Electroactive Phenolic Contributors and Antioxidant Capacity of Flesh and Peel of 11 Apple Cultivars Measured by Cyclic Voltammetry and HPLC–DAD–MS/MS
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Sample and Standard Preparations
2.3. Spectrophotometric Determination of Total Phenolic and Flavonoid Content
2.4. Analysis of Phenolic Compounds by HPLC–DAD–MS/MS
2.5. Ferric Reducing Antioxidant Power (FRAP) Assay
2.6. DPPH Assay
2.7. Cyclic Voltammetry (CV) Assay
2.8. Chelating Activity on Ferrous Ions
2.9. Analysis of Antioxidant Activity of Phenolic Compounds Identified by HPLC–DAD–MS/MS
2.10. Statistical Analyses
3. Results and Discussion
3.1. Total Phenolic Content (TPC) and Total Flavonoid Content (TFC)
3.2. Antioxidant and Chelating Capacity of Apple Flesh and Peel Determined by Spectrophotometric Assays
3.3. Reducing Capacity of Apple Flesh and Peel Determined by Cyclic Voltammetry
3.4. Profile and Content of Phenolic Compounds in Apple Flesh and Peel Measured by HPLC–DAD–ESI-MS/MS
3.5. Antioxidant, Reducing, and Chelating Activities of Phenolic Compounds in Apple Flesh and Peel
3.6. Phenolic Contribution to Antioxidant Activity
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chodak, A.D.; Tarko, T.; Satora, P.; Sroka, P.; Tuszyński, T.T. The profile of polyphenols and antioxidant properties of selected apple cultivars grown in Poland. J. Fruit. Ornam. Plant Res. 2010, 18, 39–50. [Google Scholar]
- Sies, H. Polyphenols and health: Update and perspectives. Arch Biochem. Biophys. 2010, 501, 2–5. [Google Scholar] [CrossRef]
- Bizjak, B.K.; Vodopivec, B.M.; Eler, K.; Ogrinc, N.; Mulič, I.; Masuero, D.; Vrhovšek, U. Primary and secondary metabolites as a tool for differentiation of apple juice according to cultivar and geographical origin. LWT-Food Sci. Technol. 2018, 90, 238–245. [Google Scholar]
- Boyer, J.; Liu, L.H. Apple phytochemicals and their health benefits. Nutr. J. 2004, 3, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Graziani, G.; D’Argenio, G.; Tuccillo, C.; Loguercio, C.; Ritieni, A.; Morisco, F. Apple polyphenol extracts prevent damage to human gastric epithelial cells in vitro and to rat gastric mucosa in vivo. Gut 2005, 54, 193–200. [Google Scholar] [CrossRef]
- Leopoldini, M.; Russo, N.; Toscano, M. The molecular basis of working mechanism of natural polyphenolic antioxidants. Food Chem. 2010, 125, 288–306. [Google Scholar] [CrossRef]
- Zielińska, D.; Laparra-Llopis, J.M.; Zieliński, H.; Szawara-Nowak, D.; Gimenez Bastida, J.A. Role of Apple Phytochemicals, Phloretin and Phloridzin, in Modulating Processes Related to Intestinal Inflammation. Nutrients 2019, 11, 1173. [Google Scholar] [CrossRef] [Green Version]
- Spencer, J.P.E. The impact of fruit flavonoids on memory and cognition. Br. J. Nutr. 2010, 104, S40–S47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giomaro, G.; Karioti, A.; Bilia, A.R.; Bucchini, A.; Giamperi, L.; Donata, R.D.; Fraternale, D. Polyphenols profile and antioxidant activity of skin and pulp of a rare apple from Marche region (Italy). Chem. Cent. J. 2014, 8, 45–55. [Google Scholar] [CrossRef] [Green Version]
