on indices of inflammatory and oxidative stress. Res. Sports Med. 2015, 23, 73–87. [Google Scholar] [CrossRef]
- Chicco, A.J.; McCarty, H.; Reed, A.H.; Story, R.R.; Westerlind, K.C.; Turner, R.T.; Hayward, R. Resistance exercise training attenuates alcohol-induced cardiac oxidative stress. Eur. J. Cardiovasc. Prev. Rehabil. 2006, 13, 74–79. [Google Scholar] [CrossRef]
- Parise, G.; Brose, A.N.; Tarnopolsky, M.A. Resistance exercise training decreases oxidative damage to DNA and increases cytochrome oxidase activity in older adults. Exp. Gerontol. 2005, 40, 173–180. [Google Scholar] [CrossRef]
- Radak, Z.; Kaneko, T.; Tahara, S.; Nakamoto, H.; Ohno, H.; Sasvari, M.; Nyakas, C.; Goto, S. The effect of exercise training on oxidative damage of lipids, proteins, and DNA in rat skeletal muscle: Evidence for beneficial outcomes. Free Radic. Biol. Med. 1999, 27, 69–74. [Google Scholar] [CrossRef]
- Gordon, B.A.; Knapman, L.M.; Lubitz, L. Graduated exercise training and progressive resistance training in adolescents with chronic fatigue syndrome: A randomized controlled pilot study. Clin. Rehabil. 2010, 24, 1072–1079. [Google Scholar] [CrossRef]
- Volaklis, K.A.; Smilios, I.; Spassis, A.T.; Zois, C.E.; Douda, H.T.; Halle, M.; Tokmakidis, S.P. Acute pro- and anti-inflammatory responses to resistance exercise in patients with coronary artery disease: A pilot study. J. Sports Sci. Med. 2015, 14, 91–97. [Google Scholar]
- Ghilarducci, L.E.; Holly, R.G.; Amsterdam, E.A. Effects of high resistance training in coronary artery disease. Am. J. Cardiol. 1989, 64, 866–870. [Google Scholar] [CrossRef]
- Kelemen, M.H.; Stewart, K.J.; Gillilan, R.E.; Ewart, C.K.; Valenti, S.A.; Manley, J.D.; Kelemen, M.D. Circuit weight training in cardiac patients. J. Am. Coll. Cardiol. 1986, 7, 38–42. [Google Scholar] [CrossRef] [Green Version]
- McCartney, N.; McKelvie, R.S.; Haslam, D.R.; Jones, N.L. Usefulness of weightlifting training in improving strength and maximal power output in coronary artery disease. Am. J. Cardiol. 1991, 67, 939–945. [Google Scholar] [CrossRef]
- Sparling, P.B.; Cantwell, J.D.; Dolan, C.M.; Niederman, R.K. Strength training in a cardiac rehabilitation program: A six-month follow-up. Arch. Phys. Med. Rehabil. 1990, 71, 148–152. [Google Scholar]
- Williams, M.A.; Haskell, W.L.; Ades, P.A.; Amsterdam, E.A.; Bittner, V.; Franklin, B.A.; Gulanick, M.; Laing, S.T.; Stewart, K.J. Resistance exercise in individuals with and without cardiovascular disease: 2007 update: A scientific statement from the American Heart Association Council on Clinical Cardiology and Council on Nutrition, Physical Activity, and Metabolism. Circulation 2007, 116, 572–584. [Google Scholar] [CrossRef] [Green Version]
- MacDougall, J.D.; Tuxen, D.; Sale, D.G.; Moroz, J.R.; Sutton, J.R. Arterial blood pressure response to heavy resistance exercise. J. Appl. Physiol. 1985, 58, 785–790. [Google Scholar] [CrossRef] [Green Version]
- Kamada, M.; Shiroma, E.J.; Buring, J.E.; Miyachi, M.; Lee, I.M. Strength Training and All-Cause, Cardiovascular Disease, and Cancer Mortality in Older Women: A Cohort Study. J. Am. Heart Assoc. 2017, 6. [Google Scholar] [CrossRef] [Green Version]
- Calle, M.C.; Fernandez, M.L. Effects of resistance training on the inflammatory response. Nutr. Res. Prac. 2010, 4, 259–269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tarnopolsky, M.A. Mitochondrial DNA shifting in older adults following resistance exercise training. Appl. Physiol. Nutr. Metab. 2009, 34, 348–354. [Google Scholar] [CrossRef] [PubMed]
- Di Meo, S.; Napolitano, G.; Venditti, P. Mediators of Physical Activity Protection against ROS-Linked Skeletal Muscle Damage. Int. J. Mol. Sci. 2019, 20, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vargas-Mendoza, N.; Morales-Gonzalez, A.; Madrigal-Santillan, E.O.; Madrigal-Bujaidar, E.; Alvarez-Gonzalez, I.; Garcia-Melo, L.F.; Anguiano-Robledo, L.; Fregoso-Aguilar, T.; Morales-Gonzalez, J.A. Antioxidant and Adaptative Response Mediated by Nrf2 during Physical Exercise. Antioxidants 2019, 8, 196. [Google Scholar] [CrossRef] [Green Version]
- Alikhani, S.; Sheikholeslami-Vatani, D. Oxidative stress and anti-oxidant responses to regular resistance training in young and older adult women. Geriatr. Gerontol. Int. 2019, 19, 419–422. [Google Scholar] [CrossRef]
- Done, A.J.; Traustadottir, T. Nrf2 mediates redox adaptations to exercise. Redox Biol. 2016, 10, 191–199. [Google Scholar] [CrossRef] [Green Version]
- Abreu, C.C.; Cardozo, L.; Stockler-Pinto, M.B.; Esgalhado, M.; Barboza, J.E.; Frauches, R.; Mafra, D. Does resistance exercise performed during dialysis modulate Nrf2 and NF-kappaB in patients with chronic kidney disease? Life Sci. 2017, 188, 192–197. [Google Scholar] [CrossRef]
- Atashak, S.; Sharafi, H.; Azarbayjani, M.A.; Stannard, S.; GOli, M.; Haghighi, M. Effect of omega-3 supplementation on the blood levels of oxidative stress, muscle damage and inflammation markers after acute resistance exercise in young athletes. Kinesiology 2013, 45, 22–29. [Google Scholar]
