Antioxidant and Anti-Inflammatory Activities of the Crude Extracts of Raw and Fermented Tomato Pomace and Their Correlations with Aglycate-Polyphenols
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Tests of Fermentation and Analytical Characterization
2.3. Total Phenolic Extraction and Quantification
2.4. Profiling Aglycone-Polyphenol Compounds (A-PP) by HPLC
2.5. Antioxidant Activity Assay
2.6. Anti-Inflammatory Assay
2.6.1. Cultivation of Caco-2 Cells
2.6.2. Cell Incubation
2.6.3. Expression of IL-8 Measurement by Real-Time PCR Analysis (qPCR)
2.7. Statistical Analyses
3. Results and Discussion
3.1. TP Chemical Characterization and Fermentation
3.2. TP Polyphenol Composition and Antioxidant Activity
3.3. Anti-Inflammatory Properties
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chaudhary, P.; Sharma, A.; Singh, B.; Nagpal, A.K. Bioactivities of phytochemicals present in tomato. Int. J. Food Sci. Technol. 2018, 55, 2833–2849. [Google Scholar] [CrossRef] [PubMed]
- Allied Market Research. 2019. Available online: https://www.alliedmarketresearch.com (accessed on 31 August 2019).
- Di Donato, P.; Taurisano, V.; Tommonaro, G.; Pasquale, V.; Jiménez, J.M.S.; de Pascual-Teresa, S.; Poli, A.; Nicolaus, B. Biological properties of polyphenols extracts from agro industry’s wastes. Waste Biomass Valoriz. 2018, 9, 1567–1578. [Google Scholar] [CrossRef]
- WTPC. World Production Estimate of Tomatoes from Processing. 2015. Available online: http://www.wtpc.to (accessed on 31 August 2019).
- Papaioannou, E.H.; Karabelas, A.J. Lycopene recovery from tomato peel under mild conditions assisted by enzymatic pre-treatment and non-ionic surfactants. Acta Biochim. Pol. 2012, 59, 71–74. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Valverde, I.; Periago, M.J.; Provan, G.; Chesson, A. Phenolic compounds, lycopene and antioxidant activity in commercial varieties of tomato (Lycopersicum esculentum). J. Sci. Food Agric. 2002, 82, 323–330. [Google Scholar] [CrossRef]
- Wu, J.J.; Du, R.P.; Gao, M.; Sui, Y.Q.; Xiu, L.; Wang, X. Naturally occurring lactic acid bacteria isolated from tomato pomace silage. Asian Aust. J. Anim. Sci. 2014, 27, 648. [Google Scholar] [CrossRef] [Green Version]
- Weinberg, Z.G.; Szakacs, G. Extraction of bioactive plant materials by simultaneous enzyme treatment and lactic acid fermentation—A mini-review. Isr. J. Plant Sci. 2017, 65, 31–37. [Google Scholar] [CrossRef]
- Robbins, R.J. Phenolic acids in foods: An overview of analytical methodology. J. Agric. Food Chem. 2003, 51, 2866–2887. [Google Scholar] [CrossRef]
- Septembre-Malaterre, A.; Remize, F.; Poucheret, P. Fruits and vegetables, as a source of nutritional compounds and phytochemicals: Changes in bioactive compounds during lactic fermentation. Food Res. Int. 2018, 104, 86–99. [Google Scholar] [CrossRef]
- Alam, M.N.; Bristi, N.J.; Rafiquzzaman, M. Review on in vivo and in vitro methods evaluation of antioxidant activity. Saudi Pharm J. 2013, 21, 143–152. [Google Scholar] [CrossRef] [Green Version]
