Variations in Anthocyanin Profiles and Antioxidant Activity of 12 Genotypes of Mulberry (Morus spp.) Fruits and Their Changes during Processing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mulberry Fruit Samples
2.2. Chemicals and Reagents
2.3. Determination of Soluble Solid Contents and Color of Mulberry Fruit Juice
2.4. Analysis of TPC, TFC, and Antioxidant Activities
2.5. Analysis of Anthocyanin Composition in Mulberry Fruits Using HPLC
2.6. Identification of Anthocyanins by UHPLC-(ESI)-qTOF
2.7. Determination of Anthocyanin Composition in Mulberry Syrup
2.8. Statistical Analysis
3. Results and Discussion
3.1. Soluble Solid Contents and Color of Mulberry Fruit Juice
3.2. Antioxidant Activities, TPC, and TFC in Mulberry Fruits
3.3. Anthocyanin Composition of Mulberries Determined by HPLC
3.4. Determination of Anthocyanins in Mulberry Fruits Using UHPLC-(ESI)-qTOF
3.5. Principal Component Analysis and Heatmap Based on Mulberry Anthocyanins Determined by UHPLC-(ESI)-qTOF
3.6. Pearson’s Correlation between Anthocyanin Compounds and Antioxidant Activities
3.7. Antioxidant Activity, TPC, TFC, and Anthocyanin Composition of Mulberry Syrup
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Riche, D.M.; Riche, K.D.; East, H.E.; Barrett, E.K.; May, W.L. Impact of mulberry leaf extract on type 2 diabetes (Mul-DM): A randomized, placebo-controlled pilot study. Complement. Med. 2017, 32, 105–108. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xiang, L.; Wang, C.; Tang, C.; He, X. Antidiabetic and antioxidant effects and phytochemicals of mulberry fruit (Morus alba L.) polyphenol enhanced extract. PLoS ONE 2013, 8, e71144. [Google Scholar] [CrossRef] [PubMed]
- Bae, S.H.; Suh, H.J. Antioxidant activities of five different mulberry cultivars in Korea. Lwt-Food Sci. Technol. 2007, 40, 955–962. [Google Scholar] [CrossRef]
- Park, J.-H.; Choi, J.-H.; Hong, S.-I.; Jeong, M.-C.; Kim, D. Changes in quality of mulberry depending on distribution and storage temperature. Korean J. Food Preserv. 2013, 20, 141–150. [Google Scholar] [CrossRef] [Green Version]
- Veberic, R.; Slatnar, A.; Bizjak, J.; Stampar, F.; Mikulic-Petkovsek, M. Anthocyanin composition of different wild and cultivated berry species. Lwt-Food Sci. Technol. 2015, 60, 509–517. [Google Scholar] [CrossRef]
- Edirisinghe, I.; Banaszewski, K.; Cappozzo, J.; Sandhya, K.; Ellis, C.L.; Tadapaneni, R.; Kappagoda, C.T.; Burton-Freeman, B.M. Strawberry anthocyanin and its association with postprandial inflammation and insulin. Br. J. Nutr. 2011, 106, 913–922. [Google Scholar] [CrossRef]
- Hu, Y.J.; Deng, L.Q.; Chen, J.W.; Zhou, S.Y.; Liu, S.; Fu, Y.F.; Yang, C.X.; Liao, Z.H.; Chen, M. An analytical pipeline to compare and characterise the anthocyanin antioxidant activities of purple sweet potato cultivars. Food Chem. 2016, 194, 46–54. [Google Scholar] [CrossRef]