- Nordin, T.C.; Done, A.J.; Traustadottir, T. Acute exercise increases resistance to oxidative stress in young but not older adults. Age 2014, 36, 9727. [Google Scholar] [CrossRef]
- McAnulty, S.R.; McAnulty, L.S.; Nieman, D.C.; Morrow, J.D.; Utter, A.C.; Dumke, C.L. Effect of resistance exercise and carbohydrate ingestion on oxidative stress. Free Rad. Res. 2005, 39, 1219–1224. [Google Scholar] [CrossRef]
- Mota, M.M.; Silva, T.L.; Fontes, M.T.; Barreto, A.S.; Araujo, J.E.; Oliveira, A.C.; Wichi, R.B.; Santos, M.R. Resistance exercise restores endothelial function and reduces blood pressure in type 1 diabetic rats. Arq. Bras. Cardiol. 2014, 103, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Camiletti-Moiron, D.; Aparicio, V.A.; Nebot, E.; Medina, G.; Martinez, R.; Kapravelou, G.; Andrade, A.; Porres, J.M.; Lopez-Jurado, M.; Aranda, P. High-intensity Exercise Modifies the Effects of Stanozolol on Brain Oxidative Stress in Rats. Int. J. Sports Med. 2015, 36, 984–991. [Google Scholar] [CrossRef] [PubMed]
- Camiletti-Moiron, D.; Aparicio, V.A.; Nebot, E.; Medina, G.; Martinez, R.; Kapravelou, G.; Andrade, A.; Porres, J.M.; Lopez-Jurado, M.; Aranda, P. High-protein diet induces oxidative stress in rat brain: Protective action of high-intensity exercise against lipid peroxidation. Nutr. Hosp. 2014, 31, 866–874. [Google Scholar] [CrossRef] [PubMed]
- Croymans, D.M.; Krell, S.L.; Oh, C.S.; Katiraie, M.; Lam, C.Y.; Harris, R.A.; Roberts, C.K. Effects of resistance training on central blood pressure in obese young men. J. Hum. Hypertens. 2014, 28, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Carteri, R.B.; Schaun, M.I.; Lopes, A.L.; Teixeira, B.C.; Macedo, R.C.; Pinto, R.S.; Homem De Bittencourt, P.I., Jr.; Reischak-Oliveira, A. Lipid peroxidation and total glutathione after different intensities of resistance exercise in trained men. J. Sports Med. Phys. Fit. 2015, 55, 735–741. [Google Scholar]
- De Souza, M.R.; Pimenta, L.; Pithon-Curi, T.C.; Bucci, M.; Fontinele, R.G.; De Souza, R.R. Effects of aerobic training, resistance training, or combined resistance-aerobic training on the left ventricular myocardium in a rat model. Microsc. Res. Tech. 2014, 77, 727–734. [Google Scholar] [CrossRef]
- Bloomer, R.J.; Goldfarb, A.H.; Wideman, L.; McKenzie, M.J.; Consitt, L.A. Effects of acute aerobic and anaerobic exercise on blood markers of oxidative stress. J. Strength Cond. Res. 2005, 19, 276–285. [Google Scholar] [CrossRef] [Green Version]
- Silva, S.D., Jr.; Jara, Z.P.; Peres, R.; Lima, L.S.; Scavone, C.; Montezano, A.C.; Touyz, R.M.; Casarini, D.E.; Michelini, L.C. Temporal changes in cardiac oxidative stress, inflammation and remodeling induced by exercise in hypertension: Role for local angiotensin II reduction. PLoS ONE 2017, 12, e0189535. [Google Scholar] [CrossRef]
- Fatouros, I.G.; Douroudos, I.; Panagoutsos, S.; Pasadakis, P.; Nikolaidis, M.G.; Chatzinikolaou, A.; Sovatzidis, A.; Michailidis, Y.; Jamurtas, A.Z.; Mandalidis, D.; et al. Effects of L-carnitine on oxidative stress responses in patients with renal disease. Med. Sci. Sports Exerc. 2010, 42, 1809–1818. [Google Scholar] [CrossRef]
- Nikolaidis, M.G.; Kyparos, A.; Hadziioannou, M.; Panou, N.; Samaras, L.; Jamurtas, A.Z.; Kouretas, D. Acute exercise markedly increases blood oxidative stress in boys and girls. Appl. Physiol. Nutr. Metab. 2007, 32, 197–205. [Google Scholar] [CrossRef]
- Aoi, W.; Naito, Y.; Takanami, Y.; Kawai, Y.; Sakuma, K.; Ichikawa, H.; Yoshida, N.; Yoshikawa, T. Oxidative stress and delayed-onset muscle damage after exercise. Free Radic. Biol. Med. 2004, 37, 480–487. [Google Scholar] [CrossRef] [PubMed]
- Venojarvi, M.; Korkmaz, A.; Wasenius, N.; Manderoos, S.; Heinonen, O.J.; Lindholm, H.; Aunola, S.; Eriksson, J.G.; Atalay, M. 12 weeks’ aerobic and resistance training without dietary intervention did not influence oxidative stress but aerobic training decreased atherogenic index in middle-aged men with impaired glucose regulation. Food Chem. 2013, 61, 127–135. [Google Scholar] [CrossRef] [PubMed]
- Napoli, C.; Williams-Ignarro, S.; de Nigris, F.; Lerman, L.O.; D’Armiento, F.P.; Crimi, E.; Byrns, R.E.; Casamassimi, A.; Lanza, A.; Gombos, F.; et al. Physical training and metabolic supplementation reduce spontaneous atherosclerotic plaque rupture and prolong survival in hypercholesterolemic mice. Proc. Natl. Acad. Sci. USA 2006, 103, 10479–10484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leeuwenburgh, C.; Heinecke, J.W. Oxidative stress and antioxidants in exercise. Curr. Med. Chem. 2001, 8, 829–838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davies, K.J.; Quintanilha, A.T.; Brooks, G.A.; Packer, L. Free radicals and tissue damage produced by exercise. Biochem. Biophys. Res. Commun. 1982, 107, 1198–1205. [Google Scholar] [CrossRef]
- Packer, L.; Cadenas, E.; Davies, K.J. Free radicals and exercise: An introduction. Free Radic. Biol. Med. 2008, 44, 123–125. [Google Scholar] [CrossRef] [PubMed]