- Valdez-Morales, M.; Espinosa-Alonso, L.G.; Espinoza-Torres, L.C.; Delgado-Vargas, F.; Medina-Godoy, S. Phenolic content and antioxidant and antimutagenic activities in tomato peel, seeds, and byproducts. J. Agric. Food Chem. 2014, 62, 5281–5289. [Google Scholar] [CrossRef]
- Pajonk, F.; Riedisser, A.; Henke, M.; McBride, W.H.; Fiebich, B. The effects of tea extracts on proinflammatory signaling. BMC Med. 2006, 4, 28. [Google Scholar] [CrossRef] [Green Version]
- Phan, M.A.T.; Paterson, J.; Bucknall, M.; Arcot, J. Interactions between phytochemicals from fruits and vegetables: Effects on bioactivities and bioavailability. Crit. Rev. Food Sci. Nutr. 2018, 58, 1310–1329. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.C.; Aucott, L.S.; Duthie, G.G.; Macdonald, H.M. An application of partial least squares for identifying dietary patterns in bone health. Arch. Osteoporos. 2017, 12, 63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ellendorff, T.; Brun, R.; Kaiser, M.; Sendker, J.; Schmidt, T. PLS-Prediction and confirmation of hydrojuglone glucoside as the antitrypanosomal constituent of Juglans spp. Molecules 2015, 20, 10082–10094. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, Y.; Li, S.N.; Pei, X.; Hao, K. The multivariate regression statistics strategy to investigate content-effect correlation of multiple components in traditional Chinese medicine based on a partial least squares method. Molecules 2018, 23, 545. [Google Scholar] [CrossRef] [Green Version]
- Scaglia, B.; D’Incecco, P.; Squillace, P.; Dell’Orto, M.; De Nisi, P.; Pellegrino, L.; Botto, A.; Adani, F. Development of a tomato pomace biorefinery based on a CO2-supercritical extraction process for the production of a high value lycopene product, bioenergy and digestate. J. Clean. Prod. 2020, 243, 118650. [Google Scholar] [CrossRef]
- Orzi, V.; Scaglia, B.; Lonati, S.; Riva, C.; Boccasile, G.; Alborali, G.L.; Adani, F. The role of biological processes in reducing both odor impact and pathogen content during mesophilic anaerobic digestion. Sci. Total Environ. 2015, 526, 116–126. [Google Scholar] [CrossRef]
- Cardador-Martinez, A.; Albores, A.; Bah, M.; Calderon-Salinas, V.; Castano-Tostado, E.; Guevara-Gonzalez, R.; Shimada-Miyasaka, A.; Loarca-Pina, G. Relationship among antimutagenic, antioxidant and enzymatic activities of methanolic extract from common beans (Phaseolus vulgaris L.). Plant Food Hum. Nutr. 2006, 61, 161–168. [Google Scholar] [CrossRef]
- Mishra, K.; Ojha, H.; Chaudhury, N.K. Estimation of antiradical properties of antioxidants using DPPH assay: A critical review and results. Food Chem. 2012, 130, 1036–1043. [Google Scholar] [CrossRef]
