The Interaction between Antioxidants Content and Allergenic Potency of Different Raspberry Cultivars
Abstract
:1. Introduction
2. Materials and Methods
2.1. Origin of the Fruits
2.2. Plant Material Preparation
2.3. Polyphenols Separation and Identification
2.4. Anthocyanin Separation and Identification
2.5. Allergenic Potential Analysis
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Braidy, N.; Behzad, S.; Habtemariam, S.; Ahmed, T.; Daglia, M.; Mohammad, N.S.; Sobarzo-Sanchez, E.; Fazel, N.S. Neuroprotective effects of citrus fruit-derived flavonoids, nobiletin and tangeretin in Alzheimer’s and Parkinson’s disease. CNS Neurol. Disord. Dr. 2017, 16, 387–397. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Fang, Y.-C.; Gao, Z.-H.; Zhang, C.; Xie, S.-Y. Higher intake of fruits, vegetables or their fiber reduces the risk of type 2 diabetes: A meta-analysis. J. Diabetes Investig. 2016, 7, 56–69. [Google Scholar] [CrossRef]
- Aune, D.; Giovannucci, E.; Boffetta, P.; Fadnes, L.T.; Keum, N.N.; Norat, T.; Greenwood, D.C.; Riboli, E.; Vatten, L.J.; Tonstad, S. Fruit and vegetable intake and the risk of cardiovascular disease, total cancer and all-cause mortality—A systematic review and dose response meta-analysis of prospective studies. Int. J. Epidemiol. 2014, 46, 1029–1056. [Google Scholar]
- Ellwood, L.; Gizemnur, T.; Zuhal, B.; Ritin, F. Effectiveness of flavonoid rich fruits for hypertension in adults a systematic review protocol. JBI Database Syst. Rev. Implement. Rep. 2018, 16, 2103–2108. [Google Scholar] [CrossRef] [PubMed]
- Villani, A.; Wright, H.; Slater, G.; Buckley, J. A randomized controlled intervention study investigating the efficacy of carotenoid-rich fruits and vegetables and extra-virgin olive oil on attenuating sarcopenic symptomology in overweight and obese older adults during energy intake restriction: Protocol paper. BMC Geriatrics 2018, 18, 1–10. [Google Scholar]
- Council Regulation (EC) No 834/2007 of 28 June 2007 on Organic Production and Labelling of Organic Products and Repealing Regulation (EEC) No 2092/91. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32007R0834 (accessed on 20 February 2020).
- Yang, L.; Wen, K.-S.; Ruan, X.; Zhao, Y.-X.; Wei, F.; Wang, Q. Response of plant secondary metabolites to environmental factors. Molecues 2018, 23, 762. [Google Scholar] [CrossRef] [Green Version]
- Kazimierczak, R.; Hallmann, E.; Kowalska, K.; Rembiałkowska, E. Biocompounds content in organic and conventional raspberry fruits. Acta Fytotechn. Zootechn. 2015, 18, 40–42. [Google Scholar] [CrossRef]
- Dosanjh, A. Raspberry allergen and Rosaceae family member allergens: Clinical and cellular responses. J. Interferon Cytokine Res. 2019, 39, 273–282. [Google Scholar] [CrossRef]
- Shahali, Y.; Dadar, M. Plant food allergy: Influence of chemicals on plant allergens. Food Chem. Toxicol. 2019, 115, 365–374. [Google Scholar] [CrossRef]
- Cariñanos, P.; Delgado-Capel, M.; Maradiaga-Marína, F.; Beníteza, G. Considerations on the allergy-risks related to the consumption of fruits from urban trees in Mediterranean cities. Urban For. Urban Green. 2019, 45, doi. [Google Scholar] [CrossRef]
- Andersen, M.B.S.; Hall, S.; Dragsted, L.O. Identification of European allergy patterns to the allergen families pr-10, LTP, and profilin from Rosaceae fruits. Clin. Rev. Allergy Immunol. 2011, 41, 4–19. [Google Scholar] [CrossRef] [PubMed]
