Efficacy of Antioxidant Supplementation on Conventional and Advanced Sperm Function Tests in Patients with Idiopathic Male Infertility
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Ethics Statement
2.2. Study Subjects
2.3. Study Protocol
2.4. Semen Analysis
2.5. Sperm DNA Fragmentation (SDF) Assessment
2.6. Oxidative Stress Assessment
2.7. Statistical Analysis
3. Results
3.1. Effect of Antioxidant Supplementation on Sperm Parameters
3.1.1. Idiopathic Infertility Group
3.1.2. Unexplained Male Infertility Group
3.2. Effect of Antioxidant Supplementation on Seminal ORP
3.2.1. Idiopathic Infertility Group
3.2.2. Unexplained Male Infertility Group
3.3. Effect of Antioxidant Supplementation on SDF
3.3.1. Idiopathic Infertility Group
3.3.2. Unexplained Male Infertility Group
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Irvine, D.S. Epidemiology and aetiology of male infertility. Hum. Reprod. 1998, 13, 33–44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agarwal, A.; Mulgund, A.; Hamada, A.; Chyatte, M.R. A unique view on male infertility around the globe. Reprod. Biol. Endocrinol. 2015, 13, 37. [Google Scholar] [CrossRef] [Green Version]
- Jungwirth, A.; Diemer, T.; Dohle, G.R.; Giwercman, A.; Kopa, Z.; Tournaye, H.; Krausz, C. Guidelines on male infertility, European association of urology guidelines. Arnh. Neth. 2015, 1–41. [Google Scholar]
- Agarwal, A.; Parekh, N.; Panner Selvam, M.K.; Henkel, R.; Shah, R.; Homa, S.T.; Ramasamy, R.; Ko, E.; Tremellen, K.; Esteves, S.; et al. Male oxidative stress infertility (MOSI): Proposed terminology and clinical practice guidelines for management of idiopathic male infertility. World J. Men’s Health 2019, 37, 296–312. [Google Scholar] [CrossRef] [PubMed]
- American Urological Association. The Optimal Evaluation of the Infertile Male: AUA Best Practice Statement; American Urological Association Education and Research: Linthicum, MD, USA, 2010. [Google Scholar]
- Tremellen, K. Oxidative stress and male infertility—A clinical perspective. Hum. Reprod. Update 2008, 14, 243–258. [Google Scholar] [CrossRef]
- Bui, A.D.; Sharma, R.; Henkel, R.; Agarwal, A. Reactive oxygen species impact on sperm DNA and its role in male infertility. Andrologia 2018, 50, e13012. [Google Scholar] [CrossRef]
- Wagner, H.; Cheng, J.W.; Ko, E.Y. Role of reactive oxygen species in male infertility: An updated review of literature. Arab J. Urol. 2018, 16, 35–43. [Google Scholar] [CrossRef] [Green Version]
- Bardaweel, S.K.; Gul, M.; Alzweiri, M.; Ishaqat, A.; ALSalamat, H.A.; Bashatwah, R.M. Reactive oxygen species: The dual role in physiological and pathological conditions of the human body. Eurasian J. Med. 2018, 50, 193–201. [Google Scholar] [CrossRef]
