Effects of Pirfenidone and Nintedanib on Markers of Systemic Oxidative Stress and Inflammation in Patients with Idiopathic Pulmonary Fibrosis: A Preliminary Report
Abstract
:1. Introduction
2. Methods
2.1. Patients
2.2. Biochemical Analysis
2.2.1. ADMA and Arginine
2.2.2. Kynurenine and Tryptophan
2.2.3. Homocysteine and Cysteine
2.2.4. Taurine
2.2.5. Blood GSH
2.2.6. TBARS
2.2.7. PSH
2.2.8. Nuclear Factor Erythroid 2-Related Factor 2 (Nrf2)
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Raghu, G.; Collard, H.R.; Egan, J.J.; Martinez, F.J.; Behr, J.; Brown, K.K.; Colby, T.V.; Cordier, J.F.; Flaherty, K.R.; Lasky, J.A.; et al. An official ATS/ERS/JRS/ALAT statement: Idiopathic pulmonary fibrosis: Evidencebased guidelines for diagnosis and management. Am. J. Respir. Crit. Care Med. 2011, 183, 788–824. [Google Scholar] [CrossRef] [PubMed]
- Raghu, G.; Rochwerg, B.; Zhang, Y.; Garcia, C.A.; Azuma, A.; Behr, J.; Brozek, J.L.; Collard, H.R.; Cunningham, W.; Homma, S.; et al. An official ATS/ERS/JRS/ALAT clinical practice guideline: Treatment of idiopathic pulmonary fibrosis. An update of the 2011 clinical practice guideline. Am. J. Respir. Crit. Care Med. 2015, 192, e3–e19. [Google Scholar] [CrossRef] [PubMed]
- Du Bois, R.M. An earlier and more confident diagnosis of idiopathic pulmonary fibrosis. Eur. Respir. Rev. 2012, 21, 141–146. [Google Scholar] [CrossRef] [PubMed]
- Selman, M.; Pardo, A. Idiopathic pulmonary fibrosis: An epithelial/fibroblastic cross-talk disorder. Respir. Res. 2002, 3, 3. [Google Scholar] [CrossRef] [PubMed]
- Selman, M.; King, T.E.; Pardo, A. American Thoracic Society; European Respiratory Society; American College of Chest Physicians. Idiopathic pulmonary fibrosis: Prevailing and evolving hypotheses about its pathogenesis and implications for therapy. Ann. Intern. Med. 2001, 134, 136–151. [Google Scholar] [CrossRef]
- Wuyts, W.A.; Agostini, C.; Antoniou, K.M.; Bouros, D.; Chambers, R.C.; Cottin, V.; Egan, J.J.; Lambrecht, B.N.; Lories, R.; Parfrey, H.; et al. The pathogenesis of pulmonary fibrosis: A moving target. Eur. Respir. J. 2013, 41, 1207–1218. [Google Scholar] [CrossRef]
- Kim, S.; Lim, J.H.; Woo, C.H. Therapeutic potential of targeting kinase inhibition in patients with idiopathic pulmonary fibrosis. Yeungnam Univ. J. Med. 2020, 37, 269–276. [Google Scholar] [CrossRef]
- Kinnula, V.L.; Fattman, C.L.; Tan, R.J.; Oury, T.D. Oxidative stress in pulmonary fibrosis: A possible role for redox modulatory therapy. Am. J. Respir. Crit. Care Med. 2005, 172, 417–422. [Google Scholar] [CrossRef] [Green Version]
- Kliment, C.R.; Oury, T.D. Oxidative stress extracellular matrix targets and idiopathic pulmonary fibrosis. Free Radic. Biol. Med. 2010, 49, 707–717. [Google Scholar] [CrossRef]
- Cachofeiro, V.; Goicochea, M.; de Vinuesa, S.G.; Oubiña, P.; Lahera, V.; Luño, J. Oxidative stress and inflammation, a link between chronic kidney disease and cardiovascular disease. Kidney Int. Suppl. 2008, 111, 4–9. [Google Scholar] [CrossRef] [Green Version]