- Parizad, P.A.; Capraro, J.; Scarafoni, A.; Bonomi, F.; Blandino, M.; Marengo, M.; Giordano, D.; Carpen, A.; Iametti, S. The bio-functional properties of pigmented cereals may involve synergies among different bioactive species. Plant Foods Hum. Nutr. 2019, 74, 128–134. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.Y.; Hayasaka, S.; Chi, Z.L.; Cui, H.S.; Hayasaka, Y.M. Effect of pituitary adenylate cyclase-activating polypeptide (PACAP) on IL-6, IL-8, and MCP-1 expression in human retinal pigment epithelial cell line. Curr. Eye Res. 2005, 30, 1105–1111. [Google Scholar] [CrossRef] [PubMed]
- Bottero, M.T.; Dalmasso, A.; Nucera, D.; Turi, R.M.; Rosati, S.; Squadrone, S.; Goria, M.; Civera, T. Development of a PCR assay for the detection of animal tissues in ruminant feeds. J. Food Prot. 2003, 66, 2307–2312. [Google Scholar] [CrossRef] [PubMed]
- Scaglia, B.; Pognani, M.; Adani, F. The anaerobic digestion process capability to produce biostimulant: The case study of the dissolved organic matter (DOM) vs. auxin-like property. Sci. Total Environ. 2017, 589, 36–45. [Google Scholar] [CrossRef] [PubMed]
- Del Valle, M.; Cámara, M.; Torija, M.E. Chemical characterization of tomato pomace. J. Sci. Food Agric. 2006, 86, 1232–1236. [Google Scholar] [CrossRef]
- Kung, L.; Shaver, R. Interpretation and use of silage fermentation analysis reports. Focus Forage 2001, 3, 1–5. [Google Scholar]
- Vandenbergh, P.A. Lactic acid bacteria, their metabolic products and interference with microbial growth. FEMS Microbiol. Rev. 1993, 12, 221–237. [Google Scholar] [CrossRef]
- Kasra-Kermanshahi, R.; Mobarak-Qamsari, E. Inhibition effect of lactic acid bacteria against food borne pathogen, Listeria monocytogenes. Appl. Food Biotechnol. 2015, 2, 11–19. [Google Scholar]
- Cheeke, P.R.; Dierenfeld, E.S. Comparative Animal Nutrition and Metabolism; CABI: Wallingford, UK, 2010. [Google Scholar]
- Perea-Domínguez, X.P.; Hernández-Gastelum, L.Z.; Olivas-Olguin, H.R.; Espinosa-Alonso, L.G.; Valdez-Morales, M.; Medina-Godoy, S. Phenolic composition of tomato varieties and an industrial tomato by-product: Free, conjugated and bound phenolics and antioxidant activity. J. Food Sci. Technol. 2018, 55, 3453–3461. [Google Scholar] [CrossRef]
- Daneshfar, A.; Ghaziaskar, H.S.; Homayoun, N. Solubility of gallic acid in methanol, ethanol, water, and ethyl acetate. J. Chem. Eng. Data 2008, 53, 776–778. [Google Scholar] [CrossRef]
- Moco, S.; Bino, R.J.; Vorst, O.; Verhoeven, H.A.; de Groot, J.; van Beek, T.A.; Vervoort, J.C.H.; De Vos, C.R. A liquid chromatography-mass spectrometry-based metabolome database for tomato. Plant Physiol. 2006, 141, 1205–1218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Othman, N.B.; Roblain, D.; Chammen, N.; Thonart, P.; Hamdi, M. Antioxidant phenolic compounds loss during the fermentation of Chétoui olives. Food Chem. 2009, 116, 662–669. [Google Scholar] [CrossRef]
- Antognoni, F.; Mandrioli, R.; Potente, G.; Saa, D.L.T.; Gianotti, A. Changes in carotenoids, phenolic acids and antioxidant capacity in bread wheat doughs fermented with different lactic acid bacteria strains. Food Chem. 2019, 292, 211–216. [Google Scholar] [CrossRef] [PubMed]