- Du Plessis, S.S.; Agarwal, A.; Halabi, J.; Tvrda, E. Contemporary evidence on the physiological role of reactive oxygen species in human sperm function. J. Assist. Reprod. Genet. 2015, 32, 509–520. [Google Scholar] [CrossRef] [Green Version]
- Aitken, R.J.; Koppers, A.J. Apoptosis and DNA damage in human spermatozoa. Asian J. Androl. 2011, 13, 36–42. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, A.; Virk, G.; Ong, C.; Du Plessis, S.S. Effect of oxidative stress on male reproduction. World J. Men’s Health 2014, 32, 1–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aitken, R.J.; De Iuliis, G.N.; Drevet, J.R. Role of oxidative stress in the etiology of male infertility and the potential therapeutic value of antioxidants. In Oxidants, Antioxidants and Impact of the Oxidative Status in Male Reproduction; Elsevier: Amsterdam, The Netherlands, 2019; pp. 91–100. [Google Scholar]
- Gupta, N.P.; Kumar, R. Lycopene therapy in idiopathic male infertility—A preliminary report. Int. Urol. Nephrol. 2002, 34, 369–372. [Google Scholar] [CrossRef] [PubMed]
- Lenzi, A.; Sgro, P.; Salacone, P.; Paoli, D.; Gilio, B.; Lombardo, F.; Santulli, M.; Agarwal, A.; Gandini, L. A placebo-controlled double-blind randomized trial of the use of combined l-carnitine and l-acetyl-carnitine treatment in men with asthenozoospermia. Fertil. Steril. 2004, 81, 1578–1584. [Google Scholar] [CrossRef] [PubMed]
- Balercia, G.; Regoli, F.; Armeni, T.; Koverech, A.; Mantero, F.; Boscaro, M. Placebo-controlled double-blind randomized trial on the use of L-carnitine, L-acetylcarnitine, or combined L-carnitine and L-acetylcarnitine in men with idiopathic asthenozoospermia. Fertil. Steril. 2005, 84, 662–671. [Google Scholar] [CrossRef] [PubMed]
- Safarinejad, M.R.; Safarinejad, S.; Shafiei, N.; Safarinejad, S. Effects of the reduced form of coenzyme Q10 (ubiquinol) on semen parameters in men with idiopathic infertility: A double-blind, placebo controlled, randomized study. J. Urol. 2012, 188, 526–531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ElSheikh, M.G.; Hosny, M.B.; Elshenoufy, A.; Elghamrawi, H.; Fayad, A.; Abdelrahman, S. Combination of vitamin E and clomiphene citrate in treating patients with idiopathic oligoasthenozoospermia: A prospective, randomized trial. Andrology 2015, 3, 864–867. [Google Scholar] [CrossRef]
- Majzoub, A.; Agarwal, A.; Esteves, S.C. Antioxidants for elevated sperm DNA fragmentation: A mini review. Transl. Androl. Urol. 2017, 6, S649–S653. [Google Scholar] [CrossRef] [Green Version]
- Micic, S.; Lalic, N.; Djordjevic, D.; Bojanic, N.; Bogavac-Stanojevic, N.; Busetto, G.M.; Virmani, A.; Agarwal, A. Double-blind, randomised, placebo-controlled trial on the effect of L-carnitine and L-acetylcarnitine on sperm parameters in men with idiopathic oligoasthenozoospermia. Andrologia 2019, 51, e13267. [Google Scholar] [CrossRef]