- Paliogiannis, P.; Fois, A.G.; Collu, C.; Bandinu, A.; Zinellu, E.; Carru, C.; Pirina, P.; Mangoni, A.A.; Zinellu, A. Oxidative stress-linked biomarkers in idiopathic pulmonary fibrosis: A systematic review and meta-analysis. Biomark. Med. 2018, 12, 1175–1184. [Google Scholar] [CrossRef]
- Fois, A.G.; Paliogiannis, P.; Sotgia, S.; Mangoni, A.A.; Zinellu, E.; Pirina, P.; Carru, C.; Zinellu, A. Evaluation of oxidative stress biomarkers in idiopathic pulmonary fibrosis and therapeutic applications: A systematic review. Respir. Res. 2018, 19, 51. [Google Scholar] [CrossRef] [Green Version]
- Heukels, P.; Moor, C.C.; von der Thüsen, J.H.; Wijsenbeek, M.S.; Kool, M. Inflammation and immunity in IPF pathogenesis and treatment. Respir. Med. 2019, 147, 79–91. [Google Scholar] [CrossRef] [PubMed]
- King, T.E., Jr.; Bradford, W.Z.; Castro-Bernardini, S.; Fagan, E.A.; Glaspole, I.; Glassberg, M.K.; Gorina, E.; Hopkins, P.M.; Kardatzke, D.; Lancaster, L.; et al. A phase 3 trial of pirfenidone in patients with idiopathic pulmonary fibrosis. N. Engl. J. Med. 2014, 370, 2083–2092. [Google Scholar] [CrossRef] [Green Version]
- Richeldi, L.; du Bois, R.M.; Raghu, G.; Azuma, A.; Brown, K.K.; Costabel, U.; Cottin, V.; Flaherty, K.R.; Hansell, D.M.; Inoue, Y.; et al. Efficacy and safety of nintedanib in idiopathic pulmonary fibrosis. N. Engl. J. Med. 2014, 370, 2071–2082. [Google Scholar] [CrossRef] [Green Version]
- Margaritopoulos, G.A.; Vasarmidi, E.; Antoniou, K.M. Pirfenidone in the treatment of idiopathic pulmonary fibrosis: An evidence-based review of its place in therapy. Core Evid. 2016, 11, 11–22. [Google Scholar] [CrossRef] [Green Version]
- Fois, A.G.; Posadino, A.M.; Giordo, R.; Cossu, A.; Agouni, A.; Rizk, N.M.; Pirina, P.; Carru, C.; Zinellu, A.; Pintus, G. Antioxidant activity mediates pirfenidone antifibrotic effects in human pulmonary vascular smooth muscle cells exposed to sera of idiopathic pulmonary fibrosis patients. Oxid. Med. Cell Longev. 2018, 2018, 2639081. [Google Scholar] [CrossRef] [PubMed]
- Hilberg, F.; Roth, G.J.; Krssak, M.; Kautschitsch, S.; Sommergruber, W.; Tontsch-Grunt, U.; Garin-Chesa, P.; Bader, G.; Zoephel, A.; Quant, J.; et al. BIBF 1120: Triple angiokinase inhibitor with sustained receptor blockade and good antitumor efficacy. Cancer Res. 2008, 68, 4774–4782. [Google Scholar] [CrossRef] [Green Version]
- Boxhammer, E.; Lehle, K.; Schmid, C.; von Suesskind-Schwendi, M. Anti-oxidative effect of the tyrosine kinase inhibitor nintedanib: A potential therapy for chronic lung allograft dysfunction? Exp. Lung Res. 2020, 46, 128–145. [Google Scholar] [CrossRef] [PubMed]
- Wollin, L.; Maillet, I.; Quesniaux, V.; Holweg, A.; Ryffel, B. Antifibrotic and anti-inflammatory activity of the tyrosine kinase inhibitor nintedanib in experimental models of lung fibrosis. J. Pharmacol. Exp. 2014, 349, 209–220. [Google Scholar] [CrossRef] [Green Version]