- Tian, Q.G.; Giusti, M.M.; Stoner, G.D.; Schwartz, S.J. Characterization of a new anthocyanin in black raspberries (Rubus occidentalis) by liquid chromatography electrospray ionization tandem mass spectrometry. Food Chem. 2006, 94, 465–468. [Google Scholar] [CrossRef]
- Kim, I.; Lee, J. Comparison of different extraction solvents and sonication times for characterization of antioxidant activity and polyphenol composition in mulberry (Morus alba L.). Appl. Biol. Chem. 2017, 60, 509–517. [Google Scholar] [CrossRef]
- Kim, H.; Kim, S.L. Identification of C3G (cyanidin-3-glucoside) from mulberry fruits and quantification with different varieties. Korean J. Sericult. Sci. 2003, 45, 90–95. [Google Scholar]
- You, Q.; Wang, B.; Chen, F.; Huang, Z.; Wang, X.; Luo, P.G. Comparison of anthocyanins and phenolics in organically and conventionally grown blueberries in selected cultivars. Food Chem. 2011, 125, 201–208. [Google Scholar] [CrossRef]
- Dincer, C.; Tontul, I.; Topuz, A. A comparative study of black mulberry juice concentrates by thermal evaporation and osmotic distillation as influenced by storage. Innov. Food Sci. Emerg. 2016, 38, 57–64. [Google Scholar] [CrossRef]
- You, Y.; Li, N.; Han, X.; Guo, J.; Zhao, Y.; Liu, G.; Huang, W.; Zhan, J. Influence of different sterilization treatments on the color and anthocyanin contents of mulberry juice during refrigerated storage. Innov. Food Sci. Emerg. 2018, 48, 1–10. [Google Scholar] [CrossRef]
- Ercisli, S.; Orhan, E. Chemical composition of white (Morus alba), red (Morus rubra) and black (Morus nigra) mulberry fruits. Food Chem. 2007, 103, 1380–1384. [Google Scholar] [CrossRef]
- Gungor, N.; Sengul, M. Antioxidant activity, total phenolic content and selected physicochemical properties of white mulberry (Morus alba L.) fruits. Int. J. Food Prop. 2008, 11, 44–52. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.S.; Xu, Y.J.; Wu, J.J.; Xiao, G.S.; Fu, M.Q.; Zhang, Y.S. Effect of ultra-high pressure homogenisation processing on phenolic compounds, antioxidant capacity and anti-glucosidase of mulberry juice. Food Chem. 2014, 153, 114–120. [Google Scholar] [CrossRef]
- Du, Q.; Zheng, J.; Xu, Y. Composition of anthocyanins in mulberry and their antioxidant activity. J. Food Compos. Anal. 2008, 21, 390–395. [Google Scholar] [CrossRef]
- Chen, L.; Xin, X.L.; Yuan, Q.P.; Su, D.H.; Liu, W. Phytochemical properties and antioxidant capacities of various colored berries. J. Sci. Food Agric. 2014, 94, 180–188. [Google Scholar] [CrossRef]
- Natic, M.M.; Dabic, D.C.; Papetti, A.; Aksic, M.M.F.; Ognjanov, V.; Ljubojevic, M.; Tesic, Z.L. Analysis and characterisation of phytochemicals in mulberry (Morus alba L.) fruits grown in Vojvodina, North Serbia. Food Chem. 2015, 171, 128–136. [Google Scholar] [CrossRef]