- Scalbert, A.; Manach, C.; Morand, C.; Remsey, C.; Jimenez, L. Dietary polyphenols and the prevention of diseases. Crit. Rev. Food Sci. Nutr. 2005, 45, 287–306. [Google Scholar] [CrossRef]
- Sun, J.; Chu, Y.F.; Wu, X.; Liu, R.H. Antioxidant and antiproliferative activities of common fruits. J. Agric. Food Chem. 2002, 50, 7449–7454. [Google Scholar] [CrossRef]
- Oleszek, W.; Lee, C.Y.; Jaworski, A.W.; Price, K.R. Identification of some phenolic compounds in apples. J. Agric. Food Chem. 1988, 36, 430–432. [Google Scholar] [CrossRef]
- Tsao, R.; Yang, R.; Young, J.C.; Zhu, H. Polyphenolic profiles in eight apples cultivars using high-performance liquid chromatography (HPLC). J. Agric. Food Chem. 2003, 51, 6347–6353. [Google Scholar] [CrossRef]
- Alonso-Salces, R.M.; Barranco, A.; Abad, B.; Berrueta, L.A.; Gallo, B.; Vicente, F. Polyphenolic profiles of basque cider apples cultivars and their technological properties. J. Agric. Food Chem. 2004, 52, 2938–2952. [Google Scholar] [CrossRef]
- Awad, M.A.; De Jager, A.; van Westing, L.M. Flavonoid and chlorogenic acid levels in apple fruit: Characterization and variation. Sci. Hortic. 2000, 83, 249–263. [Google Scholar] [CrossRef]
- Guyot, S.; Marnet, N.; Laraba, D.; Sanonerm, P.; Drilleau, J.F. Reversed-phase HPLC following thiolysis for quantitative estimation and characterization of the four main classes of phenolic compounds in different tissue zones of a French cider apple variety. J. Agric. Food Chem. 1998, 46, 1698–1705. [Google Scholar] [CrossRef]
- McRae, K.B.; Lidster, P.D.; de Marco, A.C.; Dick, A.J. Comparison of the polyphenol profiles of the apple fruit cultivars by correspondence analysis. J. Sci. Food Agric. 1990, 50, 329–342. [Google Scholar] [CrossRef]
- Carbone, K.; Giannini, B.; Picchi, V.; Lo Scalzo, R.; Cecchini, F. Phenolic composition and free radical scavenging activity of different apple cultivars in relation to the cultivar, tissue type and storage. Food Chem. 2011, 127, 493–500. [Google Scholar] [CrossRef]
- Napolitano, A.; Cascone, A.; Graziani, G.; Ferracane, R.; Scalfi, L.; Di Vaio, C. Influence of variety and storage on the polyphenol composition of apple flesh. J. Agric. Food Chem. 2004, 52, 6526–6531. [Google Scholar] [CrossRef]
- Scalzo, J.; Politi, A.; Pellegrini, N.; Mezzetti, B.; Battino, M. Plant genotype affects total antioxidant capacity and phenolic contents in fruits. Nutrition 2005, 21, 207–213. [Google Scholar] [CrossRef]
- Volz, R.K.; McGhie, T.K. Genetic variability in apple fruit polyphenol composition in Malus x domestica and Malus sieversil germplasm grown in New Zealand. J. Agric. Food Chem. 2011, 59, 11509–11521. [Google Scholar]
- Kahkonen, M.P.; Hopia, A.I.; Vuorela, H.J.; Rauha, J.P.; Pihlaja, K.; Kujala, T.S.; Heinonen, M. Antioxidant activity of plant extracts containing phenolic compounds. J. Agric. Food Chem. 1999, 47, 3954–3962. [Google Scholar]
- Gulcin, I. Antioxidant activity of food constituents: An overview. Arch Toxicol. 2012, 86, 345–391. [Google Scholar] [PubMed]
- Sanchez-Moreno, C. Review: Methods used to evaluate the free radical scavenging activity in foods and biological systems. Food Sci. Technol. Int. 2002, 8, 121–137. [Google Scholar] [CrossRef]