- Camiletti-Moiron, D.; Aparicio, V.A.; Aranda, P.; Radak, Z. Does exercise reduce brain oxidative stress? A systematic review. Scand. J. Med. Sci. Sports 2013, 23, e202–e212. [Google Scholar] [CrossRef] [Green Version]
- Nystoriak, M.A.; Bhatnagar, A. Cardiovascular Effects and Benefits of Exercise. Front. Cardiovasc. Med. 2018, 5, 135. [Google Scholar] [CrossRef] [Green Version]
- Thirupathi, A.; Pinho, R.A. Effects of reactive oxygen species and interplay of antioxidants during physical exercise in skeletal muscles. J. Physiol. Biochem. 2018, 74, 359–367. [Google Scholar] [CrossRef]
- Gomez-Cabrera, M.C.; Domenech, E.; Vina, J. Moderate exercise is an antioxidant: Upregulation of antioxidant genes by training. Free Radic. Biol. Med. 2008, 44, 126–131. [Google Scholar] [CrossRef]
- Popovic, L.M.; Mitic, N.R.; Radic, I.; Miric, D.; Kisic, B.; Krdzic, B.; Djokic, T. The effect of exhaustive exercise on oxidative stress generation and antioxidant defense in guinea pigs. Adv. Clin. Exp. Med. 2012, 21, 313–320. [Google Scholar] [PubMed]
- Sugama, K.; Suzuki, K.; Yoshitani, K.; Shiraishi, K.; Miura, S.; Yoshioka, H.; Mori, Y.; Kometani, T. Changes of thioredoxin, oxidative stress markers, inflammation and muscle/renal damage following intensive endurance exercise. Exerc. Immunol. Rev. 2015, 21, 130–142. [Google Scholar] [PubMed]
- Jorde, U.P.; Colombo, P.C.; Ahuja, K.; Hudaihed, A.; Onat, D.; Diaz, T.; Hirsh, D.S.; Fisher, E.A.; Tseng, C.H.; Vittorio, T.J. Exercise-induced increases in oxidized low-density lipoprotein are associated with adverse outcomes in chronic heart failure. J. Card. Fail. 2007, 13, 759–764. [Google Scholar] [CrossRef] [PubMed]
- Le Goff, C.; Kaux, J.F.; Laurent, T.; Vannuscorps, J.; Pincemail, J.; Chapelle, J.P.; Cavalier, E.; Croisier, J.L. Is isokinetic eccentric exercise dangerous for the heart? Isokinet. Exerc. Sci. 2014, 22, 131–136. [Google Scholar] [CrossRef] [Green Version]
- Mujika, I.; Padilla, S. Detraining: Loss of training-induced physiological and performance adaptations. Part I: Short term insufficient training stimulus. Sports Med. 2000, 30, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Toraman, N.F.; Ayceman, N. Effects of six weeks of detraining on retention of functional fitness of old people after nine weeks of multicomponent training. Br. J. Sports Med. 2005, 39. [Google Scholar] [CrossRef]
- Kemi, O.J.; Haram, P.M.; Wisloff, U.; Ellingsen, O. Aerobic fitness is associated with cardiomyocyte contractile capacity and endothelial function in exercise training and detraining. Circulation 2004, 109, 2897–2904. [Google Scholar] [CrossRef]
- Miyachi, M.; Kawano, H.; Sugawara, J.; Takahashi, K.; Hayashi, K.; Yamazaki, K.; Tabata, I.; Tanaka, H. Unfavorable effects of resistance training on central arterial compliance: A randomized intervention study. Circulation 2004, 110, 2858–2863. [Google Scholar] [CrossRef] [Green Version]
- Stebbings, G.K.; Morse, C.I.; McMahon, G.E.; Onambele, G.L. Resting arterial diameter and blood flow changes with resistance training and detraining in healthy young individuals. J. Athl. Train. 2013, 48, 209–219. [Google Scholar] [CrossRef] [Green Version]
- Esain, I.; Rodriguez-Larrad, A.; Bidaurrazaga-Letona, I.; Gil, S.M. Health-related quality of life, handgrip strength and falls during detraining in elderly habitual exercisers. Health Qual. Life Outcomes 2017, 15, 226. [Google Scholar] [CrossRef] [Green Version]
- Toraman, N.F. Short term and long term detraining: Is there any difference between young-old and old people? Br. J. Sports Med. 2005, 39, 561–564. [Google Scholar] [CrossRef] [PubMed]
- Coetsee, C.; Terblanche, E. The time course of changes induced by resistance training and detraining on muscular and physical function in older adults. Eur. Rev. Aging Phys. Act. 2015, 12, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yasuda, T.; Loenneke, J.P.; Thiebaud, R.S.; Abe, T. Effects of detraining after blood flow-restricted low-intensity concentric or eccentric training on muscle size and strength. J. Physiol. Sci. 2015, 65, 139–144. [Google Scholar] [CrossRef] [PubMed]
- Harris, C.; DeBeliso, M.; Adams, K.J.; Irmischer, B.S.; Spitzer Gibson, T.A. Detraining in the older adult: Effects of prior training intensity on strength retention. J. Strength Cond. Res. 2007, 21, 813–818. [Google Scholar] [CrossRef] [PubMed]
- Fatouros, I.G.; Kambas, A.; Katrabasas, I.; Nikolaidis, K.; Chatzinikolaou, A.; Leontsini, D.; Taxildaris, K. Strength training and detraining effects on muscular strength, anaerobic power, and mobility of inactive older men are intensity dependent. Br. J. Sports Med. 2005, 39, 776–780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nascimento Dda, C.; Tibana, R.A.; Benik, F.M.; Fontana, K.E.; Ribeiro Neto, F.; Santana, F.S.; Santos-Neto, L.; Silva, R.A.; Silva, A.O.; Farias, D.L.; et al. Sustained effect of resistance training on blood pressure and hand grip strength following a detraining period in elderly hypertensive women: A pilot study. Clin. Interv. Aging 2014, 9, 219–225. [Google Scholar] [CrossRef] [Green Version]