- Wang, X.; Wang, S.J.; Cai, Z.W. The latest developments and applications of mass spectrometry in food-safety and quality analysis. Trac Trend Anal. Chem 2013, 52, 170–185. [Google Scholar] [CrossRef]
- Ceymann, M.; Arrigoni, E.; Scharer, H.; Nising, A.B.; Hurrell, R.F. Identification of apples rich in health-promoting flavan-3-ols and phenolic acids by measuring the polyphenol profile. J. Food Compos. Anal. 2012, 26, 128–135. [Google Scholar] [CrossRef]
- Moreno, M.I.N.; Isla, M.I.; Sampietro, A.R.; Vattuone, M.A. Comparison of the free radical-scavenging activity of propolis from several regions of Argentina. J. Ethnopharmacol. 2000, 71, 109–114. [Google Scholar] [CrossRef]
- Korea Food and Drug Administration (KFDA). Korea Food and Drug Administration Health Supplement Food Code; KFDA: Osong, Korea, 2017. [Google Scholar]
- Cosmulescu, S.; Trandafir, I.; Nour, V.; Botu, M. Total phenolic, flavonoid distribution and antioxidant capacity in skin, pulp and fruit extracts of plum cultivars. J. Food Biochem. 2015, 39, 64–69. [Google Scholar] [CrossRef]
- Kim, E.-J.; Lee, H.-J.; Kim, H.-J.; Nam, H.-S.; Lee, M.-K.; Kim, H.-Y.; Lee, J.-H.; Kang, Y.-S.; Lee, J.-O.; Kim, H.-Y. Comparison of colorimetric methods for the determination of flavonoid in propolis extract products. Korean J. Food Sci. Technol. 2005, 37, 918–921. [Google Scholar]
- Pękal, A.; Pyrzynska, K. Evaluation of aluminium complexation reaction for flavonoid content assay. Food Anal. Methods 2014, 7, 1776–1782. [Google Scholar] [CrossRef] [Green Version]
- Vieira, F.G.K.; Borges, G.D.C.; Copetti, C.; Di Pietro, P.F.; Nunes, E.D.; Fett, R. Phenolic compounds and antioxidant activity of the apple flesh and peel of eleven cultivars grown in Brazil. Sci. Hortic. 2011, 128, 261–266. [Google Scholar] [CrossRef]
- Thaipong, K.; Boonprakob, U.; Crosby, K.; Cisneros-Zevallos, L.; Byrne, D.H. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J. Food Compos. Anal. 2006, 19, 669–675. [Google Scholar] [CrossRef]
- Lee, J.; Ebeler, S.E.; Zweigenbaum, J.A.; Mitchell, A.E. UHPLC-(ESI)QTOF MS/MS Profiling of quercetin metabolites in human plasma postconsumption of applesauce enriched with apple peel and onion. J. Agric. Food Chem. 2012, 60, 8510–8520. [Google Scholar] [CrossRef]
- Mahmood, T.; Anwar, F.; Abbas, M.; Boyce, M.C.; Saari, N. Compositional variation in sugars and organic acids at different maturity stages in selected small fruits from Pakistan. Int. J. Mol. Sci. 2012, 13, 1380–1392. [Google Scholar] [CrossRef]
- Chen, H.; Chen, J.; Yang, H.; Chen, W.; Gao, H.; Lu, W. Variation in total anthocyanin, phenolic contents, antioxidant enzyme and antioxidant capacity among different mulberry (Morus sp.) cultivars in China. Sci. Hortic. 2016, 213, 186–192. [Google Scholar] [CrossRef]