- Arteaga, J.F.; Ruiz-Montoya, M.; Palma, A.; Alonso-Garrido, G.; Pintado, S.; Rodriguez-Mellad, J.M. Comparison of the simple cyclic voltammetry (CV) and DPPH assay for the determination of antioxidant capacity of active principles. Molecules 2012, 17, 5126–5138. [Google Scholar] [CrossRef] [PubMed]
- Gomes, S.M.; Ghica, M.-E.; Rodrigues, I.A.; de Souza Gil, E.; Oliveira-Brett, A.M. Flavonoids electrochemical detection in fruit extracts and total antioxidant capacity evaluation. Talanta 2016, 154, 284–291. [Google Scholar] [CrossRef] [PubMed]
- Lino, F.; de Sá, L.; Torres, I.; Rocha, M.; Dinis, T.; Ghedini, P. Voltammetric and spectrometric determination of antioxidant capacity of selected wines. Electrochim. Acta 2014, 128, 25–31. [Google Scholar] [CrossRef]
- de Oliveira Neto, J.R.; Rezende, S.G.; Lobón, G.S.; Garcia, T.A.; Macedo, I.Y.L.; Garcia, L.F. Electroanalysis and laccase-based biosensor on the determination of phenolic content and antioxidant power of honey samples. Food Chem. 2017, 237, 1118–1123. [Google Scholar] [CrossRef]
- Jiao, Y.; Kilmartin, P.A.; Fan, M.; Quek, S.Y. Assessment of phenolic contributors to antioxidant activity of new kiwifruit cultivars using cyclic voltammetry combined with HPLC. Food Chem. 2018, 268, 77–85. [Google Scholar] [CrossRef]
- Lugonja, N.M.; Stankovic, D.M.; Spasic, S.D.; Roglic, G.M.; Manojlovic, D.D.; Vrvic, M.M. Comparative electrochemical determination of total antioxidant activity in infant formula with breast milk. Food Anal. Methods 2014, 7, 337–344. [Google Scholar] [CrossRef]
- Gulaboski, R.; Mirceski, V.; Mitrev, S. Development of a rapid and simple voltammetric method to determine total antioxidative capacity of edible oils. Food Chem. 2013, 138, 116–121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hossain, M.A.; Salehuddin, S.M.; Kabir, M.J.; Rahman, S.M.M.; Rupasinghe, H.P.V. Sinensetin, rutin, 3′-hydroxy-5,6,7,4′-teramethoxyflavone and rosmarinic acid contents and antioxidative effect of the skin of apple fruit. Food Chem. 2009, 113, 185–190. [Google Scholar] [CrossRef]
- Kondo, S.; Tsuda, K.; Muto, N.; Ueda, J. Antioxidant activity of apple skin or flesh extracts associated with fruit development on selected apple cultivars. Sci. Hortic. 2002, 96, 177–185. [Google Scholar] [CrossRef]
- Lu, Y.; Foo, L.Y. Antioxidant and radical scavenging activities of polyphenols from apple pomace. Food Chem. 2000, 68, 81–85. [Google Scholar] [CrossRef]
- Oszmiański, J.; Wolniak, M.; Wojdyło, A.; Wawer, I. Influence of apple puree preparation and storage on polyphenol contents and antioxidant activity. Food Chem. 2008, 107, 1473–1484. [Google Scholar] [CrossRef]
- Shahidi, F.; Naczk, M. Methods of analysis and quantification of phenolic compounds. In Food Phenolic: Sources, Chemistry, Effects and Applications; Shahidi, F., Naczk, M., Eds.; Technomic Publishing Company: Lancaster, UK, 1995; pp. 287–293. [Google Scholar]
- Jia, Z.; Tang, M.; Wu, J. The determination of flavonoid contents in mulberry and their scavenging effects on superoxides radical. Food Chem. 1998, 64, 555–559. [Google Scholar]