- Kaizu, H.; Sasaki, M.; Nakajima, H.; Suzuki, Y. Effect of antioxidative lactic acid bacteria on rats fed a diet deficient in vitamin E. J. Dairy Sci. 1993, 76, 2493–2499. [Google Scholar] [CrossRef]
- Ye, M.; Yue, T.; Yuan, Y. Evolution of polyphenols and organic acids during the fermentation of apple cider. J. Sci. Food Agric. 2014, 94, 2951–2957. [Google Scholar] [CrossRef]
- Sánchez-Rangel, J.C.; Benavides, J.; Heredia, J.B.; Cisneros-Zevallos, L.; Jacobo-Velázquez, D.A. The Folin–Ciocalteu assay revisited: Improvement of its specificity for total phenolic content determination. Anal. Methods 2013, 5, 5990–5999. [Google Scholar] [CrossRef]
- Huynh, N.T.; Van Camp, J.; Smagghe, G.; Raes, K. Improved release and metabolism of flavonoids by steered fermentation processes: A review. Int. J. Mol. Sci. 2014, 15, 19369–19388. [Google Scholar] [CrossRef] [PubMed]
- Phan, A.D.T.; Flanagan, B.M.; D’Arcy, B.R.; Gidley, M.J. Binding selectivity of dietary polyphenols to different plant cell wall components: Quantification and mechanism. Food Chem. 2007, 233, 216–227. [Google Scholar] [CrossRef]
- Hussain, T.; Tan, B.; Yin, Y.; Blachier, F.; Tossou, M.C.; Rahu, N. Oxidative stress and inflammation: What polyphenols can do for us? Oxid. Med. Cell. Longev. 2016, 2016. [Google Scholar] [CrossRef] [Green Version]
- Reddy, A.M.; Seo, J.H.; Ryu, S.Y.; Kim, Y.S.; Kim, Y.S.; Min, K.R.; Kim, Y. Cinnamaldehyde and 2-methoxycinnamaldehyde as NF-κB inhibitors from Cinnamomum cassia. Planta Med. 2004, 70, 823–827. [Google Scholar] [CrossRef]
- Yoshida, H.; Watanabe, W.; Oomagari, H.; Tsuruta, E.; Shida, M.; Kurokawa, M. Citrus flavonoid naringenin inhibits TLR2 expression in adipocytes. J. Nutr. Biochem. 2013, 24, 1276–1284. [Google Scholar] [CrossRef] [PubMed]
- Hirai, S.; Kim, Y.I.; Goto, T.; Kang, M.S.; Yoshimura, M.; Obata, A.; Yu, R.; Kawada, T. Inhibitory effect of naringenin chalcone on inflammatory changes in the interaction between adipocytes and macrophages. Life Sci. 2007, 81, 1272–1279. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Lee, S.Y.; Son, D.J.; Lee, H.; Yoo, H.S.; Song, S.; Oh, K.W.; Dong, C.H.; Kwon, B.M.; Hong, J.T. Inhibitory effect of 2′-hydroxycinnamaldehyde on nitric oxide production through inhibition of NF-κB activation in RAW 264.7 cells. Biochem. Pharmacol. 2005, 69, 791–799. [Google Scholar] [CrossRef] [PubMed]
- Shin, H.S.; Satsu, H.; Bae, M.J.; Zhao, Z.; Ogiwara, H.; Totsuka, M.; Shimizu, M. Anti-inflammatory effect of chlorogenic acid on the IL-8 production in Caco-2 cells and the dextran sulphate sodium-induced colitis symptoms in C57BL/6 mice. Food Chem. 2015, 168, 167–175. [Google Scholar] [CrossRef] [PubMed]
- Carrascal, L.M.; Galván, I.; Gordo, O. Partial least squares regression as an alternative to current regression methods used in ecology. Oikos 2009, 118, 681–690. [Google Scholar] [CrossRef]
- Wang, T.Y.; Li, Q.; Bi, K.S. Bioactive flavonoids in medicinal plants: Structure, activity and biological fate. Asian J. Pharm. Sci. 2018, 13, 12–23. [Google Scholar] [CrossRef]