- Abad, C.; Amengual, M.J.; Gosálvez, J.; Coward, K.; Hannaoui, N.; Benet, J.; García-Peiró, A.; Prats, J. Effects of oral antioxidant treatment upon the dynamics of human sperm DNA fragmentation and subpopulations of sperm with highly degraded DNA. Andrologia 2013, 45, 211–216. [Google Scholar] [CrossRef]
- Gharagozloo, P.; Gutiérrez-Adán, A.; Champroux, A.; Noblanc, A.; Kocer, A.; Calle, A.; Pérez-Cerezales, S.; Pericuesta, E.; Polhemus, A.; Moazamian, A.; et al. A novel antioxidant formulation designed to treat male infertility associated with oxidative stress: Promising preclinical evidence from animal models. Hum. Reprod. 2016, 31, 252–262. [Google Scholar] [CrossRef]
- Majzoub, A.; Agarwal, A. Systematic review of antioxidant types and doses in male infertility: Benefits on semen parameters, advanced sperm function, assisted reproduction and live-birth rate. Arab J. Urol. 2018, 16, 113–124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ménézo, Y.J.; Hazout, A.; Panteix, G.; Robert, F.; Rollet, J.; Cohen-Bacrie, P.; Chapuis, F.; Clément, P.; Benkhalifa, M. Antioxidants to reduce sperm DNA fragmentation: An unexpected adverse effect. Reprod. Biomed. Online 2007, 14, 418–421. [Google Scholar] [CrossRef]
- Zini, A.; Al-Hathal, N. Antioxidant therapy in male infertility: Fact or fiction? Asian J. Androl. 2011, 13, 374–381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steiner, A.; Hansen, K.; Diamond, M.; Coutifaris, C.; Cedars, M.; Legro, R.; Usadi, R.; Baker, V.; Coward, R.; Santoro, N.; et al. Antioxidants in the treatment of male factor infertility: Results from the double blind, multi-center, randomized controlled Males, Antioxidants, and Infertility (MOXI) trial. Hum. Reprod. 2018, 33, i30. [Google Scholar]
- World Health Organization. WHO Laboratory Manual for the Examination and Processing of Human Semen; World Health Organization: Geneva, Switzerland, 2010. [Google Scholar]
- Fernández, J.L.; Muriel, L.; Rivero, M.T.; Goyanes, V.; Vazquez, R.; Alvarez, J.G. The sperm chromatin dispersion test: A simple method for the determination of sperm DNA fragmentation. J. Androl. 2003, 24, 59–66. [Google Scholar]
- Agarwal, A.; Cho, C.L.; Majzoub, A.; Esteves, S.C. The Society for Translational Medicine: Clinical practice guidelines for sperm DNA fragmentation testing in male infertility. Transl Androl Urol. 2017, 6 (Suppl 4), S720–S733. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, A.; Sharma, R.; Roychoudhury, S.; Du Plessis, S.; Sabanegh, E. MiOXSYS: A novel method of measuring oxidation reduction potential in semen and seminal plasma. Fertil. Steril. 2016, 106, 566–573. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, A.; Selvam, M.K.; Arafa, M.; Okada, H.; Homa, S.; Killeen, A.; Balaban, B.; Saleh, R.; Armagan, A.; Roychoudhury, S.; et al. Multi-center evaluation of oxidation-reduction potential by the MiOXSYS in males with abnormal semen. Asian J. Androl. 2019, 21, 565. [Google Scholar] [CrossRef]