- Benzie, I.F.F.; Strain, J.J. Ferric reducing antioxidant power assay: Direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Method. Enzymol. 1999, 299, 15–27. [Google Scholar]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Zielińska, D.; Zieliński, H. Antioxidant activity of flavone C-glucosides determined by updated analytical strategies. Food Chem. 2011, 124, 672–678. [Google Scholar] [CrossRef]
- Mladenka, P.; Zatloukalova, L.; Filipsky, T.; Hrdina, R. Cardiovascular effects of flavonoids are not caused only by direct antioxidant activity. Free Radical Biol. Med. 2010, 49, 963–975. [Google Scholar] [CrossRef]
- Van der Sluis, A.A.; Dekker, M.; de Jager, A.; Wim Jongen, M.F. Activity and concentration of polyphenolic antioxidants in apple: Effect of cultivar, harvest year, and storage condition. J. Agric. Food Chem. 2001, 49, 3606–3613. [Google Scholar] [CrossRef]
- Kschonsek, J.; Wolfram, T.; Stöckl, A.; Böhm, V. Polyphenolic compounds analysis of old and new apple cultivars and contribution of polyphenolic profile to the in vitro antioxidant capacity. Antioxidants 2018, 7, 20. [Google Scholar] [CrossRef] [Green Version]
- Drogoudi, P.D.; Michailidis, Z.; Pantelidis, G. Peel and flesh antioxidant content and harvest quality characteristics of seven apple cultivars. Sci. Hortic. 2008, 115, 149–153. [Google Scholar] [CrossRef]
- Bahukhandi, A.; Dhyani, P.; Bhatt, I.D.; Rawal, R.S. Variation in polyphenolics and antioxidant activity of traditional apple cultivars from West Himalaya, Uttarakhand. Hortic. Plant J. 2018, 4, 151–157. [Google Scholar] [CrossRef]
- Wojdyło, A.; Oszmiański, J.; Laskowski, P. Phenolic composition and antioxidant activity of selected apple from Europe. J. Clin. Biochem. Nutr. 2018, 43, 548–553. [Google Scholar]
- Huang, D.; Ou, B.; Prior, R.L. The chemistry behind antioxidant capacity assays. J. Agric. Food Chem. 2005, 53, 1841–1856. [Google Scholar] [CrossRef]
- Perez-Jimenez, J.; Arranz, S.; Tabernero, M.; Diaz-Rubio, E.; Serrano, J.; Goni, I. Updated methodology to determine antioxidant capacity in plant foods, oils and beverages: Extraction, measurements and expression of results. Food Res. Int. 2008, 41, 274–285. [Google Scholar] [CrossRef]
- Prior, R.L.; Wu, X.; Schaich, K. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J. Agric. Food Chem. 2005, 53, 4290–4302. [Google Scholar] [CrossRef]
- Panzela, L.; Petriccone, M.; Rega, P.; Scortichini, M.; Napolitano, A. A reappraisal of traditional apple cultivars from Southern Italy as a rich source of phenols with superior antioxidant activity. Food Chem. 2013, 140, 672–679. [Google Scholar] [CrossRef]
- Chevion, S.; Roberts, M.A.; Chevion, M. The use of cyclic voltammetry for the evaluation of antioxidant capacity. Free Radic. Biol. Med. 2000, 28, 860–870. [Google Scholar] [CrossRef]
- Martinez, S.; Valek, L.; Resetic, J.; Rusic, D.F. Cyclic voltammetry study of plasma antioxidant capacity–comparison with the DPPH and TAS spectrophotometric methods. J. Electroanal. Chem. 2006, 588, 68–73. [Google Scholar] [CrossRef]