- Hämäläinen, M.; Nieminen, R.; Vuorela, P.; Heinonen, M.; Moilanen, E. Anti-inflammatory effects of flavonoids: Genistein, kaempferol, quercetin, and daidzein inhibit STAT-1 and NF-κB activations, whereas flavone, isorhamnetin, naringenin, and pelargonidin inhibit only NF-κB activation along with their inhibitory effect on iNOS expression and NO production in activated macrophages. Mediat. Inflamm. 2007, 2007. [Google Scholar] [CrossRef] [Green Version]
- Patil, R.H.; Babu, R.L.; Kumar, M.N.; Kumar, K.K.; Hegde, S.M.; Nagesh, R.; Ramesh, G.T.; Sharma, S.C. Anti-inflammatory effect of apigenin on LPS-induced pro-inflammatory mediators and AP-1 factors in human lung epithelial cells. Inflammation 2016, 39, 138–147. [Google Scholar] [CrossRef]
Time Day | d.m. | VS | CS | Hemicellulose | Cellulose | ADL |
---|---|---|---|---|---|---|
% Wet Weight | mg g−1 d.m. | |||||
0 | 22.75 ± 0.01 b *,** | 973.9 ± 6.4 b | 155.9 ± 4.2 a | 137.8 ± 3.7 b | 250.1 ± 3.4 a | 456.2 ± 3.8 c |
1 | 22.72 ± 0.17 b | 975.3 ± 5.8 b | 161.5 ± 7.2 a | 129.3 ± 4.1 ab | 251.6 ± 1.4 a | 457.6 ± 5.4 c |
20 | 22.83 ± 0.07 b | 973.4 ± 2.7 b | 198.8 ± 9.2 ab | 110 ± 5.8 a | 250.8 ± 2.7 a | 450.2 ± 2.1 c |
30 | 22.97 ± 0.07 b | 969.8 ± 5.8 b | 212.3 ± 2.9 b | 110.1 ± 6.8 a | 253.7 ± 1.2 a | 423.4 ± 1.5 b |
60 | 21.7 ± 0.35 a | 964.6 ± 3.8 ab | 222.1 ± 3.2 b | 111.8 ± 3.7 a | 259.2 ± 4.3 a | 407 ± 2.8 a |
105 | 21.33 ± 0.41 a | 962.8 ± 2.4 ab | 221.7 ± 2.2 b | 100.9 ± 1.2 a | 273.4 ± 2.7 b | 404.1 ± 1.7 a |
240 | 21.36 ± 0.12 a | 951.1 ± 1.1 a | 221.6 ± 4.1 b | 109 ± 3.3 a | 270 ± 5.9 b | 399.4 ± 1.8 a |
Fermentation Time | pH | Ethanol | Formate | Acetate | Propionate | Lactate |
---|---|---|---|---|---|---|
Days | mg g−1 d.m. | |||||
0 | 6.59 ± 0.07 b *,** | 8.04 ± 3.22 a | 2.53 ± 0.63 a | 10.47 ± 6.64 a | 1.63 ± 0.65 a | 28 ± 2 a |
1 | 3.86 ± 0.03 a | 12.84 ± 3.47 ab | 8.89 ± 0.33 ab | 20.21 ± 9.08 ab | 4.29 ± 2.47 a | 25 ± 2 a |
20 | 3.84 ± 0.01 a | 15.67 ± 0.68 b | 12.48 ± 0.11 c | 36.78 ± 1.18 c | 4.62 ± 3.14 a | 86 ± 1 d |
30 | 3.88 ± 0.01 a | 14.13 ± 1.43 b | 7.55 ± 0.44 b | 33.94 ± 2.04 c | 5.15 ± 5.21 a | 65 ± 2 c |
60 | 3.76 ± 0.01 a | 15.75 ± 0.69 b | 4.51 ± 0.23 ab | 36.87 ± 0.86 c | 5.65 ± 3.64 a | 65 ± 2 c |
105 | 3.89 ± 0.01 a | 14 ± 0 b | 6.1 ± 1.12 ab | 34.6 ± 0.91 c | 4.89 ± 1.18 a | 65 ± 1 c |
240 | 3.79 ± 0.02 a | 14.51 ± 0.72 b | 3.75 ± 0.22 a | 36.26 ± 3.92 c | 5.37 ± 4.44 a | 67 ± 4 c |
Parameter | Measure Unit | TP1 | TP1F | TP2 | TP2F | |
---|---|---|---|---|---|---|
TPC | µg GA g−1 d.m. TP | 2300 ± 120 a*A** | 2700 ± 40 b | 3200 ± 90 aB | 3600 ± 170 b | |
IC50-DPPH | µg mL−1 | 57.9 ± 1.8 aA | 75.7 ± 3.8 b | 92.7 ± 0.6 cB | 131.1 ± 0.7 d | |
Phenolic acids extracted | gallic acid | μg g−1 d.m | 146.5 ± 4.3 aA*** | 249.3 ± 0.4 b | 222.7 ± 15.1 aB | 185.7 ± 27 a |
chlorogenic acid | 89.2 ± 6.2 aA | 99.4 ± 7.5 a | 271.7 ± 8.5 aB | 73.5 ± 14 a | ||