- Padilha, C.S.; Ribeiro, A.S.; Fleck, S.J.; Nascimento, M.A.; Pina, F.L.; Okino, A.M.; Venturini, D.; Barbosa, D.S.; Mayhew, J.L.; Cyrino, E.S. Effect of resistance training with different frequencies and detraining on muscular strength and oxidative stress biomarkers in older women. Age 2015, 37, 104. [Google Scholar] [CrossRef]
- Sertie, R.A.; Andreotti, S.; Proenca, A.R.; Campana, A.B.; Lima-Salgado, T.M.; Batista, M.L., Jr.; Seelaender, M.C.; Curi, R.; Oliveira, A.C.; Lima, F.B. Cessation of physical exercise changes metabolism and modifies the adipocyte cellularity of the periepididymal white adipose tissue in rats. J. Appl. Physiol. 2013, 115, 394–402. [Google Scholar] [CrossRef] [Green Version]
- Sertie, R.A.; Andreotti, S.; Proenca, A.R.; Campana, A.B.; Lima, F.B. Fat gain with physical detraining is correlated with increased glucose transport and oxidation in periepididymal white adipose tissue in rats. Braz. J. Med. Biol. Res. 2015, 48, 650–653. [Google Scholar] [CrossRef] [Green Version]
- Mazzucatto, F.; Higa, T.S.; Fonseca-Alaniz, M.H.; Evangelista, F.S. Reversal of metabolic adaptations induced by physical training after two weeks of physical detraining. Int. J. Clin. Exp. Med. 2014, 7, 2000–2008. [Google Scholar]
- Waring, C.D.; Henning, B.J.; Smith, A.J.; Nadal-Ginard, B.; Torella, D.; Ellison, G.M. Cardiac adaptations from 4 weeks of intensity-controlled vigorous exercise are lost after a similar period of detraining. Physiol. Rep. 2015, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evangelista, F.S.; Martuchi, S.E.; Negrao, C.E.; Brum, P.C. Loss of resting bradycardia with detraining is associated with intrinsic heart rate changes. Braz. J. Med. Biol. Res. 2005, 38, 1141–1146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodrigues, B.; Santana, A.A.; Santamarina, A.B.; Oyama, L.M.; Caperuto, E.C.; de Souza, C.T.; Barboza Cde, A.; Rocha, L.Y.; Figueroa, D.; Mostarda, C.; et al. Role of training and detraining on inflammatory and metabolic profile in infarcted rats: Influences of cardiovascular autonomic nervous system. Med. Inflamm. 2014, 2014, 207131. [Google Scholar] [CrossRef] [Green Version]
- Maeda, S.; Miyauchi, T.; Kakiyama, T.; Sugawara, J.; Iemitsu, M.; Irukayama-Tomobe, Y.; Murakami, H.; Kumagai, Y.; Kuno, S.; Matsuda, M. Effects of exercise training of 8 weeks and detraining on plasma levels of endothelium-derived factors, endothelin-1 and nitric oxide, in healthy young humans. Life Sci. 2001, 69, 1005–1016. [Google Scholar] [CrossRef]
- Koshiba, H.; Maeshima, E. Influence of detraining on temporal changes in arterial stiffness in endurance athletes: A prospective study. J. Phys. Ther. Sci. 2015, 27, 3681–3684. [Google Scholar] [CrossRef] [Green Version]
- Spence, A.L.; Naylor, L.H.; Carter, H.H.; Buck, C.L.; Dembo, L.; Murray, C.P.; Watson, P.; Oxborough, D.; George, K.P.; Green, D.J. A prospective randomised longitudinal MRI study of left ventricular adaptation to endurance and resistance exercise training in humans. J. Physiol. 2011, 589, 5443–5452. [Google Scholar] [CrossRef]
- Tokmakidis, S.P.; Volaklis, K.A. Training and detraining effects of a combined-strength and aerobic exercise program on blood lipids in patients with coronary artery disease. J. Cardiopulm. Rehabil. 2003, 23, 193–200. [Google Scholar] [CrossRef]
- Theodorou, A.A.; Panayiotou, G.; Volaklis, K.A.; Douda, H.T.; Paschalis, V.; Nikolaidis, M.G.; Smilios, I.; Toubekis, A.; Kyprianou, D.; Papadopoulos, I.; et al. Aerobic, resistance and combined training and detraining on body composition, muscle strength, lipid profile and inflammation in coronary artery disease patients. Res. Sports Med. 2016, 24, 171–184. [Google Scholar] [CrossRef]
- Yuing Farias, T.; Santos-Lozano, A.; Solis Urra, P.; Cristi-Montero, C. Effects of training and detraining on glycosylated haemoglobin, glycaemia and lipid profile in type-ii diabetics. Nutr. Hosp. 2015, 32, 1729–1734. [Google Scholar] [CrossRef]
- Samjoo, I.A.; Safdar, A.; Hamadeh, M.J.; Raha, S.; Tarnopolsky, M.A. The effect of endurance exercise on both skeletal muscle and systemic oxidative stress in previously sedentary obese men. Nutr. Diabetes 2013, 3, e88. [Google Scholar] [CrossRef] [Green Version]
- Radak, Z.; Bori, Z.; Koltai, E.; Fatouros, I.G.; Jamurtas, A.Z.; Douroudos, I.I.; Terzis, G.; Nikolaidis, M.G.; Chatzinikolaou, A.; Sovatzidis, A.; et al. Age-dependent changes in 8-oxoguanine-DNA glycosylase activity are modulated by adaptive responses to physical exercise in human skeletal muscle. Free Radic. Biol. Med. 2011, 51, 417–423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Exercise Type | Study Subjects | Training Protocol | Findings | Reference |
---|---|---|---|---|
CVE | Young males (n = 16) | High intensity interval test on cycloergometer: 8 bouts of 1 min at 100% of peak power Blood samples: pre, immediately post, 30 min post exercise | ↑ TBARS 30 min post exercise ↔ GSH, SOD ↓ CAT 30 min post exercise ↓ Lymphocyte proliferative | Gomes et al., 2016 [109] |