- Khanizadeh, S.; Tsao, R.; Rekika, D.; Yang, R.; Charles, M.T.; Rupasinghe, H.P.V. Polyphenol composition and total antioxidant capacity of selected apple genotypes for processing. J. Food Compost. Anal. 2008, 21, 396–401. [Google Scholar] [CrossRef]
- Masumoto, S.; Akimoto, Y.; Oike, H.; Kobori, M. Dietary phloridzin reduces blood glucose levels and reverses Sglt1 expression in the small intestine in streptozotocin-induced diabetic mice. J. Agric. Food Chem. 2009, 57, 4651–4656. [Google Scholar] [CrossRef]
- Williamson, G.; Kay, C.D.; Crozier, A. The Bioavailability, Transport, and Bioactivity of Dietary Flavonoids: A Review from a Historical Perspective. Compr. Rev. Food Sci. Food Saf. 2018, 17, 1054–1112. [Google Scholar] [CrossRef] [Green Version]
- Rice-Evans, C.A.; Miller, N.J.; Bolwell, P.G.; Bramley, P.M.; Pridham, J.B. The relative antioxidant activities of plant-derived polyphenols flavonoids. Free Radic. Res. 1995, 22, 375–383. [Google Scholar] [CrossRef]
- Balasundram, N.; Sundram, K.; Samman, S. Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. Food Chem. 2006, 99, 191–203. [Google Scholar] [CrossRef]
- Blasco, A.J.; Rogerio, M.C.; Gonzalez, M.C.; Escarpa, A. ‘‘Electrochemical Index” as a screening method to determine ‘‘total polyphenolics” in foods: A proposal. Anal. Chim. Acta 2005, 539, 237–244. [Google Scholar] [CrossRef]
Identification | (M)− (m/z) | (M)+ (m/z) | MS/MS (m/z) |
---|---|---|---|
Cyanidin 3-O-galactoside | 449.0 | 287.0 | |
Phloretin | 273.1 | 227.1/166.8/123.1 | |
Phloridzin | 435.2 | 273.1 | |
Catechin | 289.2 | 245.3/203.1/109.1 | |
Epicatechin | 289.2 | 245.3/203.1/109.1 | |
Chlorogenic acid | 353.2 | 191.1/179.1 | |
Rutin | 609.0 | 463.0/301.0 | |
Quercetin 3-O-glucoside | 463.0 | 301.0 | |
Quercetin | 301.0 | 179.0/151.0 | |
Quercetin 3-O-arabinoside | 433.0 | 301.0 | |
Quercetin 3-O-rhamnoside | 447.0 | 301.0 |
Apple Cultivars | FRAP | DPPH | CV | Chelating Activity | TPC | TFC |
---|---|---|---|---|---|---|
Apple Peel | ||||||
Quinte | 21.31 ± 0.06a | 7.51 ± 0.02d | 6.09 ± 0.26b, c | 51.80 ± 0.43b | 3278.6 ± 29.0a | 970.6 ± 6.3b |
Jonagored | 20.89 ± 0.23b | 8.65 ± 0.02a | 6.37 ± 0.32a, b | 30.00 ± 0.39g | 3123.1 ± 30.6b | 830.1 ± 3.5e |
Early Gen. | 20.20 ± 0.21c | 7.14 ± 0.01f | 5.75 ± 0.15c | 48.23 ± 0.58d | 3147.0 ± 38.1b | 835.2 ± 23.3e |
Paulared | 19.38 ± 0.20d | 7.39 ± 0.03e | 6.80 ± 0.33a | 39.90 ± 0.58e | 2916.1 ± 42.5c | 1303.8 ± 14.2a |
Sunrise | 17.44 ± 0.11e | 6.90 ± 0.02g | 5.86 ± 0.39c | 36.36 ± 0.31f | 2716.3 ± 37.2d | 905.8 ± 5.6c |
Gloster | 16.90 ± 0.10f | 8.19 ± 0.00b | 5.69 ± 0.16c | 24.27 ± 0.18h | 2517.2 ± 56.2e | 696.7 ± 3.1h |
Delikates | 14.70 ± 0.16g | 6.67 ± 0.03h | 5.23 ± 0.15d | 30.71 ± 0.28g | 2333.7 ± 16.1f | 628.2 ± 10.9i |
Papierówka | 14.30 ± 0.16h | 5.62 ± 0.03i | 5.13 ± 0.31d | 49.98 ± 0.88c | 2194.7 ± 9.4g | 875.1 ± 6.5d |
Rubinola | 14.21 ± 0.11h | 7.91 ± 0.01c | 4.97 ± 0.25d | 23.59 ± 0.27h | 2296.9 ± 4.1f | 714.6 ± 2.4g |
Antonówka | 12.73 ± 0.23i | 5.27 ± 0.03j | 4.35 ± 0.22e | 53.54 ± 0.61a | 2051.6 ± 21.9h | 766.6 ± 8.0f |
Ligol | 12.40 ± 0.14j | 6.87 ± 0.02g | 4.46 ± 0.15e | 19.30 ± 0.36i | 1821.3 ± 20.7i | 553.1 ± 3.2j |