- Choi, S.J.; Jeon, H.; Lee, C.U.; Yoon, S.H.; Bae, S.K.; Chin, Y.W.; Yoon, K.D. Isolation and development of quantification method for cyanidin-3-glucoside and cyanidin-3-rutinoside in mulberry fruit by high-performance countercurrent chromatography and high-performance liquid chromatography. Nat. Prod. 2015, 21, 20–24. [Google Scholar]
- Pawlowska, A.M.; Oleszek, W.; Braca, A. Quali-quantitative analyses of flavonoids of Morus nigra L. and Morus alba L. (Moraceae) fruits. J. Agric. Food Chem. 2008, 56, 3377–3380. [Google Scholar] [CrossRef] [PubMed]
- Bao, T.; Xu, Y.; Gowd, V.; Zhao, J.C.; Xie, J.H.; Liang, W.K.; Chen, W. Systematic study on phytochemicals and antioxidant activity of some new and common mulberry cultivars in China. J. Funct. Foods 2016, 25, 537–547. [Google Scholar] [CrossRef]
- Jin, Q.; Yang, J.; Ma, L.; Cai, J.; Li, J. Comparison of polyphenol profile and inhibitory activities against oxidation and α-glucosidase in mulberry (genus Morus) cultivars from China. J. Food Sci. 2015, 80, C2440–C2451. [Google Scholar] [CrossRef]
- Zou, T.B.; Wang, D.L.; Guo, H.H.; Zhu, Y.N.; Luo, X.Q.; Liu, F.Q.; Ling, W.H. Optimization of microwave-assisted extraction of anthocyanins from mulberry and identification of anthocyanins in extract using HPLC-ESI-MS. J. Food Sci. 2012, 77, C46–C50. [Google Scholar] [CrossRef]
- Karakaya, S.; Simsek, S.; Eker, A.T.; Pineda-Vadillo, C.; Dupont, D.; Perez, B.; Viadel, B.; Sanz-Buenhombre, M.; Rodriguez, A.G.; Kertész, Z.J. Stability and bioaccessibility of anthocyanins in bakery products enriched with anthocyanins. Food Funct 2016, 7, 3488–3496. [Google Scholar] [CrossRef]
- Sui, X.; Zhang, Y.; Zhou, W. Bread fortified with anthocyanin-rich extract from black rice as nutraceutical sources: Its quality attributes and in vitro digestibility. Food Chem. 2016, 196, 910–916. [Google Scholar] [CrossRef]
- Kähkönen, M.P.; Heinonen, M. Antioxidant activity of anthocyanins and their aglycons. J. Agric. Food Chem. 2003, 51, 628–633. [Google Scholar] [CrossRef]
- Hubbermann, E.M.; Heins, A.; Stöckmann, H.; Schwarz, K. Influence of acids, salt, sugars and hydrocolloids on the colour stability of anthocyanin rich black currant and elderberry concentrates. Eur. Food Res. Technol. 2006, 223, 83–90. [Google Scholar] [CrossRef]
- Ekici, L.; Simsek, Z.; Ozturk, I.; Sagdic, O.; Yetim, H. Effects of temperature, time, and pH on the stability of anthocyanin extracts: Prediction of total anthocyanin content using nonlinear models. Food Anal. Methods 2014, 7, 1328–1336. [Google Scholar] [CrossRef]
- Skrede, G.; Wrolstad, R.; Lea, P.; Enersen, G. Color stability of strawberry and blackcurrant syrups. J. Food Sci. 1992, 57, 172–177. [Google Scholar] [CrossRef]
- Mahdavi, S.A.; Jafari, S.M.; Assadpour, E.; Ghorbani, M. Storage stability of encapsulated barberry’s anthocyanin and its application in jelly formulation. J. Food Eng. 2016, 181, 59–66. [Google Scholar] [CrossRef]