- Aktan, G.; Doğru-Abbasoğlu, S.; Küçükgergin, C.; Kadıoğlu, A.; Özdemirler-Erata, G.; Koçak-Toker, N. Mystery of idiopathic male infertility: Is oxidative stress an actual risk? Fertil. Steril. 2013, 99, 1211–1215. [Google Scholar] [CrossRef]
- Doshi, S.B.; Sharma, R.K.; Agarwal, A.A. Oxidative Stress in Unexplained Male Infertility, in Unexplained Infertility: Pathophysiology, Evaluation and Treatment; Schattman, G.L., Esteves, S.C., Agarwal, A., Eds.; Springer: New York, NY, USA, 2015; pp. 81–89. [Google Scholar]
- Darbandi, M.; Darbandi, S.; Agarwal, A.; Baskaran, S.; Dutta, S.; Sengupta, P.; Khorshid, H.R.; Esteves, S.; Gilany, K.; Hedayati, M.; et al. Reactive oxygen species-induced alterations in H19-Igf2 methylation patterns, seminal plasma metabolites, and semen quality. J. Assist. Reprod. Genet. 2019, 36, 241–253. [Google Scholar] [CrossRef]
- Showell, M.G.; Mackenzie-Proctor, R.; Brown, J.; Yazdani, A.; Stankiewicz, M.T.; Hart, R.J. Antioxidants for male subfertility. Cochrane Database Syst. Rev. 2014, 12, CD007411. [Google Scholar] [CrossRef] [PubMed]
- Showell, M.G.; Mackenzie-Proctor, R.; Jordan, V.; Hart, R.J. Antioxidants for female subfertility. Cochrane Database Syst. Rev. 2017, 7, CD007807. [Google Scholar] [CrossRef] [PubMed]
- Busetto, G.M.; Agarwal, A.; Virmani, A.; Antonini, G.; Ragonesi, G.; Del Giudice, F.; Micic, S.; Gentile, V.; De Berardinis, E. Effect of metabolic and antioxidant supplementation on sperm parameters in oligo-astheno-teratozoospermia, with and without varicocele: A double-blind placebo-controlled study. Andrologia 2018, 50, e12927. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Safarinejad, M.R. Efficacy of coenzyme Q10 on semen parameters, sperm function and reproductive hormones in infertile men. J. Urol. 2009, 182, 237–248. [Google Scholar] [CrossRef] [PubMed]
- Tremellen, K.; Miari, G.; Froiland, D.; Thompson, J. A randomised control trial examining the effect of an antioxidant (Menevit) on pregnancy outcome during IVF-ICSI treatment. Aust. N. Z. J. Obstet. Gynaecol. 2007, 47, 216–221. [Google Scholar] [CrossRef]
- Agarwal, A.; Panner Selvam, M.K.; Samanta, L.; Vij, S.C.; Parekh, N.; Sabanegh, E.; Tadros, N.N.; Arafa, M.; Sharma, R. Effect of antioxidant supplementation on the sperm proteome of idiopathic infertile men. Antioxidants (Basel) 2019, 8, 488. [Google Scholar] [CrossRef] [Green Version]
- Weinbauer, G.F.; Behr, R.; Bergmann, M.; Nieschlag, E. Testicular cAMP responsive element modulator (CREM) protein is expressed in round spermatids but is absent or reduced in men with round spermatid maturation arrest. Mol. Hum. Reprod. 1998, 4, 9–15. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, A.; Said, T.M. Carnitines and male infertility. Reprod. Biomed. Online 2004, 8, 376–384. [Google Scholar] [CrossRef]