CVE | Healthy males (n = 10) | CrossFit protocol: 5 pull-ups, 10 push-ups, 15 air-squats in 20 min (as many rounds as possible) High intensity treadmill protocol: Running (90% HRmax) for 20 min | immediately post, 1-h and 2-h post exercise Oxidative stress markers: ↑ LOOH ↓ PC Antioxidant capacity markers: ↑ FRAP ↓ TEAC | Kliszczewicz et al., 2015 [165] |
CVE | Diabetes patients and healthy group | A single bout of a 3 h walk, 30% heart rate reserve | ↔ Oxidative stress in both groups ↑ anti-oxidant defense | Francescato et al., 2014 [166] |
CVE (swimming) | Male Wistar rats (6 groups): 30 Control group (C): sedentary G3: below anaerobic threshold G4: below an. threshold. G5: an. threshold. G6: an. threshold. G8: above an. threshold. | 1-h swimming carrying metal ring: 3% (G3), 4% (G4), 5% (G5), 6% (G6), 8% (G8) of their body weight | ↑ lipid peroxidation (MDA) in trachea and lung in all exercise groups G3: ↑ MDA in rat trachea G4: ↑ MDA in rat trachea G5: ↑ MDA in rat trachea G6: ↑↑ MDA in rat trachea G8: ↑↑↑ MDA in rat trachea | Brito et al., 2015 [168] |
CVE (swimming) | Male Wistar rats (6 groups): 30 Control group (C): sedentary G3: below anaerobic threshold G4: below an. threshold. G5: an. threshold. G6: an. threshold. G8: above an. threshold. | 1-h swimming carrying metal ring: 3% (G3), 4% (G4), 5% (G5), 6% (G6), 8% (G8) of their body weight | ↑ MDA in heart and aorta in all exercise groups G3: ↑ MDA in aorta & heart G4: ↑ MDA in aorta & heart G5: ↑ MDA in aorta & heart G6: ↑↑ MDA in aorta & ↑ MDA in heart G8: ↑↑↑ MDA in aorta & heart | Brito et al., 2015 [169] |
CVE | Young males (n = 30, age = 21 ± 2, 3 groups) WT = Well-trained group (n = 10) MT = moderate trained group (n = 10) UT = untrained group (n = 10) | All groups performed an acute bout of aerobic exercise: 5 min running with 50% VO2max & 30 min running 70% VO2max Blood samples: pre, immediately post, 10 min post and 30 min post exercise protocol. | ↑ GSH in MT compared with UT & WT groups ↓ GSSG in MT compared with UT & WT groups ↑ GSH/GSSG MT compared with UT & WT groups ↑Cortisol and CK after exercise in all groups | Seifi-Skishahr et al., 2016 [171] |
CVE and RE | Women (45–55 y) Resistance group (RE): Followed 2 y resistance training program Aerobic group (AE): Followed 2 y aerobic training program Control group (C): sedentary women | Acute bout of exercise: RE: 10 rep. ~75–80% of 1RM × 10 stations AE: 50 min on cycle ergometer ~75–80% of HR C: No exercise Blood samples: pre, post, 1h post exercise | Rest: Levels of SOD and CAT in RE and AE > C group. Post exercise: ↓ SOD and CAT in RE and AE. ↑ TBARS & protein carbonyls 1 h post exercise: ↓ SOD and CAT in RE and AE. Oxidative stress: TBARS return at baseline levels, protein oxidation remains elevated | Cardoso et al., 2012 [172] |
RE | Men | 10 exercises × 9 rep. ~75% of 1 RM Blood samples: 30 min pre, immediately post exercise | ↑ Lipid oxidation ↑ antioxidant concentrations | Ramel et al., 2004 [173] |
RE | Trained men | Acute bout of exercise: 3 × 10 rep. ~75% of 1 RM 90 s rest between sets | ↑ TBARS (42%), AOPP (28%), uric acid (27%) and GSH (14%), uric acid (36%) | Deminice et al., 2010 [174] |
RE | Males (n = 16, age = 25 ± 4, 2 groups) Untrained group (UT, n = 8) Resistance trained group (RT, n = 8) | Both groups performed one acute bout of a progressive RT protocol (leg extension): 1 × 17 reps at 50% of 1 RM, 1 × 14 reps at 60% of 1 RM, 1 × 12 reps at 70% of 1 RM, 2 × 5 reps at 80% of 1 RM, 3 × 3 reps at 90% of 1 RM, 5 min rest between each intensities, 90–120 sec. rest between sets. Blood collection: pre, immediately after each intensity, 30 min post, 60 min post, 24 h post exercise bout | ↑ Blood lactate → parallel with the rise of ex. intensity in both groups. ↑ PC during ex. bout and approached the baseline values in recovery period, in both groups ↔ Serum glutathione (GSH) ↑ SOD during ex. and 30 min post ↑ Lipid peroxidation (LHP) and approached the baseline values in recovery period, in both groups | Cakir-Atabeck et al., 2015 [175] |
CVE (test) | Healthy young males (3 groups): Competitive endurance athletes (ET) Resistance trained athletes (RT) Untrained individuals (UT) | Grated exercise test: Treadmill peak oxygen consumption test. Starting with 3% elevation for 3 min and increasing 1.5% per min until exhaustion. | Oxidative stress markers MDA and PC: ↑ in UT group ↔ in ET and RT groups Antioxidant markers TAC: ↓ in ET and RT groups ↓↓ in UT group | Park & Kwak, 2016 [176] |
RE | Chronic kidney patients (n = 16) | Four Strength exercises in both lower limbs with ankle –cuffs and elastic bands (60% of 1-RM) 3 sets × 10 rep, rest: 3 min between each exercise and 1 min between each set. | ↓ SOD after acute exercise ↔ CAT, GPx, MDA and hs-CRP levels | Esgalhado et al., 2015 [177] |