- Raghu, G.; Remy-Jardin, M.; Myers, J.L.; Richeldi, L.; Ryerson, C.J.; Lederer, D.J.; Behr, J.; Cottin, V.; Danoff, S.K.; Morell, F.; et al. Diagnosis of Idiopathic Pulmonary Fibrosis. An Official ATS/ERS/JRS/ALAT Clinical Practice Guideline. Am. J. Respir. Crit. Care Med. 2018, 198, e44–e68. [Google Scholar] [CrossRef]
- Wilson, K.C.; Raghu, G. The 2015 guidelines for idiopathic pulmonary fibrosis: An important chapter in the evolution of the management of patients with IPF. Eur. Resp. J. 2015, 46, 883–886. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brusasco, V.; Crapo, R.; Viegi, G. American Thoracic Society; European Respiratory Society. Coming together: The ATS/ERS consensus on clinical pulmonary function testing. Eur. Respir. J. 2005, 26, 1–2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zinellu, A.; Sotgia, S.; Usai, M.F.; Pintus, G.; Deiana, L.; Carru, C. Improved method for plasma ADMA, SDMA, and arginine quantification by field-amplified sample injection capillary electrophoresis UV detection. Anal. Bioanal. Chem. 2011, 399, 1815–1821. [Google Scholar] [CrossRef] [PubMed]
- Teerlink, T. Measurement of asymmetric dimethylarginine in plasma: Methodological considerations and clinical relevance. Clin. Chem. Lab Med. 2005, 43, 1130–1138. [Google Scholar] [CrossRef]
- Zinellu, A.; Sotgia, S.; Deiana, L.; Talanas, G.; Terrosu, P.; Carru, C. Simultaneous analysis of kynurenine and tryptophan in human plasma by capillary electrophoresis with UV detection. J. Sep. Sci. 2012, 35, 1146–1151. [Google Scholar] [CrossRef] [PubMed]
- Zinellu, A.; Carru, C.; Galistu, F.; Usai, M.F.; Pes, G.M.; Baggio, G.; Federici, G.; Deiana, L. N-methyl-D-glucamine improves the laser-induced fluorescence capillary electrophoresis performance in the total plasma thiols measurement. Electrophoresis 2003, 24, 2796–2804. [Google Scholar] [CrossRef]
- Zinellu, A.; Sotgia, S.; Scanu, B.; Chessa, R.; Gaspa, L.; Franconi, F.; Deiana, L.; Carru, C. Taurine determination by capillary electrophoresis with laser-induced fluorescence detection: From clinical field to quality food applications. Amino Acids 2009, 36, 35–41. [Google Scholar] [CrossRef]
- Zinellu, A.; Sotgia, S.; Usai, M.F.; Chessa, R.; Deiana, L.; Carru, C. Thiol redox status evaluation in red blood cells by capillary electrophoresis-laser induced fluorescence detection. Electrophoresis 2005, 26, 1963–1968. [Google Scholar] [CrossRef]
- Esterbauer, H.; Cheeseman, K.H. Determination of aldehydic lipid peroxidation products: Malonaldehyde and 4-hydroxynonenal. Methods Enzymol. 1990, 186, 407–421. [Google Scholar]
- Ellman, G.L. Tissue sulfhydryl groups. Arch. Biochem. Biophys. 1959, 82, 70–77. [Google Scholar] [CrossRef]
- Cho, H.Y.; Reddy, S.P.; Kleeberger, S.R. Nrf2 defends the lung from oxidative stress. Antioxid. Redox Signal. 2006, 8, 76–87. [Google Scholar] [CrossRef]