- Agarwal, A.; Roychoudhury, S.; Bjugstad, K.B.; Cho, C.L. Oxidation-reduction potential of semen: What is its role in the treatment of male infertility? Ther. Adv. Urol. 2016, 8, 302–318. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, A.; Henkel, R.; Sharma, R.; Tadros, N.N.; Sabanegh, E. Determination of seminal oxidation-reduction potential (ORP) as an easy and cost-effective clinical marker of male infertility. Andrologia 2018, 50. [Google Scholar] [CrossRef]
- Selvam, M.K.; Agarwal, A.; Finelli, R.; Douglas, C.M.; Henkel, R.; Gupta, S.; Sharma, R. Effect of oxidation-reduction potential on mitochondrial membrane potential and vitality of physiologically normal human spermatozoa. Fertil. Steril. 2019, 112, e375. [Google Scholar] [CrossRef]
- Mongioi, L.; Calogero, A.E.; Vicari, E.; Condorelli, R.A.; Russo, G.I.; Privitera, S.; Morgia, G.; La Vignera, S. The role of carnitine in male infertility. Andrology 2016, 4, 800–807. [Google Scholar] [CrossRef] [PubMed]
- Micic, S.; Lalic, N.; Djordjevic, D.; Bojanic, N.; Virmani, A.; Busetto, G.; Agarwal, A. Carnitines and essential nutrients ameliorate sperm vitality and DNA fragmentation index which also predict improvement in progressive sperm motility. Fertil. Steril. 2018, 110, e297. [Google Scholar] [CrossRef]
- Aitken, R.J.; De Iuliis, G.N. On the possible origins of DNA damage in human spermatozoa. Mol. Hum. Reprod. 2010, 16, 3–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agarwal, A.; Cho, C.L.; Esteves, S.C.; Majzoub, A. Reactive oxygen species and sperm DNA fragmentation. Transl. Androl. Urol. 2017, 6, S695–S696. [Google Scholar] [CrossRef] [PubMed]
- Zandieh, Z.; Vatannejad, A.; Doosti, M.; Zabihzadeh, S.; Haddadi, M.; Bajelan, L.; Rashidi, B.; Amanpour, S. Comparing reactive oxygen species and DNA fragmentation in semen samples of unexplained infertile and healthy fertile men. Ir. J. Med. Sci. 2018, 187, 657–662. [Google Scholar] [CrossRef]
- Simon, L.; Brunborg, G.; Stevenson, M.; Lutton, D.; McManus, J.; Lewis, S.E. Clinical significance of sperm DNA damage in assisted reproduction outcome. Hum. Reprod. 2010, 25, 1594–1608. [Google Scholar] [CrossRef] [Green Version]
- Santos, T.C.G.A.; Azzolini, A.; Oleinki, T.D.; Camillo, J.; Cedenho, A.P.; Lo Turco, E.G. The impact of sperm DNA fragmentation in fertilization rates and blastocyst development: A first look. Fertil. Steril. 2013, 100, S221. [Google Scholar] [CrossRef]
- Sedó, C.A.; Bilinski, M.; Lorenzi, D.; Uriondo, H.; Noblía, F.; Longobucco, V.; Lagar, E.V.; Nodar, F. Effect of sperm DNA fragmentation on embryo development: Clinical and biological aspects. JBRA Assist. Reprod. 2017, 21, 343–350. [Google Scholar] [CrossRef] [Green Version]