CVE | Sedentary group (7 males & 8 females: age 65.8 ± 3.3 y.) (score < 9 on the questionnaire of physical activity) corresponds to a sedentary life style. Active group (8 males & 10 females: age 65.1 ± 3.5 y.) (score 9–16 on the questionnaire of physical activity) corresponds to an active life style. | Low intensity aerobic exercise: (a) 5–10 min warm-up (b) 15–20 min aerobic exercises (walking, dancing, and aerobics) (c) circuit muscular endurance exercise with elastic bands and free weights (knee flexion, arm raise, shoulder abduction, shoulder rotation, squatting, biceps curl etc.) rest 60–120 sec. | At Rest: (1) SOD levels for the active group > sedentary group. (2) No differences between groups in α-Tocopherol, GR, MDA and GPX. 20 min post-exercise: (1) SOD levels for the active group > sedentary group (2) α-Tocopherol: ↔ in sedentary group, ↑ in active group. (3) GR: ↔ in both groups. (4) MDA: ↑ in both groups. (5) GPX: ↔ in sedentary group, ↑ in active group. | Bouzid et al., 2014 [178] |
CVE | Women | A single bout of 30 min run, 70% VO2 max | ↑ Lipid hydroperoxides, protein carbonyls, GSH, GSSG, TNF-a & interleukin-6 | McKenzie et al., 2014 [179] |
CVE | Trained men | A single bout of: (a) 60 min run, 70% HR reserve, (b) 5 × 60 sec. sprints, 100% max capacity,(c) 10 × 15 sec. sprints, 200% max capacity (d) No exercise rest | ↔ malondialdehyde, hydrogen peroxide, advance oxidation protein products. ↔ trolox equivalent antioxidant capacity, superoxide dismutase, catalase, glutathione peroxidase. | Canale et al., 2014 [180] |
RE | Trained men | Acute bout of exercise: 7 × 4. 60–90% of 1RM | ↑ urinary 8-OHdG excretion and plasma MDA levels | Rahimi, 2011 [181] |
CVE | Sedentary group (4 males & 8 females) Active group (5 males & 8 females) | A single bout of 30 min run Sedentary: ~55% VO2max Active: ~70% VO2max | ↑ oxidative stress (↓ lag time LDL oxidation) ↑ plasma MOP protein | Wetzstein et al., 1998 [182] |
Exercise Type | Study Subjects | Training Protocol | Findings | Reference |
---|---|---|---|---|
RE training (12 weeks) | Male F344 rats (n = 12, 2 groups) Sedentary/control (C, n = 6) Climbing exercise group (RT, n = 6) | Progressive RE protocol: Climbing a ladder 135 cm length (grid step 2.5 cm, grade 60 degree) Weight load attached to their tails. 1st circle 50% of their body weight (Bw) → 2 min rest 2nd circle 75% of their Bw → 2 min rest 3rd circle 90% of their Bw → 2 min rest 4th circle 100% of their Bw → 2 min rest 5th circle 100% + 30 g of their Bw → 2 min rest Training was stopped when rats refused to climb. | Aortic rings under 40× and 200× magnification: no significant difference between groups. In the aorta of rats: ↑ eNOS and AKT phosphorylation in RT group ↑ MnSOD and Redox factor-1 in RT group ↓ FOXO1 phosphorylation in RT group | Li et al., 2015 [61] |
CVE training (8 weeks) | Sprague Dawley rats (n = 60, 4 groups) Sh = Sham sedentary group Sh + ex = sham with exercise OVX = ovariectomized sedentary group OVX + ex = ovariectomized with exercise group | Exercise groups (Sh = ex, OVX + ex) performed CVE training: Running 15 min/day for the 1st week and 60 min/day at 18 m/min for 7 weeks. | Effects of exercise on: ↑ CSE expression in myocardium in OVX + ex group Anti-oxidative defense in myocardium: ↑ TAC in OVX + ex group CAT & SOD → not change in OVX + ex group ↓ CAT & SOD in sham + ex group Oxidative stress markers in myocardium: ↓ MDA level in OVX + ex group | Tang et al., 2016 [65] |
RE training (6 weeks) | Healthy young individuals (n = 32, 2 groups): African Americans (AA, n = 14) Caucasian (Cau, n = 18) | Moderate RE training: 3 sessions/week, 60 min/session 2-way body part split: legs, back and biceps on one day; chest, shoulder and triceps on a separate day. | ↑ Strength in both groups ↓ blood pressure in Cau ↔ blood pressure in AA ↓ MMP-9 in AA ↔ MMP-9 in Cau ↓ 8-isoprostane (8-IsoP) in AA ↔ IL-10, TNF-a, sVCAM-1, MMP-2 | Cook et al., 2013 [91] |
CVE training (12 weeks) | Spontaneously hypertensive rats | 12 weeks, 5 days/week, 60 min/session, 55–65% max running speed | ↓ oxidative stress ↑ NO bioavailability ↓ blood pressure Improve mechanical and functional alterations of the coronary and small mesenteric arteries | Roque et al., 2013 [94] |
CVE training (4 weeks) | Wistar rats (n = 80, 8 groups) CS = control + sedentary, CE = control + exercise, CSQ = control + sedentary + quercetin, CEQ = control + exercise + quercetin, DS = diabetes + sedentary, DE = diabetes + exercise, DSQ = diabetes + sedentary + quercetin, DEQ = diabetes + exercise + quercetin. | CE, CEQ, DE & DEQ performed moderate chronic aerobic exercise (swimming) 1 h/day, 5 days/week. | ↓ MDA & PC levels in aortic tissue in exercises group ↑ SOD & CAT in aortic tissue in exercises groups ↓ NOx levels in aortic tissue in exercises group ↓ iNOx levels in aortic tissue in exercises group | Chis et al., 2015 [183] |