vanillic acid | 10.3 ± 0.6 bA | 7.4 ± 0.6 a | 1.1 ± 0.2 aA | 2.6 ± 0.7 b | ||
caffeic acid | 94.4 ± 2.8 bA | 19.2 ± 2.1 a | 61.6 ± 2.1 bB | 8.7 ± 0.8 a | ||
ferulic acid | 8 ± 1 bA | 4.5 ± 0 a | 22.1 ± 1.4 aA | 9.3 ± 1.9 a | ||
P-coumaric acid | 22.7 ± 0.9 bA | 11 ± 1.2 a | 64.6 ± 8.9 bB | 11.7 ± 5.2 a | ||
sinapic acid | 23.8 ± 4.3 bA | 3.3 ± 0.9 a | 2.5 ± 1.7 bA | 2.2 ± 1.1 a | ||
cinnamic acid | 105.6 ± 3.7 aA | 171.1 ± 14 b | 88.9 ± 22.7 aA | 164 ± 5.3 b | ||
Sum | 500 | 565 | 735 | 458 | ||
Flavonoids extracted | quercetin | 37.3 ± 0.8 aA | 70.3 ± 6.1 b | 52.7 ± 2.4 aB | 77.9 ± 0.6 a | |
naringenin | 298 ± 9 bA | 49.6 ± 1.9 a | 659 ± 7 bB | 328 ± 3 a | ||
naringenin chalcone | 1016.9 ± 5.9 bA | 873.4 ± 0.5 a | 1260.5 ± 17.7 bB | 1081.6 ±12.8 a | ||
apigenin | 32.4 ± 4.2 bA | 10.6 ± 0.2 a | 66.4 ± 0.7 bB | 38.8 ± 2.4 a | ||
myrecetin | 2.3 ± 0.6 bA | 0 a | 2.5 ± 0.2 bA | 0 a | ||
kaempferol | 32.5 ± 4.1 bA | 15.7 ± 0.1 a | 0 ± 0 aB | 23.5 ± 1.5 b | ||
Sum | 1419.4 | 1019.6 | 2341.1 | 1549.8 | ||
A-PP extracted phenolic content | phenolic acids + flavonoids | 1919.4 | 1584.6 | 3076.1 | 2007.8 |
Samples | Dose | Inflammation | |
---|---|---|---|
µg TPC mL−1 | µg A-PP Extracted mL−1 | IL-8 m-RNA Expression | |
TP1 | 15 | 12.52 | 2.53 ± 0.15 |
25 | 29.09 | 0.13 ± 0.01 | |
TP1F | 15 | 8.80 | 7.1 ± 0.08 |
25 | 14.67 | 1.31 ± 0.06 | |
TP2 | 15 | 14.42 | 0.26 ± 0.01 |
25 | 24.03 | 0.45 ± 0.01 | |
TP2F | 15 | 8.37 | 5.68 ± 0.08 |
25 | 13.94 | 0.06 ± 0.03 | |
Control | 0 | 0 | 26.84 ± 0.13 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abbasi-Parizad, P.; De Nisi, P.; Adani, F.; Pepé Sciarria, T.; Squillace, P.; Scarafoni, A.; Iametti, S.; Scaglia, B. Antioxidant and Anti-Inflammatory Activities of the Crude Extracts of Raw and Fermented Tomato Pomace and Their Correlations with Aglycate-Polyphenols. Antioxidants 2020, 9, 179. https://doi.org/10.3390/antiox9020179
Abbasi-Parizad P, De Nisi P, Adani F, Pepé Sciarria T, Squillace P, Scarafoni A, Iametti S, Scaglia B. Antioxidant and Anti-Inflammatory Activities of the Crude Extracts of Raw and Fermented Tomato Pomace and Their Correlations with Aglycate-Polyphenols. Antioxidants. 2020; 9(2):179. https://doi.org/10.3390/antiox9020179
Chicago/Turabian StyleAbbasi-Parizad, Parisa, Patrizia De Nisi, Fabrizio Adani, Tommy Pepé Sciarria, Pietro Squillace, Alessio Scarafoni, Stefania Iametti, and Barbara Scaglia. 2020. "Antioxidant and Anti-Inflammatory Activities of the Crude Extracts of Raw and Fermented Tomato Pomace and Their Correlations with Aglycate-Polyphenols" Antioxidants 9, no. 2: 179. https://doi.org/10.3390/antiox9020179
APA StyleAbbasi-Parizad, P., De Nisi, P., Adani, F., Pepé Sciarria, T., Squillace, P., Scarafoni, A., Iametti, S., & Scaglia, B. (2020). Antioxidant and Anti-Inflammatory Activities of the Crude Extracts of Raw and Fermented Tomato Pomace and Their Correlations with Aglycate-Polyphenols. Antioxidants, 9(2), 179. https://doi.org/10.3390/antiox9020179