- Zheng, W.W.; Song, G.; Wang, Q.L.; Liu, S.W.; Zhu, X.L.; Deng, S.M.; Zhong, A.; Tan, Y.M.; Tan, Y. Sperm DNA damage has a negative effect on early embryonic development following in vitro fertilization. Asian J. Androl. 2018, 20, 75–79. [Google Scholar] [CrossRef]
- Bareh, G.M.; Jacoby, E.; Binkley, P.; Schenken, R.S.; Robinson, R.D. Sperm deoxyribonucleic acid fragmentation assessment in normozoospermic male partners of couples with unexplained recurrent pregnancy loss: A prospective study. Fertil. Steril. 2016, 105, 329–336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zini, A.; Gabriel, M.S.; Baazeem, A. Antioxidants and sperm DNA damage: A clinical perspective. J. Assist. Reprod. Genet. 2009, 26, 427–432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le Saint, C.; Kadoch, I.J.; Bissonnette, F.; Choi, J.; Zini, J.; San, M.; Gabriel, A.Z. Beneficial effect of antioxidant therapy on sperm DNA integrity is not associated with a similar effect on sperm chromatin integrity. AME Med. J. 2019, 4, 31. [Google Scholar] [CrossRef]
Parameters | Idiopathic Male Infertility | n | Unexplained Male Infertility | n |
---|---|---|---|---|
Age (years) | 36.4 ± 6.9 (36.0; 31.0–41.0) | 119 | 34.0 ± 4.8 (34.0; 31.0–36.0) | 29 |
BMI (Kg/m2) | 29.6 ± 4.6 (29.4; 26.7–32.9) | 119 | 29.7 ± 4.5 (28.7; 26.3–31.0) | 29 |
Right testis size (mL) | 14.2 ± 4.9 (13.1; 10.5–7.0) | 87 | 16.1 ± 4.6 (16.5; 13.5–19.1) | 24 |
Left testis size (mL) | 13.8 ± 4.5 (14.0; 11.0–6.5) | 87 | 15.3 ± 5.3 (13.9; 12.0–18.1) | 24 |
Wife’s age (years) | 31.6 ± 6.6 (31.0; 27.0–37.8) | 119 | 27.9 ± 3.6 (27.0; 25.8–30.3) | 29 |
Semen volume (mL) | 3.1 ± 1.6 (3.0; 1.6–4.0) | 119 | 3.0 ± 1.2 (3.0; 2.0–4.0) | 29 |
Sperm concentration (106/mL) | 16.4 ± 17. 1 (11.0; 3.6–24.8) | 119 | 46.2 ± 34.3 (36.0; 24.3–53.3) | 29 |
Sperm viability (%) | 48.6 ± 17.7 (50.0; 36.0–60.0) | 76 | N/A | |
Total motility (%) | 30.2 ± 16.3 (30.0; 16.3–40.0) | 119 | 52.5 ± 8.3 (50.0; 45.0–60.0) | 29 |
Progressive motility (%) | 2.3 ± 5.5 (0.0; 0.0–0.0) | 119 | 10.9 ± 9.9 (10; 0.0–20.0) | 29 |
Normal morphology (%) | 2.2 ± 1.7 (2.0; 1.0–3.0) | 119 | 5.7 ± 2.5 (4.0; 4.0–7.0) | 29 |
SDF (%) | 43.5 ± 22.8 (42.0; 25.0–60.0) | 83 | 28.2 ± 17.5 (21.0; 14.5–47.3) | 29 |
ORP (mV/106 sperm/mL) | 12.4 ± 16.8 (5.5; 2.6–13.4) | 119 | 1.6 ± 1.1 (1.3; 0.8–2.3) | 29 |
Parameters | Before Treatment | n | After Treatment | n | Percent Change (Mean ± SEM) | p Value Wilcoxon Test |
---|---|---|---|---|---|---|
Semen volume (mL) | 3.1 ± 1.6 (3.0; 1.6–4.0) | 119 | 3.0 ± 1.4 (3.0; 2.0–3.5) | 119 | 8.3 ± 3.9 | 0.9055 |
Sperm concentration (106/mL) | 16.4 ± 17.1 (11.0; 3.6–24.8) | 119 | 25.5 ± 24.7 (17.0; 6.1–41.5) | 119 | 141.1 ± 35.8 | <0.0001 |
Sperm viability (%) | 48.6 ± 17.7 (50.0; 36.0–60.0) | 76 | 50.0 ± 18.2 (52.0; 43.3–61.3) | 49 | 15.8 ± 9.3 | 0.4812 |