CVE training (9 weeks) | Male Wistar rats (4 groups): Sedentary Control (C, n = 14) Exercise control (C-Ex, n = 15) Sedentary diabetes (DM-C n = 25) Exercise diabetes (DM-Ex, n = 25) | Low intensity physical exercise training: Running duration 18 min/day, Speed 11 m/min, 5 days/week | Lipid hydroperoxide: in DM-C > C and DM-Ex SOD and Catalase: DM-Ex > DM-C > C Glutathione peroxidase: DM-C < C and DM-Ex | Gimenes et al., 2015 [184] |
CVE training (8 weeks, Swimming) | Rats (4 groups): 20 Healthy rats sedentary(H): 5 Healthy + Exercise (H + Ex): 5 High fat Diet sedentary (HFD): 5 High fat Diet + EX (HFD + Ex): 5 | H+Ex and HFD+Ex group: 1-h Moderate intensity swimming for 8 weeks | H group: ↔ MDA in heart tissue, LOX-1 protein → expressed in heart cells H + Ex group: ↔ MDA, ↓ gene expression of LOX-1 receptor HFD group: ↑MDA, ↑ gene expression of LOX-1 receptor HFD+Ex group: ↓ MDA, ↓ gene expression of LOX-1 receptor | Riahi et al., 2015 [185] |
CVE training (8 weeks) | Adult rats | 8 weeks, 5 days/week, 60 min/session, 60% max running speed | ↑ running distance ↑ antioxidant defense system ↑ superoxide dismutase (SOD) | Coelho et al., 2013 [186] |
CVE training (6 weeks) | Male Wistar rats (4 groups): 28 C = Control group (n = 7) EX = Exercise group (n = 7) D = Diabetes group(n = 7) EX + D = Exercise + Diabetes (n = 7) | Ex group and EX + D group: Free access to running wheel 24 h/day for 6 weeks | ↓ MDA ↑ SOD, GPx, TAC | Naderi et al., 2015 [187] |
CVE training (10 days) | Sprague-Dawley rats (2 groups): Sedentary (SED) Endurance training group (Ex) | Exercise group: moderate intensity treadmill training Running duration 60/day Intensity 30 m/min (70% max oxygen consumption) | 24 h after the final training ↔ 4-hydroxynonenal conjugated proteins (4-HNE) in both groups ↑ SOD2 ↑ CAT | Holland et al., 2015 [188] |
CVE training (24 weeks) | Healthy older individuals (n = 100, 2 groups) C = control group (n = 50) EX = exercise group (n = 50) | Moderate CVE: 45–60 min on treadmill, bicycle or Stair master, intensity 60–70% of HRmax, 3days/week. | ↓ MDA & 8-OHdG ↑ TAC ↓ hs-CRP Significant correlation between oxidative stress markers and hs-CRP | Alghadir et al., 2016 [190] |
CVE training (16 weeks) | Women | 16 weeks, 5 days/week, 30 min/session, 80–85% HRmax | ↔ Body weight & BMI, ↑ aerobic fitness ↓ systemic oxidative stress only in women with the highest quartile of plasma F2-isoprostanes at baseline (≥57 pg/mL) | Arikawa et al., 2013 [191] |
RE training (24 weeks) | Untrained healthy individuals (n = 49, age = 60–72, 4 groups) Control normal weight group (no exercise, Cn) Control obese group (no exercise, Co) Exercise normal weight group (REN group) Exercise obese group (REO group) | REN & REO group performed moderate RE program: One set of 13 exercises × 8–13 reps (50–80% of 1RM) 3 days/week | ↑ muscle strength, VO2max in REN & REO group ↔ total cholesterol and HDL-C ↓ Lipid hydroperoxides and TBARS (REN & REO < Cn & Co) Homocysteine in plasma: REN & REO < Cn & Co | Vincent et al., 2006 [195] |
RE training (12 weeks) | elderly men | 12 weeks, 3 sessions/week, 3 sets × 10 repetitions each of leg press and leg extension (50–80% 1 RM) | ↑ muscle antioxidant capacity (82.5% catalase activity, 75% CuZnSOD activity) | Parise et al., 2005 [196] |
RE training (6 weeks) | Young men | 6 weeks, 3 days/week 2 groups: Hypertrophy-intensity group (3 × 12 rep. ~70% of 1 RM) strength-intensity group (six exercises of 3 sets × 6 rep. ~85% of 1 RM) | In both groups: ↓ MDA ↑ GSH | Cakir-Atabek et al., 2010 [197] |
RE training (12 weeks) | Older adults (n = 19, age ≥ 60 years, 2 groups) Control group (C, n = 8) RT group (RT, n = 11) | RT group performed: Supervised RT 3 days/week 3 upper body exercises 4 lower body exercises 1 set × 8–12 reps each exercise to volitional fatigue Muscle biopsies: pre, 48 h post, after the last RE session at 3 & 12 weeks. | ↑ Muscle strength ↔ Pyruvate oxidation, acid soluble metabolites and total fatty acid oxidation | Flack et al., 2016 [198] |
RE training (4–16 weeks) | Wistar male rats (n = 10, 3 groups) Sedentary–Control (C group) Exercise-1 (4 weeks training, RE-1 group) Exercise-2 (16 weeks training, RE-2 group) | Regular RE in a squat training device cylinder 4 sets × 12 reps/day, 90 min rest between each set, 5 days/week | Heart tissue: ↑ GPX only in RE-2 group ↑ MDA only in RE-1 group SOD → no changes Cell damage enzymes: ↑ LDH & CK → only in RE-1 group | Ghiasi et al., 2015 [199] |
CVE training RE training Combined training (CT) (8 weeks) | Untrained men 3 groups: CVE: n = 10 RE: n = 10 CT: n = 10 | CVE: incremental running up to 80% of max HR RE: incremental RE beginning load 50% up to 80% of 1 RM CT: Combination CVE and RE every other day during the week | In all three training groups: ↑ SOD, erythrocyte GPx, TAC ↓ MDA No significant difference in the interaction of time and group between variables of SOD and GPx enzymes and TAC of plasma and MDA. | Azizbeigi et al., 2014 [200] |