Apple Flesh | ||||||
Quinte | 10.15 ± 0.12a | 4.65 ± 0.01a | 3.95 ± 0.17a | 45.89 ± 0.33d | 1740.3 ± 19.4a | 737.6 ± 3.9c |
Jonagored | 4.88 ± 0.07f | 3.01 ± 0.01g | 1.91 ± 0.04d | 21.89 ± 0.12i | 734.9 ± 7.2g | 217.1 ± 1.9h, i |
Early Gen. | 9.28 ± 0.09b | 4.20 ± 0.04b | 3.14 ± 0.17b | 47.51 ± 0.19c | 1578.5 ± 33.3b | 612.2 ± 9.2e |
Paulared | 7.51 ± 0.04d | 3.48 ± 0.02d | 3.04 ± 0.37b, c | 33.52 ± 0.86e | 1217.5 ± 4.1e | 765.5 ± 6.6b |
Sunrise | 5.09 ± 0.09e | 2.47 ± 0.02h | 1.96 ± 0.22d | 29.85 ± 0.23f | 811.1 ± 11.1f | 311.5 ± 4.0f |
Gloster | 3.15 ± 0.10i | 2.23 ± 0.01k | 1.49 ± 0.01e | 23.02 ± 0.31h | 544.3 ± 1.8i | 223.0 ± 2.3h |
Delikates | 4.51 ± 0.05g | 2.42 ± 0.01i | 1.84 ± 0.25d | 25.06 ± 1.12g | 711.2 ± 7.3h | 206.0 ± 6.3i |
Papierówka | 8.39 ± 0.02c | 3.85 ± 0.01c | 3.35 ± 0.20b | 49.46 ± 0.54b | 1356.2 ± 7.1c | 831.1 ± 15.9a |
Rubinola | 4.80 ± 0.08f | 3.12 ± 0.04f | 1.92 ± 0.13d | 24.99 ± 0.24g | 830.4 ± 4.9f | 296.9 ± 4.0g |
Antonówka | 7.60 ± 0.10d | 3.19 ± 0.02e | 2.83 ± 0.07c | 60.0 ± 0.1a | 1246.4 ± 13.4d | 656.3 ± 5.9d |
Ligol | 3.44 ± 0.11h | 2.37 ± 0.02j | 1.44 ± 0.07e | 18.31 ± 0.67j | 535.6 ± 4.9i | 178.7 ± 1.9j |
Cultivar | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Quinte | Jonagored | Early Geneva | Paulared | Sunrise | Gloster | Delikates | Papierówka | Rubinola | Antonówka | Ligol | |
Apple Peel | |||||||||||
Phloretin | 0.96 ± 0.02d | 0.91 ± 0.08d | 0.85 ± 0.02e | 0.64 ± 0.01g | 1.38 ± 0.08b | 1.32 ± 0.02b | b0.73 ± 0.03f | 2.25 ± 0.05a | 1.24 ± 0.05c | 1.20 ± 0.01c | 0.66 ± 0.04g |
Phloridzin | 23.91 ± 0.48d | 24.65 ± 1.63d | 24.45 ± 0.49d | 16.43 ± 0.76e | 48.08 ± 0.80b | 43.45 ± 2.59c | 18.30 ± 1.74e | 84.10 ± 1.60a | 42.90 ± 3.21c | 23.37 ± 0.45d | 16.51 ± 0.73e |
Catechin | 92.16 ± 1.99a | 7.93 ± 0.07h, i | 28.56 ± 0.62d | 53.66 ± 0.46b | 41.34 ± 0.29c | 7.32 ± 0.53i | 3.83 ± 0.31j | 17.93 ± 1.21e | 10.56 ± 0.80g | 12.40 ± 0.12f | 8.58 ± 0.29h |
Epicatechin | 297.77 ± 0.91a | 103.17 ± 5.97h | 278.11 ± 15.55b | 161.68 ± 10.26e | 198.36 ± 5.41c | 142.23 ± 1.43f | 94.79 ± 4.34h | 165.57 ± 12.39e | 182.86 ± 5.22d | 127.72 ± 8.40g | 101.28 ± 6.79h |
Chlorogenic acid | 188.59 ± 9.98c | 57.00 ± 6.46g | 57.41 ± 2.45g | 68.97 ± 4.14f | 87.27 ± 2.24e | 61.67 ± 0.74g | 8.05 ± 0.36h | 259.58 ± 3.19a | 206.97 ± 1.09b | 137.17 ± 2.99d | 58.62 ± 1.08g |
Rutin | 14.54 ± 0.60f | 15.33 ± 0.47e, f | 3.36 ± 0.07h | 16.52 ± 0.49e | 73.03 ± 0.94a | 27.55 ± 2.38c | 12.21 ± 0.67g | 2.97 ± 0.08h | 22.97 ± 0.74d | 32.35 ± 0.72b | 10.59 ± 3.31g |
Quercetin 3-glucoside | 131.46 ± 2.06b | 120.55 ± 1.62c | 33.80 ± 5.66h | 76.04 ± 0.48e | 265.76 ± 0.56a | 125.36 ± 2.05c | 95.13 ± 7.38d | 52.41 ± 1.69g | 68.01 ± 4.92f | 49.20 ± 3.38g | 70.20 ± 4.40f |
Quercetin | 0.98 ± 0.01a | 0.73 ± 0.00d, e | 0.65 ± 0.01g | 0.77 ± 0.00c | 0.81 ± 0.01b | 0.69 ± 0.00f | 0.73 ± 0.00d | 0.71 ± 0.00e | 0.80 ± 0.01b | 0.61 ± 0.02h | 0.76 ± 0.03c |
Quercetin 3-arabinoside | 185.98 ± 0.69b | 167.01 ± 1.68c | 98.70 ± 2.20e | 100.39 ± 2.96e | 241.28 ± 8.75a | 179.38 ± 14.91b | 112.36 ± 0.94d | 97.04 ± 0.98e | 58.45 ± 0.88g | 87.63 ± 5.37f | 83.94 ± 3.32f |