- Zhang, H.; Davies, K.J.A.; Forman, H.J. Oxidative stress response and Nrf2 signaling in aging. Free Radic. Biol. Med. 2015, 88, 314–336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Armstrong, D.; Browne, R. The analysis of free radicals, lipid peroxides, antioxidant enzymes and compounds related to oxidative stress as applied to the clinical chemistry laboratory. Adv. Exp. Med. Biol. 1994, 366, 43–58. [Google Scholar] [PubMed]
- Lushchak, V.I. Glutathione homeostasis and functions: Potential targets for medical interventions. J. Amino Acids 2012, 2012, 736837. [Google Scholar] [CrossRef] [Green Version]
- Jong, C.J.; Azuma, J.; Schaffer, S. Mechanism underlying the antioxidant activity of taurine: Prevention of mitochondrial oxidant production. Amino Acids 2012, 42, 2223–3222. [Google Scholar] [CrossRef] [PubMed]
- Hansen, S.H.; Andersen, M.L.; Birkedal, H.; Cornett, C.; Wibrand, F. The important role of taurine in oxidative metabolism. Adv. Exp. Med. Biol. 2006, 583, 129–135. [Google Scholar]
- Sibrian-Vazquez, M.; Escobedo, J.O.; Lim, S.; Samoei, G.K.; Strongin, R.M. Homocystamides promote free-radical and oxidative damage to proteins. Proc. Natl. Acad. Sci. USA 2010, 107, 551–554. [Google Scholar] [CrossRef] [Green Version]
- Folbergrová, J.; Jesina, P.; Drahota, Z.; Lisý, V.; Haugvicová, R.; Vojtísková, A.; Houstĕk, J. Mitochondrial complex I inhibition in cerebral cortex of immature rats following homocysteic acid-induced seizures. Exp. Neurol. 2007, 204, 597–609. [Google Scholar]
- Zinellu, A.; Fois, A.G.; Mangoni, A.A.; Paliogiannis, P.; Sotgiu, E.; Zinellu, E.; Marras, V.; Pirina, P.; Carru, C. Systemic concentrations of asymmetric dimethylarginine (ADMA) in chronic obstructive pulmonary disease (COPD): State of the art. Amino Acids 2018, 50, 1169–1176. [Google Scholar] [CrossRef]
- Zinellu, A.; Fois, A.G.; Zinellu, E.; Sotgiu, E.; Sotgia, S.; Arru, D.; Mangoni, A.A.; Carru, C.; Pirina, P. Increased kynurenine plasma concentrations and kynurenine-tryptophan ratio in mild-to-moderate chronic obstructive pulmonary disease patients. Biomark. Med. 2018, 12, 229–237. [Google Scholar] [CrossRef]
- Kinnula, V.L.; Crapo, J.D.; Raivio, K.O. Generation and disposal of reactive oxygen metabolites in the lung. Lab. Investig. 1995, 73, 3–19. [Google Scholar]
- Kinnula, V.L.; Crapo, J.D. Superoxide dismutases in the lung and human lung diseases. Am. J. Respir. Crit. Care Med. 2003, 167, 1600–1619. [Google Scholar] [CrossRef] [PubMed]
- Veith, C.; Drent, M.; Bast, A.; van Schooten, F.J.; Boots, A.W. The disturbed redox-balance in pulmonary fibrosis is modulated by the plant flavonoid quercetin. Toxicol. Appl. Pharmacol. 2017, 336, 40–48. [Google Scholar] [CrossRef] [PubMed]
- Beeh, K.M.; Beier, J.; Haas, I.C.; Kornmann, O.; Micke, P.; Buhl, R. Glutathione deficiency of the lower respiratory tract in patients with idiopathic pulmonary fibrosis. Eur. Respir. J. 2002, 19, 1119–1123. [Google Scholar] [CrossRef] [Green Version]
- Meyer, A.; Buhl, R.; Magnussen, H. The effect of oral N-acetylcysteine on lung glutathione levels in idiopathic pulmonary fibrosis. Eur. Respir. J. 1994, 7, 431–436. [Google Scholar] [CrossRef] [PubMed]