Cultivar | Breeding Year | Genetic Information | Species | Fruit Weight (g) | Soluble Solid Content (°Brix) |
---|---|---|---|---|---|
Daedangsang | unknown | unknown | Morus Lhou(Ser.) Koidz. | 2.57 ± 0.23 | 10.5 ± 0.1 |
Daebung | 2007 | Daedosang 4X | Morus Lhou(Ser.) Koidz. | 2.64 ± 0.18 | 13.8 ± 0.0 |
Daeja | 2007 | Kuksang No. 20 4X | Morus Lhou(Ser.) Koidz. | 2.46 ± 0.23 | 15.0 ± 0.1 |
Daesung | 2005 | Ficux 4X | Morus Lhou(Ser.) Koidz. | 3.20 ± 0.33 | 11.4 ± 0.1 |
Sangchon | 2011 | unknown | Morus Alba L. | 2.59 ± 0.20 | 17.2 ± 0.0 |
Suwon | 1983 | unknown | Morus Alba L. | 2.67 ± 0.14 | 18.3 ± 0.1 |
Hasusang | 1883 | unknown | Morus Alba L. | 1.70 ±0.29 | 13.8 ± 0.0 |
Iksu | unknown | unknown | Morus Alba L. | 2.82 ± 0.23 | 12.3 ± 0.1 |
Suseong | 1989 | Jamsang No.101 | Morus Alba L. | 2.45 ± 0.21 | 12.5 ± 0.1 |
Sangil | 1992 | Chungil x Kuksang No.21 | Morus Alba L. | 1.82 ± 0.22 | 12.5 ± 0.1 |
Shimgang | 2015 | unknown | Morus Microphylla Buckl. | 2.71 ± 0.16 | 12.4 ± 0.0 |
Chungsu | unknown | unknown | Morus spp. | 2.63 ± 0.23 | 12.5 ± 0.0 |
Sample | DPPH | FRAP | TPC | TFC |
---|---|---|---|---|
Daedangsang | 24.40 ± 1.01 e | 48.89 ± 6.87 cd | 24.92 ± 1.18 b | 2.45 ± 0.50 bc |
Daebung | 27.14 ± 0.81 d | 47.33 ± 4.15 cd | 24.62 ± 2.83 bc | 2.32 ± 0.40 bcd |
Daeja | 5.85 ± 0.77 j | 1.33 ± 0.12 g | 5.68 ± 0.20 g | 0.65 ± 0.06 f |
Daesung | 29.11 ± 1.65 cd | 50.11 ± 6.31 c | 26.40 ± 1.07 b | 2.34 ± 0.61 bcd |
Sangchon | 13.47 ± 0.94 h | 26.05 ± 2.81 e | 19.86 ± 0.91 de | 1.38 ± 0.28 ef |
Suwon | 17.91 ± 1.26 g | 40.76 ± 2.42 cd | 19.52 ± 0.79 e | 1.64 ± 0.31 cde |
Hasusang | 9.57 ± 1.03 i | 10.60 ± 1.42 f | 9.46 ± 0.17 f | 1.54 ± 0.34 de |
Iksu | 37.45 ± 2.09 b | 82.87 ± 6.69 a | 40.46 ± 1.81 a | 3.49 ± 0.53 a |
Suseong | 22.65 ± 2.38 e | 39.98 ± 5.06 d | 22.01 ± 0.69 cde | 2.19 ± 0.42 bcd |
Sangil | 20.25 ± 1.25 f | 44.28 ± 5.39 cd | 22.28 ± 0.92 cd | 2.52 ± 0.40 b |
Shimgang | 40.73 ± 1.06 a | 73.03 ± 7.08 b | 38.31 ± 3.08 a | 3.70 ± 0.59 a |
Chungsu | 31.21 ± 0.80 c | 49.28 ± 4.98 cd | 26.59 ± 0.69 b | 2.29 ± 0.44 bcd |
Cultivars | Cyanidin-3-O-Glucoside | Cyanidin-3-O-Rutinoside | Pelargonidin-3-O-Glucoside | Sum |
---|---|---|---|---|
Daedangsang | 10.08 ± 0.46 ef | 4.81 ± 0.20 c | 0.26 ± 0.00 b | 15.16 ± 0.65 d |
Daebung | 11.87 ± 0.03 e | 4.44 ± 0.00 d | 0.05 ± 0.00 e | 16.36 ± 0.03 c |
Daeja | 0.33 ± 0.00 j | 0.18 ± 0.00 i | n.d. | 0.51 ± 0.00 h |
Daesung | 12.03 ± 0.22 de | 4.69 ± 0.08 c | 0.09 ± 0.00 d | 16.81 ± 0.30 c |
Sangchon | 5.35 ± 0.11 i | 2.15 ± 0.03 h | 0.04 ± 0.02 e | 7.54 ± 0.16 g |
Suwon | 8.11 ± 0.18 h | 2.95 ± 0.06 g | 0.11 ± 0.00 cd | 11.17 ± 0.24 f |
Hasusang | 0.62 ± 0.01 j | 0.33 ± 0.00 i | n.d. | 0.95 ± 0.01 h |
Iksu | 19.51 ± 0.00 a | 8.58 ± 0.00 a | 0.51 ± 0.00 a | 28.61 ± 0.00 a |
Suseong | 8.91 ± 0.10 g | 4.37 ± 0.03 d | 0.11 ± 0.01 c | 13.40 ± 0.12 e |