- Žiarovská, J.; Zeleňáková, L. Application of Genomic Data for PCR Screening of BET v 1 Conserved Sequence in Clinically Relevant Plant Species. In Systems Biology; InTech Open: Nitra, Slovak Republic, 2018; pp. 1–19. [Google Scholar]
- Muñoz, C.; Hoffmann, T.; Escobar, N.M.; Ludemann, F.; Botella, M.A.; Valpuesta, V.; Schwab, W. The strawberry fruit Fra a allergen functions in flavonoid biosynthesis. Mol. Plant. 2010, 3, 113–124. [Google Scholar] [CrossRef] [PubMed]
- Kinaciyan, T.; Nagl, B.; Faustmann, S.; Frommlet, F.; Kopp, S.; Wolkersdorfer, M.; Wöhrl, S.; Bastl, K.; Huber, H.; Berger, U.; et al. Efficacy and safety of 4 months of sublingual immunotherapy with recombinant Mal d 1 and Bet v 1 in patients with birch pollen–related apple allergy. J. Allergy Clin. Immunol. 2017, 141, 1002–1008. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kleine-Tebbe, J.; Ollert, M.; Radauer, C.; Jakob, T. Introduction to Molecular Allergology: Protein families, databases, and potential benefits. In Molecular Allergy Diagnosis; Springer: Berlin/Heidelberg, Germany, 2010; pp. 21–42. [Google Scholar]
- Mothes-Luksch, N.; Raith, M.; Stingl, G.; Focke-Tejkl, M.; Razzazi-Fazeli, E.; Zieglmayer, R.; Wöhrl, S.; Swoboda, I. Pru p 3, a marker allergen for lipid transfer protein sensitization also in Central Europe. Allergy 2017, 72, 1415–1418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, C.; Leung, P.S.C.; Todi, S.; Zadoorian, L. Definition of Allergens: Inhalants, Food and Insects Allergens. In Allergy and Asthma; Springer Nature: Cham, Switzerland, 2019; pp. 77–81. [Google Scholar]
- Hallmann, E.; Rozpara, E.; Słowianek, M.; Leszczyńska, J. The effect of organic and conventional farm management on the allergenic potency and bioactive compounds status of apricots (Prunus armeniaca L). Food Chem. 2019, 279, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Dóka, O.; Ficzek, G.; Bicanic, D.; Spruijt, R.; Luterotti, S.; Tóth, M.; Buijnsters, J.G.; Vegvari, G. Direct phytochemical techniques for rapid quantification of total anthocyanins content in sour cherry cultivars. Talanta 2011, 84, 341–346. [Google Scholar] [CrossRef]
- Borges, G.; Degeneve, A.; Mullen, W.; Crozier, A. Identification of flavonoid and phenolic antioxidants in black currants, blueberries, raspberries, red currants, and cranberries. J. Agric. Food Chem. 2010, 58, 3901–3909. [Google Scholar] [CrossRef]
- Zorenc, Z.; Veberic, R.; Koron, D.; Mikulic-Petkovsek, M. Impact of raspberry (Rubus idaeus L.) primocane tipping on fruit yield and quality. Not. Bot. Horti. Agrobo. 2017, 45, 417–424. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.K.; Kim, M.-Y.; Lee, K.-G. Categorization of fruits according to their content of polyphenols and vitamin C, antiradical activity, and quality parameters. J. Food Process. Pres. 2018, 42, 1–6. [Google Scholar] [CrossRef]
- Fernandes, F.C.; Domingues, V.F.; de Freitas, V.; Delerue-Matos, C.; Mateus, N. Strawberries from integrated pest management and organic farming: Phenolic composition and antioxidant properties. Food Chem. 2012, 134, 1926–1931. [Google Scholar] [CrossRef] [Green Version]
- Asami, D.K.; Hong, Y.J.; Barrett, D.M.; Mitchell, A.E. Comparison of the total phenolic and ascorbic acid content of freeze-dried and air-dried marionberry, strawberry, and corn grown using conventional, organic, and sustainable agricultural practices. J. Agric. Food Chem. 2003, 51, 1237–1241. [Google Scholar] [CrossRef] [PubMed]