Total motility (%) | 30.2 ± 16.3 (30.0; 16.3–40.0) | 119 | 35.1 ± 18.9 (40.0; 16.3–50.0) | 119 | 49.6 ± 13.9 | 0.0014 |
Progressive motility (%) | 2.3 ± 5.5 (0.0; 0.0–0.0) | 119 | 5.6 ± 7.8 (0.0; 0.0–10.0) | 119 | 31.4 ± 6.7 | <0.0001 |
Normal morphology (%) | 2.2 ± 1.7 (2.0; 1.0–3.0) | 119 | 4.1 ± 9.3 (3.0; 1.0–4.8) | 119 | 96.3 ± 22.5 | <0.0001 |
SDF (%) | 43.5 ± 22.8 (42.0; 25.0–60.0) | 83 | 34.3 ± 19.4 (28.0; 20.0–43.0) | 83 | −5.1 ± 6.4 | 0.0017 |
ORP (mV/106 sperm/mL) | 12.4 ± 16.8 (5.5; 2.6–13.4) | 119 | 7.4 ± 15.7 (2.2; 0.9–6.2) | 119 | −25.3 ± 10.9 | <0.0001 |
Parameters | Before Treatment | n | After Treatment | n | Percent Change (Mean ± SEM) | p Value Wilcoxon Test |
---|---|---|---|---|---|---|
Sperm concentration (106/mL) | 14.1 ± 15.6 (10.0; 3.1–19.0) | 108 | 23.1 ± 22.9 (14.0; 5.4–38.0) | 108 | 151.30 ± 39.3 | <0.0001 |
Total motility (%) | 30.2 ± 16.6 (30.0; 17.5–42.5) | 108 | 34.9 ± 19.4 (40.0; 15.0–50.0) | 108 | 51.3 ± 15.3 | 0.0043 |
Progressive motility (%) | 2.5 ± 5.7 (0.0; 0.0–0.0) | 108 | 5.7 ± 7.9 (0.0; 0.0–10.0) | 108 | 28.9 ± 7.2 | 0.0002 |
Normal morphology (%) | 2.2 ± 1.7 (2.0; 1.0–3.0) | 108 | 4.1 ± 9.7 (3.0; 1.0–4.5) | 108 | 92.1 ± 23.3 | <0.0001 |
SDF (%) | 43.0 ± 21.9 (42.5; 25.0–61.5) | 67 | 37.1 ± 19.8 (30.0; 22.0–44.3) | 67 | −1.4 ± 7.2 | 0.0105 |
ORP (mV/106 sperm/mL) | 13.5 ± 17.2 (6.5; 3.6–14.5) | 108 | 8.0 ± 16.4 (2.5; 1.1–8.6) | 108 | −27.3 ± 11.9 | <0.0001 |
Parameters | Before Treatment | n | After Treatment | n | Percent Change (Mean ± SEM) | p Value Wilcoxon Test |
---|---|---|---|---|---|---|
Sperm concentration (106/mL) | 21.1 ± 16.9 (14.0; 11.0–27.0) | 51 | 32.9 ± 28.2 (27.0; 13.0-44.3) | 51 | 114.1 ± 47.0 | 0.0001 |
Total motility (%) | 25.5 ± 12.7 (25.0; 15.0–30.0) | 51 | 32.5 ± 18.1 (30.0; 16.3–50.0) | 51 | 48.2 ± 16.5 | 0.0061 |
Progressive motility (%) | 0.5 ± 1.8 (0.0; 0.0–0.0) | 51 | 5.5 ± 8.0 (0.0; 0.0–10.0) | 51 | 48.0 ± 11.5 | 0.0001 |
Normal morphology (%) | 1.8 ± 1.2 (2.0; 1.0–2.0) | 51 | 2.9 ± 2.3 (2.0; 1.0–4.0) | 51 | 89.1 ± 20.8 | 0.0015 |
SDF (%) | 56.5 ± 16.9 (55.0; 43.0–70.0) | 47 | 42.4 ± 21.2 (39.0; 27.3–56.0) | 47 | −24.2 ± 4.7 | <0.0001 |
ORP (mV/106 sperm/mL) | 6.1 ± 6.5 (4.2; 2.5–6.9) | 51 | 3.4 ± 8.4 (1.7; 0.9–2.9) | 51 | −24.8 ± 21.1 | <0.0001 |
Parameters | Before Treatment | n | After Treatment | n | Percent Change (Mean ± SEM) | p Value Wilcoxon Test |
---|---|---|---|---|---|---|
Sperm concentration (106/mL) | 19.9 ± 16.8 (13.0; 10.0–24.0) | 46 | 30.4 ± 25.9 (24.5; 12.0–42.0) | 46 | 119.6 ± 1.9 | 0.0008 |
Total motility (%) | 25.4 ± 12.8 (25.0; 15.0–30.0) | 46 | 32.7 ± 18.8 (32.5; 15.0–50.0) | 46 | 53.0 ± 18.5 | 0.0089 |
Progressive motility (%) | 0.5 ± 1.9 (0.0; 0.0–0.0) | 46 | 5.7 ± 8.2 (0.0; 0.0–10.0) | 46 | 48.9 ± 12.5 | 0.0002 |
Normal morphology (%) | 1.8 ± 1.2 (2.0; 1.0–2.0) | 46 | 2.9 ± 2.1 (3.0; 1.0–4.0) | 46 | 88.6 ± 21.7 | 0.0026 |