Combined exercise training (16 weeks) | Healthy men (40–74 years, 2 groups): C = control group (n = 26, no exercise, age: 52 ± 9) Ex = exercise group (n = 31, age: 58 ± 10) | Ex group performed moderate combine exercise training: 3 days/week, 60–75 min/session consisted of: CVE: 25–30 min/session (75% of HRR) RE:30–35 min/session (65–75% of 1 RM, 10–15 reps × 3 sets, bench press, leg press, leg curl, leg extension, latissimus, abdominals, arm flexion) Stretching & cool down: 5–10 min. | ↓ MDA ↑ TAC ↓ DNA strand breaks ↓ oxidative DNA damage (FPG-sensitive sites) ↔ DNA repair capacity (8-oxoguanine DNA glycosylase) | Soares et al., 2015 [201] |
CVE vs. RE vs. flexibility training (12 months) | Healthy Male subjects and with type 2 diabetes mellitus (3 groups): 30 Healthy group (H) Control group (CT2MD) Training group(ExT2MD) | ExT2MD group: moderate CVE (cycling progressively increase 15 min to 35 min per session), RE (major muscle groups × 3 sets × 12 rep) and flexibility (Static stretching) training (total 140–270 min/week, gradually increased) | ExT2MD group: ↓ oxPAPC compared with T2MD group, ↑ oxPAPC compared with Healthy group T2MD group: ↑↑ oxPAPC compared with Healthy group | Vinetti et al., 2015 [202] |
CVE training | Postmenopausal women | Compared physical active with sedentary subjects, on oxidative stress markers. | ↑ oxidative stress markers in sedentary versus active women | Bartfay, W. & Bartfay, E., 2014 [203] |
CVE training | Elderly men | Compared physical active with sedentary subjects, on oxidative stress markers, after an incremental exercise test | Low intensity aerobic exercise prevent the decline of antioxidants linked with aging | Bouzid et al., 2014 [178] |
CVE training (12 weeks) | Rheumatoid arthritis patients | 3 months, 3 sessions/week, 30–40 min/session, 70% VO2 max | ↔ Markers of oxidative stress ↓ 3-Nitrotyrosine ↓disease activity | Wadley et al., 2014 [204] |
CVE training (16 weeks) | Obese & Type 2 Diabetes men | 16 weeks, 3 sessions/week, 2 groups: a) low intensity (30–40% VO2max) b) moderate intensity (55–65% VO2max) | ↔ Body composition and aerobic fitness Improve oxidative stress markers especially when performed moderate intensity protocol. | Krause et al., 2014 [205] |
Combined CVE and RE training (6 weeks) | Women with metabolic syndrome | 6 weeks, 3 sessions/week, 60 min/session CVE and RE | ↓ indicators of oxidative stress, arterial pressure levels, pulse pressure and the Augmentation Index ↑ cardiovascular fitness | Eleuterio-Silva et al., 2013 [206] |
RE training (8 weeks) | Men | Progressive RE-training 8 RE on nonconsecutive days for 8 weeks at 50% of 1RM and reached 80% 1RM by Week 8 | ↑ SOD ↓ MDA ↔ erythrocyte GPx & TAC levels | Azizbeigi et al., 2013 [207] |
RE training (8 weeks) | Men | moderate (MR) and high resistance (HR) training | ↑ SOD activity in MR (p = 0.026) and HR (p = 0.044) groups. ↑ GPX activity in HR (p = 0.012) and MR (p = 0.037) ↓ MDA in MR (p = 0.013) and HR (p = 0.023) ↔ IL-6, TNF-α and CK. | Azizbeigi et al., 2015 [208] |
RE training (6 weeks) | Rats 4 groups: a) RE training b) RE training + alcohol treatment (35% of kilocalorie intake) for 6 weeks c) sedentary d) sedentary + alcohol treatment | 6 weeks, 3 days/week Rise onto their hind limbs while wearing lead-weighted vests 30 times per training session | Alcohol treatment in the sedentary animals: ↑ cardiac malondialdehyde, lipid peroxidation ↓ index of myocardial antioxidant potential | Chicco et al., 2006 [209] |
RE training (14 weeks) | elderly men and women | 14 weeks whole body regular RE | ↓ 8-OHdG ↔ Protein content for CuZnSOD, MnSOD, and catalase, and enzyme activities for citrate synthase, mitochondrial ETC complex I+III, and complex II+III | Parise et al., 2005 [210] |
CVE training (9 weeks) | Male wistar rats | 9 weeks, 5 sessions/week, 60 min/session for 6 weeks and 90 min/session for 3w | ↔ TBARS, reactive carbonyl derivatives content, ↓ 8-OHdG ↑ DT-diaphoase and proteasome complex | Radak et al., 1999 [211] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tofas, T.; Draganidis, D.; Deli, C.K.; Georgakouli, K.; Fatouros, I.G.; Jamurtas, A.Z. Exercise-Induced Regulation of Redox Status in Cardiovascular Diseases: The Role of Exercise Training and Detraining. Antioxidants 2020, 9, 13. https://doi.org/10.3390/antiox9010013
Tofas T, Draganidis D, Deli CK, Georgakouli K, Fatouros IG, Jamurtas AZ. Exercise-Induced Regulation of Redox Status in Cardiovascular Diseases: The Role of Exercise Training and Detraining. Antioxidants. 2020; 9(1):13. https://doi.org/10.3390/antiox9010013
Chicago/Turabian StyleTofas, Tryfonas, Dimitrios Draganidis, Chariklia K. Deli, Kalliopi Georgakouli, Ioannis G. Fatouros, and Athanasios Z. Jamurtas. 2020. "Exercise-Induced Regulation of Redox Status in Cardiovascular Diseases: The Role of Exercise Training and Detraining" Antioxidants 9, no. 1: 13. https://doi.org/10.3390/antiox9010013
APA StyleTofas, T., Draganidis, D., Deli, C. K., Georgakouli, K., Fatouros, I. G., & Jamurtas, A. Z. (2020). Exercise-Induced Regulation of Redox Status in Cardiovascular Diseases: The Role of Exercise Training and Detraining. Antioxidants, 9(1), 13. https://doi.org/10.3390/antiox9010013