- Crecente-Campo, J.; Nunes-Damaceno, M.; Romero-Rodríguez, M.A.; Vázquez-Odériz, M.L. Color, anthocyanin pigment, ascorbic acid and total phenolic compound determination in organic versus conventional strawberries (Fragaria x ananassa Duch, cv Selva). J. Food Comp. Anal. 2012, 28, 23–30. [Google Scholar] [CrossRef]
- Kazimierczak, R.; Hallmann, E.; Bąbała, J.; Rembiałkowska, E. The Content of Antioxidant Compounds in the Fruit of Selected Berry Species from Organic and Conventional Production Systems. In Selected Problems of Nutraceutical and Functional Food; MedPharm Polska: Wroclaw, Poland, 2011; pp. 21–27. [Google Scholar]
- Skupień, K.; Ochniam, I.; Grajkowski, J.; Krzywy-Gawrońska, E. Nutrients, antioxidants, and antioxidant activity of organically and conventionally grown raspberries. J. Appl. Bot. Food Qual. 2011, 84, 85–89. [Google Scholar]
- Tassoni, A.; Tango, N.; Ferri, M. Comparison of biogenic amine and polyphenol profiles of grape berries and wines obtained following conventional, organic and biodynamic agricultural and oenological practices. Food Chem. 2013, 139, 405–413. [Google Scholar] [CrossRef]
- Ornelas-Paz, J.J.; Yahia, E.M.; Ramírez-Bustamante, N.; Pérez-Martínez, J.D.; Escalante-Minakata, M.P.; Ibarra-Junquera, V.; Acosta-Muñiz, C.; Guerrero-Prieto, V.; Ochoa-Reyes, E. Physical attributes and chemical composition of organic strawberry fruit (Fragaria x ananassa Duch, Cv. Albion) at six stages of ripening. Food Chem. 2013, 138, 372–381. [Google Scholar] [CrossRef]
- De Ancos, B.; González, E.M.; Cano, M.P. Ellagic acid, vitamin C, and total phenolic contents and radical scavenging capacity affected by freezing and frozen storage in raspberry fruit. J. Agric. Food Chem. 2000, 48, 4565–4570. [Google Scholar] [CrossRef] [Green Version]
- Hallmann, E.; Piotrowska, A.; Świąder, K. The effect of organic practices on the bioactive compounds content in strawberry fruits. J. Res. Appl. Agric. Eng. 2016, 61, 176–179. [Google Scholar]
- Waśkiewicz, A.; Muzolf-Panek, M.; Goliński, P. Phenolic Content Changes in Plants under Salt Stress. In Ecophysiology and Responses of Plants under Salt Stress; Springer: London, UK, 2013; pp. 293–299. [Google Scholar]
- Cardeñosa, V.; Medrano, E.; Lorenzo, P.; Sánchez-Guerrero, M.C.; Cuevas, F.; Pradasa, I.; Moreno-Rojasa, J.M. Effects of salinity and nitrogen supply on the quality and health-related compounds of strawberry fruits (Fragaria × ananassa cv. Primoris). J. Sci. Food Agric. 2015, 95, 2924–2930. [Google Scholar] [CrossRef]
- Pavlović, A.V.; Papetti, A.; Zagorać, D.Č.D.; Gašić, U.M.; Mišić, D.M.; Tešić, Z.J.; Natić, M.M. Phenolics composition of leaf extracts of raspberry and blackberry cultivars grown in Serbia. Ind. Crop Prod. 2016, 87, 304–314. [Google Scholar] [CrossRef]
- Xie, Z.; Charles, M.T.; Fan, J.; Charlebois, D.; Khanizadeh, S.; Rolland, D.; Roussel, D.; Deschênesa, M.; Dubéa, C. Effects of preharvest ultraviolet-C irradiation on fruit phytochemical profiles and antioxidant capacity in three strawberry (Fragaria × ananassa Duch.) cultivars. J. Sci. Food Agric. 2015, 95, 2996–3002. [Google Scholar] [CrossRef]
- Josuttis, M.; Dietrich, H.; Treutter, D.; Will, F.; Linnemannstöns, L.; Krüger, E. Solar UVB response of bioactives in strawberry (Fragaria × ananassa Duch. L.): A comparison of protected and open-field cultivation. J. Agri. Food Chem. 2010, 58, 12692–12702. [Google Scholar] [CrossRef] [PubMed]