- Cantin, A.M.; Hubbard, R.C.; Crystal, R.G. Glutathione deficiency in the epithelial lining fluid of the lower respiratory tract in idiopathic pulmonary fibrosis. Am. Rev. Respir. Dis. 1989, 139, 370–372. [Google Scholar] [CrossRef]
- Mendelson, O.S.; Metz, E.N.; Sagone, A.I. Effect of phagocytosis on the reduced soluble sulfhydryl content of human granulocytes. Blood 1977, 50, 1023–1030. [Google Scholar] [CrossRef] [Green Version]
- DeLucia, A.J.; Mustafa, M.G.; Hussain, M.Z.; Cross, C.E. Ozone interaction with rodent lung. Ill. Oxidation of reduced glutathione and formation of mixed disulfides between protein and nonprotein sulhydryls. J. Clin. Investig. 1975, 55, 794–802. [Google Scholar] [CrossRef] [Green Version]
- Rahman, I.; Skwarska, E.; Henry, M.; Davis, M.; O’Connor, C.M.; FitzGerald, M.X.; Greening, A.; MacNee, W. Systemic and pulmonary oxidative stress in idiopathic pulmonary fibrosis. Free Radic. Biol. Med. 1999, 27, 60–68. [Google Scholar] [CrossRef]
- Bartoli, M.L.; Novelli, F.; Costa, F.; Malagrinò, L.; Melosini, L.; Bacci, E.; Cianchetti, S.; Dente, F.L.; Di Franco, A.; Vagaggini, B.; et al. Malondialdehyde in exhaled breath condensate as a marker of oxidative stress in different pulmonary diseases. Mediat. Inflamm. 2011, 2011, 891752. [Google Scholar] [CrossRef] [PubMed]
- Ban, W.H.; Kang, H.H.; Kim, I.K.; Ha, J.H.; Joo, H.; Lee, J.M.; Lim, J.U.; Lee, S.H.; Rhee, C.K. Clinical significance of nuclear factor erythroid 2-related factor 2 in patients with chronic obstructive pulmonary disease. Korean J. Intern. Med. 2018, 33, 745–752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sireesh, D.; Dhamodharan, U.; Ezhilarasi, K.; Vijay, V.; Ramkumar, K.M. Association of NF-E2 Related Factor 2 (Nrf2) and inflammatory cytokines in recent onset Type 2 Diabetes Mellitus. Sci. Rep. 2018, 8, 5126. [Google Scholar] [CrossRef]
- Mazur, W.; Lindholm, P.; Vuorinen, K.; Myllärniemi, M.; Salmenkivi, K.; Kinnula, V.L. Cell-specific elevation of NRF2 and sulfiredoxin-1 as markers of oxidative stress in the lungs of idiopathic pulmonary fibrosis and non-specific interstitial pneumonia. APMIS 2010, 118, 703–712. [Google Scholar] [CrossRef]
- Singh, S.; Vrishni, S.; Singh, B.K.; Rahman, I.; Kakkar, P. Nrf2-ARE stress response mechanism: A control point in oxidative stress-mediated dysfunctions and chronic inflammatory diseases. Free Radic. Res. 2010, 44, 1267–1288. [Google Scholar] [CrossRef] [PubMed]
- Maher, T.M.; Strek, M.E. Antifibrotic therapy for idiopathic pulmonary fibrosis: Time to treat. Respir. Res. 2019, 20, 205. [Google Scholar] [CrossRef] [Green Version]
- Giri, S.N.; Wang, Q. Taurine and niacin offer a novel therapeutic modality in prevention of chemically-induced pulmonary fibrosis in hamsters. Adv. Exp. Med. Biol. 1992, 315, 329–340. [Google Scholar]