Quercetin 3-rhamnoside | 97.45 ± 14.86d | 112.52 ± 1.94c | 90.41 ± 2.41d | 40.72 ± 1.12h | 222.37 ± 1.80b | 114.83 ± 3.98c | 74.87 ± 0.97f | 39.96 ± 1.51h | 235.08 ± 0.43a | 51.05 ± 1.08g | 82.41 ± 4.61e |
Cyanidin 3-galactoside | 99.16 ± 2.16b | 45.93 ± 0.48e | 31.21 ± 1.32f | 63.82 ± 4.79c | 18.00 ± 1.52g | 101.92 ± 0.31a | 49.20 ± 0.95d | 1.15 ± 0.00h | 103.69 ± 2.17a | 1.24 ± 0.00h | 30.69 ± 1.00f |
Apple Flesh | |||||||||||
Phloretin | 0.72 ± 0.03b | 0.42 ± 0.01g | 0.72 ± 0.01b | 0.51 ± 0.02e | 0.60 ± 0.03d | 0.41 ± 0.00g | 0.47 ± 0.01e, f | 0.75 ± 0.03b | 0.65 ± 0.03c | 1.38 ± 0.08a | 0.43 ± 0.01f, g |
Phloridzin | 18.89 ± 0.98d | 7.17 ± 0.17h | 20.63 ± 0.80c | 10.37 ± 0.36f | 14.68 ± 0.84e | 5.86 ± 0.16i | 9.14 ± 0.06g | 23.46 ± 0.77b | 18.09 ± 0.22d | 45.05 ± 1.79a | 6.61 ± 0.14h, i |
Catechin | 39.46 ± 0.20b | 1.07 ± 0.01i | 21.83 ± 0.61e | 75.90 ± 1.44a | 30.91 ± 0.49c | 1.64 ± 0.57i | 3.91 ± 0.22h | 25.90 ± 0.33d | 10.67 ± 0.39g | 14.00 ± 0.29f | 1.66 ± 0.06i |
Epicatechin | 325.04 ± 1.63a | 18.64 ± 3.02g | 270.76 ± 8.20b | 221.56 ± 24.07c | 68.76 ± 0.68f | 4.99 ± 0.13h | 68.27 ± 3.92f | 154.17 ± 7.08d | 100.67 ± 2.23e | 78.23 ± 2.56f | 13.81 ± 0.35g, h |
Chlorogenic acid | 307.17 ± 3.22b | 43.56 ± 0.73g | 154.91 ± 0.73e | 265.59 ± 4.52d | 85.07 ± 1.80f | 18.21 ± 0.71h | 20.01 ± 2.19h | 451.53 ± 19.59a | 264.47 ± 10.42d | 293.56 ± 7.19c | 26.74 ± 2.63h |
Rutin | 0.79 ± 0.00d | 1.07 ± 0.05a | 0.70 ± 0.01g | 0.84 ± 0.00c | 1.00 ± 0.00b | 0.72 ± 0.01f | 0.75 ± 0.00e | 0.64 ± 0.00h | 0.75 ± 0.01e | 0.64 ± 0.00h | 0.69 ± 0.03g |
Quercetin 3-glucoside | 2.12 ± 0.03a | 1.58 ± 0.02c | 1.27 ± 0.03e | 1.97 ± 0.03b | 1.96 ± 0.07b | 1.06 ± 0.12g | 1.34 ± 0.02d | 1.06 ± 0.03g | 1.03 ± 0.05g | 0.81 ± 0.00h | 1.18 ± 0.04f |
Quercetin | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Quercetin 3-arabinoside | 6.89 ± 0.17a | 5.69 ± 0.45b | 4.10 ± 0.08d | 4.84 ± 0.19c | 4.60 ± 0.40c | 2.33 ± 0.25f | 1.47 ± 0.05g, h | 2.84 ± 0.21e | 1.76 ± 0.15g | 1.21 ± 0.01h | 2.76 ± 0.02e |
Quercetin 3-rhamnoside | 1.63 ± 0.04g | 15.39 ± 0.32a | 1.12 ± 0.02i | 1.38 ± 0.02h | 10.55 ± 0.36b | 3.01 ± 0.04f | 1.72 ± 0.06g | 3.68 ± 0.05e | 4.67 ± 0.29d | 1.15 ± 0.04h, i | 6.22 ± 0.12c |
Cyanidin 3-galactoside | 1.29 ± 0.06a | 0.68 ± 0.01e | 1.10 ± 0.00b | 0.83 ± 0.01c | 0.70 ± 0.00d, e | 0.59 ± 0.00g | 0.72 ± 0.00d | 0.54 ± 0.00h | 0.65 ± 0.01f | 0.55 ± 0.00h | 0.61 ± 0.00g |
Compound/Assay | Antioxidant Activity (mM Trolox) | Reducing Activity (mM Trolox) | Chelating Activity (%) | |
---|---|---|---|---|
DPPH | FRAP | CV | FZ | |
Phloretin | 0.19 ± 0.01 | 0.95 ± 0.02 | 0.46 ± 0.02 | 1.15 ± 0.06 |
Phloridzin | 0.06 ± 0.01 | 0.18 ± 0.01 | 0.26 ± 0.03 | 5.68 ± 0.30 |
Catechin | 1.55 ± 0.02 | 1.97 ± 0.01 | 0.39 ± 0.03 | 74.56 ± 3.65 |
Epicatechin | 1.37 ± 0.01 | 1.95 ± 0.15 | 0.69 ± 0.03 | 70.14 ± 2.80 |
Chlorogenic acid | 1.45 ± 0.01 | 3.71 ± 0.07 | 0.34 ± 0.02 | 88.47 ± 2.65 |
Rutin | 1.69 ± 0.02 | 1.64 ± 0.06 | 0.46 ± 0.01 | 85.33 ± 2.56 |
Quercetin 3-glucoside | 1.42 ± 0.03 | 2.08 ± 0.01 | 0.23 ± 0.03 | 70.25 ± 2.10 |
Quercetin | 2.09 ± 0.03 | 3.68 ± 0.19 | 0.90 ± 0.04 | 76.84 ± 2.31 |