Sangil | 9.40 ± 0.05 g | 3.65 ± 0.02 f | 0.08 ± 0.03 d | 13.13 ± 0.03 e |
Shimgang | 18.92 ± 0.38 b | 8.65 ± 0.16 a | 0.48 ± 0.01 a | 28.05 ± 0.55 a |
Chungsu | 12.57 ± 0.11 c | 5.08 ± 0.04 b | 0.27 ± 0.01 b | 17.92 ± 0.16 b |
Peak no. | Code | RTa (min) | Compound Assigned | Molecular Formula | Predicted MS1 m/z | Fragment m/z | Error (ppm) |
---|---|---|---|---|---|---|---|
1 | C1 | 4.2 | Cyanidin hexose deoxyhexose hexoside | C33H41O20 | 757.2186 | 595 [M – h (–162) + H] + 449 [M – h (–162) – dh (–146) + H] + 287 [M – h (–162) – dh (–146) – h (–162) + H] + | −1.95 |
2 | C2 | 5.7 | Cyanidin dihexoside | C27H31O16 | 611.1607 | 449 [M – h (–162) + H] + 287 [M – h (–162) – h (–162) + H] + | −0.01 |
3 | D1 | 5.8 | Delphinidin dihexoside | C27H31O17 | 627.1556 | 465 [M – h (–162) + H] + 303 [M – h (–162) – h (–162) + H] + | −0.09 |
4 | C3 | 6.4 | Cyanidin 3-O-glucoside* | C21H21O11 | 449.1078 | 287 [M – h (–162) + H] + | −0.22 |
5 | C4 | 7.2 | Cyanidin 3-O-rutinoside* | C27H31O15 | 595.1657 | 449 [M – dh (–146) + H] + 287 [M – dh (–146) – h (–162) + H] + | −1.99 |
6 | P1 | 7.8 | Pelargonidin 3-O-glucoside* | C21H21O10 | 433.1129 | 271 [M – h (–162) + H] + | 0.27 |
7 | M1 | 8.6 | Malvidin hexoside | C23H25O12 | 493.1341 | 331 [M – h (–162) + H] + | 0.28 |
8 | P2 | 8.6 | Pelargonidin deoxyhexose hexoside | C27H31O14 | 579.1708 | 433 [M – dh (–146) + H] + 271 [M – dh (–146) – h (–162) + H] + | −0.04 |
9 | Po1 | 8.8 | Peonidin hexoside | C22H23O11 | 463.1235 | 301 [M – h (–162) + H] + | −0.68 |
10 | C5 | 8.9 | Cyanidin malonyl hexose hexoside | C30H33O19 | 697.1611 | 535 [M – h (–162) + H] + 449 [M – h (–162) – mal (–86) + H] + 287 [M – h (–162) – mal (–86) – h (–162) + H] + | −0.12 |
11 | C6 | 9.3 | Cyanidin pentoside | C20H19O10 | 419.0973 | 287 [M – p (–132) + H] + | −0.22 |
12 | Po2 | 9.6 | Peonidin deoxyhexose hexoside | C28H33O15 | 609.1814 | 463 [M – dh (–146) + H] + 301 [M – dh (–146) – h (–162) + H] + | 0.05 |
13 | C7 | 10.6 | Cyanidin malonyl hexoside | C24H23O14 | 535.1082 | 287 [M – h (–162) – mal (–86) + H] + | 0.56 |
14 | Pe1 | 10.7 | Petunidin deoxyhexose hexoside | C28H33O16 | 625.1763 | 479 [M – dh (–146) + H] + 317 [M – dh (–146) – h (–162) + H] + | −1.23 |
15 | C8 | 11.4 | Cyanidin deoxyhexoside | C21H21O10 | 433.1129 | 287 [M – dh (–146) + H] + | −0.59 |
16 | D2 | 11.5 | Delphinidin deoxyhexose hexoside | C27H31O16 | 611.1607 | 465 [M – dh (–146) + H] + 303 [M – dh (–146) – h (–162) + H] + | 0.30 |
Cyanidin | Delphinidin | Pelargonidin | Peonidin | Malvidin | Petunidin | TPC | TFC | DPPH | FRAP | L | a | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
b | −0.279 | −0.475 | −0.487 | −0.34 | −0.214 | −0.234 | −0.357 | −0.41 | −0.309 | −0.397 | −0.911** | 0.771** |
a | −0.197 | −0.296 | −0.361 | −0.335 | −0.273 | −0.139 | −0.217 | −0.229 | −0.163 | −0.249 | −0.955** | |