SDF (%) | 56.3 ± 16.5 (54.0; 43.0–70.0) | 42 | 44.0 ± 20.3 (40.0; 28.0–59.0) | 42 | −20.5 ± 4.8 | 0.0002 |
ORP (mV/106 sperm/mL) | 6.7 ± 6.6 (4.4; 2.8–7.5) | 46 | 3.7 ± 8.9 (1.9; 0.9–3.0) | 46 | −24.8 ± 23.3 | <0.0001 |
Parameters | Before Treatment (n = 29) | After Treatment (n = 29) | Percent Change (Mean ± SEM) | p Value Wilcoxon Test |
---|---|---|---|---|
Semen volume (mL) | 3.0 ± 1.2 (3.0; 2.0–4.0) | 3.1 ± 1.2 (3.0; 2.0–4.0) | 13.6 ± 8.8 | 0.4852 |
Sperm concentration (106/mL) | 46.2 ± 34.3 (36.0; 24.3–53.3) | 51.5 ± 28.9 (52.0; 29.5–65.2) | 29.4 ± 12.4 | 0.1872 |
Total motility (%) | 52.5 ± 8.3 (50.0; 45.0–60.0) | 52.2 ± 9.7 (52.0; 45.0–60.5) | 0.6 ± 3.7 | 0.6495 |
Progressive motility (%) | 10.9 ± 9.9 (10; 0.0–20.0) | 17.9 ± 11.5 (15.0; 10.0–32.0) | 46.3 ± 15.2 | 0.0024 |
Normal morphology (%) | 5.7 ± 2.5 (4.0; 4.0–7.0) | 6.7 ± 3.0 (6.0; 4.0–9.3) | 31.4 ± 13.9 | 0.1779 |
SDF (%) | 28.2 ± 17.5 (21.0; 14.5–47.3) | 23.0 ± 11.6 (20.0; 15.8–28.3) | −5.9 ± 8.3 | 0.0306 |
ORP (mV/106 sperm/mL) | 1.6 ± 1.1 (1.3; 0.8–2.3) | 1.1 ± 0.9 (0.9; 0.5–1.4) | −19.6 ± 11.7 | 0.0168 |
Group | Category | Number of Patients (Percentage) | ||
---|---|---|---|---|
Before Treatment | After Treatment | p-Value McNemar Test | ||
Idiopathic male infertility | High ORP a | 108 (90.8%) | 75 (63.0%) | <0.0001 |
High SDF b | 47 (60.3%) | 35 (44.9%) | 0.0227 | |
Unexplained male infertility | High ORP a | 14 (50.0%) | 8 (28.6%) | 0.1796 |
High SDF b | 10 (34.5%) | 5 (17.2%) | 0.0625 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arafa, M.; Agarwal, A.; Majzoub, A.; Panner Selvam, M.K.; Baskaran, S.; Henkel, R.; Elbardisi, H. Efficacy of Antioxidant Supplementation on Conventional and Advanced Sperm Function Tests in Patients with Idiopathic Male Infertility. Antioxidants 2020, 9, 219. https://doi.org/10.3390/antiox9030219
Arafa M, Agarwal A, Majzoub A, Panner Selvam MK, Baskaran S, Henkel R, Elbardisi H. Efficacy of Antioxidant Supplementation on Conventional and Advanced Sperm Function Tests in Patients with Idiopathic Male Infertility. Antioxidants. 2020; 9(3):219. https://doi.org/10.3390/antiox9030219
Chicago/Turabian StyleArafa, Mohamed, Ashok Agarwal, Ahmad Majzoub, Manesh Kumar Panner Selvam, Saradha Baskaran, Ralf Henkel, and Haitham Elbardisi. 2020. "Efficacy of Antioxidant Supplementation on Conventional and Advanced Sperm Function Tests in Patients with Idiopathic Male Infertility" Antioxidants 9, no. 3: 219. https://doi.org/10.3390/antiox9030219
APA StyleArafa, M., Agarwal, A., Majzoub, A., Panner Selvam, M. K., Baskaran, S., Henkel, R., & Elbardisi, H. (2020). Efficacy of Antioxidant Supplementation on Conventional and Advanced Sperm Function Tests in Patients with Idiopathic Male Infertility. Antioxidants, 9(3), 219. https://doi.org/10.3390/antiox9030219