Quercetin 3-arabinoside | 0.95 ± 0.03 | 1.52 ± 0.01 | 0.19 ± 0.20 | 69.74 ± 2.10 |
Quercetin 3-rhamnoside | 1.27 ± 0.02 | 1.89 ± 0.03 | 0.24 ± 0.01 | 68.13 ± 2.38 |
Cyanidin 3-galactoside | 2.07 ± 0.03 | 5.69 ± 0.02 | 0.65 ± 0.02 | 29.11 ± 1.02 |
FRAP | DPPH | CV | Chelating Activity | |
---|---|---|---|---|
Apple Peel | ||||
Phloretin | −0.189 | −0.388 | −0.232 | 0.295 |
Phloridzin | −0.155 | −0.258 | −0.134 | 0.156 |
Catechin | 0.628 * | 0.079 | 0.541 | 0.526 |
Epicatechin | 0.659 * | 0.083 | 0.332 | 0.549 |
Chlorogenic acid | −0.110 | −0.312 | −0.232 | 0.420 |
Rutin | −0.093 | −0.015 | 0.045 | −0.090 |
Quercetin-3-glucoside | 0.198 | 0.270 | 0.362 | −0.174 |
Quercetin | 0.299 | 0.353 | 0.365 | −0.029 |
Quercetin-3-arabinose | 0.460 | 0.330 | 0.509 | 0.027 |
Quercetin-3-rhamnoside | −0.045 | 0.439 | 0.015 | −0.439 |
Cyadinin-3-galactoside | 0.190 | 0.744 ** | 0.350 | −0.393 |
Total polyphenol | 0.980 *** | 0.553 | 0.867 ** | 0.324 |
Total flavonoid | 0.607 * | 0.069 | 0.752 ** | 0.498 |
FRAP | 1.000 | – | – | – |
DPPH | 0.413 | 1.000 | – | – |
CV | 0.824 ** | 0.600 | 1.000 | – |
Chelating activity | 0.451 | −0.562 | 0.104 | 1.000 |
Apple Flesh | ||||
Phloretin | 0.551 | 0.372 | 0.491 | 0.862 ** |
Phloridzin | 0.590 | 0.412 | 0.519 | 0.879 *** |
Catechin | 0.524 | 0.508 | 0.642 * | 0.340 |
Epicatechin | 0.874 *** | 0.915 *** | 0.897 *** | 0.587 |
Chlorogenic acid | 0.773 ** | 0.719 * | 0.791 ** | 0.737 * |
Rutin | −0.272 | −0.174 | −0.225 | −0.444 |
Quercetin-3-glucoside | 0.203 | 0.282 | 0.321 | −0.122 |
Quercetin | – | – | – | – |
Quercetin-3-arabinose | 0.379 | 0.521 | 0.455 | 0.020 |
Quercetin-3-rhamnoside | −0.447 | −0.360 | −0.466 | −0.508 |
Cyadinin-3-galactoside | 0.604 * | 0.720 * | 0.626 * | 0.267 |
Total polyphenol | 0.988 *** | 0.956 *** | 0.978 *** | 0.838 ** |
Total flavonoid | 0.905 *** | 0.820 ** | 0.939 *** | 0.841 ** |
FRAP | 1.000 | – | – | – |
DPPH | 0.943 *** | 1.000 | – | – |
CV | 0.975 *** | 0.939 *** | 1.000 | – |
Chelating activity | 0.866 ** | 0.694 * | 0.816 ** | 1.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zielińska, D.; Turemko, M. Electroactive Phenolic Contributors and Antioxidant Capacity of Flesh and Peel of 11 Apple Cultivars Measured by Cyclic Voltammetry and HPLC–DAD–MS/MS. Antioxidants 2020, 9, 1054. https://doi.org/10.3390/antiox9111054
Zielińska D, Turemko M. Electroactive Phenolic Contributors and Antioxidant Capacity of Flesh and Peel of 11 Apple Cultivars Measured by Cyclic Voltammetry and HPLC–DAD–MS/MS. Antioxidants. 2020; 9(11):1054. https://doi.org/10.3390/antiox9111054
Chicago/Turabian StyleZielińska, Danuta, and Marcin Turemko. 2020. "Electroactive Phenolic Contributors and Antioxidant Capacity of Flesh and Peel of 11 Apple Cultivars Measured by Cyclic Voltammetry and HPLC–DAD–MS/MS" Antioxidants 9, no. 11: 1054. https://doi.org/10.3390/antiox9111054
APA StyleZielińska, D., & Turemko, M. (2020). Electroactive Phenolic Contributors and Antioxidant Capacity of Flesh and Peel of 11 Apple Cultivars Measured by Cyclic Voltammetry and HPLC–DAD–MS/MS. Antioxidants, 9(11), 1054. https://doi.org/10.3390/antiox9111054