- Espinosa-Díez, C.; Miguel, V.; Vallejo, S.; Sánchez, F.J.; Sandoval, E.; Blanco, E.; Cannata, P.; Peiró, C.; Sánchez-Ferrer, C.F.; Lamas, S. Role of glutathione biosynthesis in endothelial dysfunction and fibrosis. Redox Biol. 2018, 14, 88–99. [Google Scholar] [CrossRef]
Controls (n = 18) | IPF (n = 18) | p Value | |
---|---|---|---|
Age (years) | 67.7 ± 6.7 | 66.7 ± 10.3 | 0.75 |
Gender (F/M) | 8/10 | 8/10 | 1 |
BMI (kg/m2) | 26.7 ± 5.0 | 28.9 ± 4.7 | 0.19 |
Smokers, yes/no | 14/4 | 14/4 | 1 |
FVC (L) | 2.99 ± 0.84 | 2.23 ± 0.66 | 0.005 |
FVC (% predicted) | 93.5 ± 12.9 | 77.9 ± 20.1 | 0.009 |
FEV1(% predicted) | 94.4 ± 17.2 | 87.2 ± 23.2 | 0.29 |
DLCO (% predicted) | -- | 52.1 ± 16.8 | -- |
GAP index, (1/2/3/4/5/6/7 n) | -- | (2/3/7/3/3/0/0) | -- |
Disease stage, (I/II/III n) | -- | (11/7/0) | -- |
Hcy, (μmol/L) | 15.4 ± 5.7 | 17.8 ± 5.6 | 0.21 |
Cys, (μmol/L) | 340 ± 59 | 353 ± 54 | 0.50 |
Tau, (μmol/L) | 28.0 ± 7.8 | 27.2 ± 7.2 | 0.75 |
GSH, (μmol/L) | 880 ± 212 | 457 ± 73 | <0.001 |
PSH, (µmol/g prot) | 5.28 ± 1.35 | 4.24 ± 0.95 | 0.012 |
TBARS, (μmol/L) | 3.92 ± 0.79 | 4.01 ± 1.1.71 | 0.85 |
Nrf2, (pg/mL) | 80 (50-107) | 100 (61-172) | 0.12 |
Arginine, (μmol/L) | 52.0 ± 11.6 | 50.8 ± 10.6 | 0.74 |
ADMA, (μmol/L) | 0.433 ± 0.075 | 0.464 ± 0.091 | 0.27 |
ADMA/Arg ratio | 0.0086 ± 0.0020 | 0.0095 ± 0.0029 | 0.29 |
Kynurenine, (μmol/L) | 1.06 ± 0.50 | 1.38 ± 0.49 | 0.06 |
Tryptophan, (μmol/L) | 42.3 ± 17.7 | 44.4 ± 15.5 | 0.70 |
Kyn/Trp ratio | 0.027 ± 0.013 | 0.032 ± 0.012 | 0.18 |
Pre-Treatment (n = 18) | Post-Treatment (n = 18) | p Value | |
---|---|---|---|
FVC (L) | 2.23 ± 0.66 | 2.14 ± 0.67 | 0.07 |
FVC (% predicted) | 77.9 ± 20.1 | 74.4 ± 19.9 | 0.04 |
FEV1(% predicted) | 87.2 ± 23.2 | 84.8 ± 23.8 | 0.15 |
DLCO (% predicted) | 52.1 ± 16.8 | 47.3 ± 22.6 | 0.08 |
Hcy, (μmol/L) | 17.8 ± 5.6 | 18.4 ± 6.0 | 0.72 |
Cys, (μmol/L) | 353 ± 54 | 346 ± 47 | 0.53 |
Tau, (μmol/L) | 27.2 ± 7.2 | 33.5 ± 14.0 | 0.037 |
GSH, (μmol/L) | 457 ± 73 | 619 ± 222 | 0.006 |
PSH, (µmol/g prot) | 4.24 ± 0.95 | 4.81 ± 1.32 | 0.042 |
TBARS, (μmol/L) | 4.01 ± 1.71 | 3.32 ± 1.17 | 0.08 |
Erf2, (pg/mL) | 100 (61-172) | 100 (95-129) | 0.77 |
Arginine, (μmol/L) | 50.8 ± 10.6 | 50.8 ± 12.6 | 0.99 |
ADMA, (μmol/L) | 0.464 ± 0.091 | 0.448 ± 0.072 | 0.13 |
ADMA/Arg ratio | 0.0095 ± 0.0029 | 0.0094 ± 0.0032 | 0.75 |
Kynurenine, (μmol/L) | 1.38 ± 0.49 | 1.17 ± 0.50 | 0.047 |
Tryptophan, (μmol/L) | 44.4 ± 15.5 | 45.4 ± 8.9 | 0.79 |
Kyn/Trp ratio | 0.032 ± 0.012 | 0.027 ± 0.014 | 0.11 |
Pre-Treatment (n = 10) | Post-Treatment (n = 10) | p Value | |
---|---|---|---|
FVC (L) | 2.46 ± 0.73 | 2.37 ± 0.75 | 0.17 |
FVC (% predicted) | 80.7 ± 21.1 | 77.1 ± 22.6 | 0.18 |
FEV1(% predicted) | 89.9 ± 25.3 | 89.1 ± 26.7 | 0.71 |
DLCO (% predicted) | 54.7 ± 19.4 | 50.9 ± 24.4 | 0.26 |
Hcy, (μmol/L) | 19.3 ± 6.2 | 18.2 ± 5.4 | 0.40 |
Cys, (μmol/L) | 350 ± 63 | 330 ± 47 | 0.13 |
Tau, (μmol/L) | 28.6 ± 8.0 | 35.1 ± 17.0 | 0.16 |
GSH, (μmol/L) | 435 ± 70 | 535 ± 215 | 0.21 |
PSH, (µmol/g prot) | 4.36 ± 1.10 | 4.75 ± 1.31 | 0.30 |
TBARS, (μmol/L) | 3.94 ± 1.82 | 3.28 ± 0.93 | 0.17 |