L | 0.188 | 0.345 | 0.392 | 0.289 | 0.203 | 0.15 | 0.229 | 0.276 | 0.188 | 0.274 | ||
FRAP | 0.970** | 0.937** | 0.884** | 0.876** | 0.866** | 0.809** | 0.985** | 0.945** | 0.956** | |||
DPPH | 0.968** | 0.915** | 0.872** | 0.810** | 0.879** | 0.875** | 0.960** | 0.934** | ||||
TFC | 0.927** | 0.971** | 0.877** | 0.892** | 0.756** | 0.827** | 0.941** | |||||
TPC | 0.965** | 0.940** | 0.899** | 0.880** | 0.893** | 0.846** | ||||||
Petunidin | 0.784** | 0.894** | 0.928** | 0.746** | 0.826** | |||||||
Malvidin | 0.872** | 0.772** | 0.828** | 0.756** | ||||||||
Peonidin | 0.854** | 0.882** | 0.802** | |||||||||
Pelargonidin | 0.836** | 0.954** | ||||||||||
Delphinidin | 0.889** |
DPPH | TPC | TFC | Cyanidin-3-O-glucoside | Cyanidin-3-O-rutinoside | Pelargonidin-3-O-glucoside | Sum of Anthocyanins | ||
---|---|---|---|---|---|---|---|---|
Mulberry fruit | 3.26 ± 0.26 A | 3.49 ± 0.20 A | 0.38 ± 0.04 A | 1312.04 ± 62.82 A | 775.17 ± 34.27 A | 24.83 ± 0.32 A | 2112.04 ± 96.77 A | |
Solid residues | Citric acid 0% | 1.10 ± 0.04 D | 1.25 ± 0.06 D | 0.20 ± 0.03 C | 213.65 ± 6.80 C | 98.59 ± 2.11 C | n.d. | 312.25 ± 8.90 C |
Citric acid 0.2% | 1.30 ± 0.07 C | 1.42 ± 0.06 C | 0.24 ± 0.04 C | 361.69 ± 20.53 B | 170.89 ± 16.35 B | 7.00 ± 0.36 B | 539.27 ± 37.24 B | |
Citric acid 0.3% | 1.59 ± 0.04 B | 1.64 ± 0.12 B | 0.31 ± 0.04 B | 410.97 ± 20.46 B | 186.50 ± 9.13 B | 7.32 ± 0.38 B | 604.79 ± 29.97 B | |
Syrup | Citric acid 0% | 0.43 ± 0.03 b | 0.42 ± 0.03 b | 0.08 ± 0.02 c | 81.23 ± 5.57 a | 72.99 ± 3.24 a | n.d. | 147.23 ± 2.81 a |
Citric acid 0.2% | 0.47 ± 0.02 b | 0.47 ± 0.03 ab | 0.11 ± 0.01 b | 84.81 ± 7.98 a | 74.81 ± 2.16 a | n.d. | 162.31 ± 4.22 a | |
Citric acid 0.3% | 0.78 ± 0.16 a | 0.57 ± 0.06 a | 0.15 ± 0.02 a | 104.80 ± 10.83 a | 77.02 ± 2.68 a | n.d. | 171.71 ± 5.54 a |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, I.; Lee, J. Variations in Anthocyanin Profiles and Antioxidant Activity of 12 Genotypes of Mulberry (Morus spp.) Fruits and Their Changes during Processing. Antioxidants 2020, 9, 242. https://doi.org/10.3390/antiox9030242
Kim I, Lee J. Variations in Anthocyanin Profiles and Antioxidant Activity of 12 Genotypes of Mulberry (Morus spp.) Fruits and Their Changes during Processing. Antioxidants. 2020; 9(3):242. https://doi.org/10.3390/antiox9030242
Chicago/Turabian StyleKim, Inhwan, and Jihyun Lee. 2020. "Variations in Anthocyanin Profiles and Antioxidant Activity of 12 Genotypes of Mulberry (Morus spp.) Fruits and Their Changes during Processing" Antioxidants 9, no. 3: 242. https://doi.org/10.3390/antiox9030242
APA StyleKim, I., & Lee, J. (2020). Variations in Anthocyanin Profiles and Antioxidant Activity of 12 Genotypes of Mulberry (Morus spp.) Fruits and Their Changes during Processing. Antioxidants, 9(3), 242. https://doi.org/10.3390/antiox9030242