Nrf2, (pg/mL) | 115 (47-211) | 98 (95-165) | 0.97 |
Arginine, (μmol/L) | 51.8 ± 10.8 | 53.1 ± 15.0 | 0.82 |
ADMA, (μmol/L) | 0.434 ± 0.080 | 0.432 ± 0.072 | 0.90 |
ADMA/Arg ratio | 0.0087 ± 0.0024 | 0.0089 ± 0.0037 | 0.79 |
Kynurenine, (μmol/L) | 1.33 ± 0.53 | 1.14 ± 0.35 | 0.14 |
Tryptophan, (μmol/L) | 45.1 ± 19.7 | 47.7 ± 10.0 | 0.63 |
Kyn/Trp ratio | 0.030 ± 0.011 | 0.025 ± 0.010 | 0.048 |
Pre-Treatment (n = 8) | Post-Treatment (n = 8) | p Value | |
---|---|---|---|
FVC (L) | 1.95 ± 0.47 | 1.85 ± 0.31 | 0.29 |
FVC (% predicted) | 74.4 ± 19.6 | 71.0 ± 16.6 | 0.14 |
FEV1(% predicted) | 83.7 ± 21.4 | 79.4 ± 20.0 | 0.10 |
DLCO (% predicted) | 48.8 ± 13.3 | 42.8 ± 20.6 | 0.23 |
Hcy, (μmol/L) | 15.9 ± 4.3 | 18.7 ± 7.1 | 0.42 |
Cys, (μmol/L) | 358 ± 45 | 366 ± 41 | 0.72 |
Tau, (μmol/L) | 25.5 ± 6.3 | 31.4 ± 9.9 | 0.14 |
GSH, (μmol/L) | 486 ± 70 | 723 ± 194 | 0.006 |
PSH, (µmol/g prot) | 4.10 ± 0.77 | 4.89 ± 1.43 | 0.08 |
TBARS, (μmol/L) | 4.10 ± 1.68 | 3.37 ± 1.50 | 0.31 |
Nrf2, (pg/mL) | 84 (67-152) | 105 (81-129) | 0.64 |
Arginine, (μmol/L) | 49.4 ± 10.7 | 47.9 ± 8.8 | 0.44 |
ADMA, (μmol/L) | 0.501 ± 0.094 | 0.468 ± 0.071 | 0.024 |
ADMA/Arg ratio | 0.0106 ± 0.0032 | 0.0100 ± 0.0026 | 0.30 |
Kynurenine, (μmol/L) | 1.46 ± 0.48 | 1.21 ± 0.67 | 0.21 |
Tryptophan, (μmol/L) | 43.4 ± 9.1 | 42.4 ± 6.8 | 0.84 |
Kyn/Trp ratio | 0.035 ± 0.013 | 0.029 ± 0.017 | 0.43 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fois, A.G.; Sotgiu, E.; Scano, V.; Negri, S.; Mellino, S.; Zinellu, E.; Pirina, P.; Pintus, G.; Carru, C.; Mangoni, A.A.; et al. Effects of Pirfenidone and Nintedanib on Markers of Systemic Oxidative Stress and Inflammation in Patients with Idiopathic Pulmonary Fibrosis: A Preliminary Report. Antioxidants 2020, 9, 1064. https://doi.org/10.3390/antiox9111064
Fois AG, Sotgiu E, Scano V, Negri S, Mellino S, Zinellu E, Pirina P, Pintus G, Carru C, Mangoni AA, et al. Effects of Pirfenidone and Nintedanib on Markers of Systemic Oxidative Stress and Inflammation in Patients with Idiopathic Pulmonary Fibrosis: A Preliminary Report. Antioxidants. 2020; 9(11):1064. https://doi.org/10.3390/antiox9111064
Chicago/Turabian StyleFois, Alessandro G., Elisabetta Sotgiu, Valentina Scano, Silvia Negri, Sabrina Mellino, Elisabetta Zinellu, Pietro Pirina, Gianfranco Pintus, Ciriaco Carru, Arduino A. Mangoni, and et al. 2020. "Effects of Pirfenidone and Nintedanib on Markers of Systemic Oxidative Stress and Inflammation in Patients with Idiopathic Pulmonary Fibrosis: A Preliminary Report" Antioxidants 9, no. 11: 1064. https://doi.org/10.3390/antiox9111064
APA StyleFois, A. G., Sotgiu, E., Scano, V., Negri, S., Mellino, S., Zinellu, E., Pirina, P., Pintus, G., Carru, C., Mangoni, A. A., & Zinellu, A. (2020). Effects of Pirfenidone and Nintedanib on Markers of Systemic Oxidative Stress and Inflammation in Patients with Idiopathic Pulmonary Fibrosis: A Preliminary Report. Antioxidants, 9(11), 1064. https://doi.org/10.3390/antiox9111064