- Hjernø, K.; Alm, R.; Canbäck, B.; Matthiesen, R.; Trajkovski, K.; Björk, L.; Roepstorff, P.; Emanuelsson, C. Down-regulation of the strawberry Bet v1 homologous in the concert with the flavonoids biosynthesis pathway in colorless strawberry mutant. Proteomics 2006, 6, 1574–1587. [Google Scholar] [CrossRef] [PubMed]
- Franz-Oberdorf, K.; Eberlein, B.; Edelmann, K.; Bleicher, P.; Kurze, E.; Helm, D.; Ring, J.; Schwab, W. White-fruited strawberry genotypes are not per se hypoallergenic. Food Res. Int. 2017, 100, 748–756. [Google Scholar] [CrossRef] [PubMed]
- Zuidmeer, L.; Goldhahn, K.; Rona, R.J.; Gislason, D.; Madsen, C.; Summers, C.; Sodergren, E.; Dahlstrom, J.; Lindner, T.; Sigurdardottir, S.T.; et al. The prevalence of plant food allergies: A systematic review. J. Allergy Clin. Immunol. 2008, 121, 1210–1218. [Google Scholar] [CrossRef]
- Blair, A.; Ritz, B.; Wesseling, C.; Freeman, L.B. Pesticides and human health. Ann. Occup. Environ. Med. 2010, 1, 1–3. [Google Scholar] [CrossRef]
- Słowianek, M.; Skorupa, M.; Hallmann, E.; Rembiałkowska, E.; Leszczyńska, J. Allergenicity of tomatoes cultivated in organic and conventional systems. Plant Food Hum. Nutrit. 2016, 71, 35–41. [Google Scholar] [CrossRef]
- Kitagawa, M.; Moriyama, T.; Ito, H.; Ozasa, S.; Adachi, A.; Yasuda, J.; Ookura, T.; Inakuma, T.; Kasumi, T.; Ishiguro, Y.; et al. Reduction of allergenic proteins by the effect of the ripening inhibitor (rin) mutant gene in an F1 hybrid of the rin mutant tomato. Biosci. Biotechnol. Biochem. 2006, 70, 1227–1233. [Google Scholar] [CrossRef] [Green Version]
- Franz, K.; Eberlein, B.; Hücherig, S.; Edelmann, K.; Besbes, F.; Ring, J.; Darsow, U.; Schwab, W. Breeding of hypoallergenic strawberry fruit. J. Berry Res. 2016, 3, 197–201. [Google Scholar] [CrossRef] [Green Version]
Cultivation System | Localization | Type of Soil | Kind of Fertilizer | Dose of Fertilizers and Time of Given | Plant Protection System |
---|---|---|---|---|---|
Organic farm no. 1 (n = 6) | Zakroczym | sandy middle soil IVa and IVb category (15% floatable particles) pH (5.5), EC (3.8) | cow manure | 35 t ha-1 one year before raspberry planting | Grevit 200 SL |
(52°26″ N 20°36″ E) | |||||
Organic farm no. 2 (n = 6) | Załuski | sandy middle soil, sandy-clay IV category (20% floatable particles), pH (5.5), EC (4.1) | cow manure | 30 t ha-1 one year before raspberry planting | no protection |
(52°37″ N 20°22″ E) | |||||
Conventional farm no. 1 (n = 6) | Czerwińsk nad Wisłą | sandy-loamy middle soil IV and III category (20% floatable particles), pH (5.5), EC (5.2) | Hydrocomplex 12-11-18; Superba 8-11-36 | (200 kg ha-1, 150 kg ha-1) in autumn a year before raspberry planting; 3 doses in time of cultivation | Signum 33 WG, Miros 20 SP, |
(52°23″ N 20°20″ E) | |||||
Conventional farm no. 2 (n = 6) | Czerwińsk nad Wisłą | sandy-loamy middle soil IV and III category (25% floatable particles), pH (5.5), EC (5.5) | amonium nitrate, polyphosphate, magnesium sulphate | in autumn a year before raspberry planting; 3 doses in time of cultivation | Calypso 480 SC, Miros 20 SP, Zato 50 WG |
(52°23″ N 20°20″ E) |
Bioactive Compounds | Organic Raspberry | Conventional Raspberry | ‘Laszka’ cv. | ‘Glen Ample’ cv | ‘Polka’ cv. | p-Value | |
---|---|---|---|---|---|---|---|
System | Cultivar | ||||||
Bet v1 (µg/g DW) | 786.40 ± 27.00 1 B 2 | 864.69 ± 52.15 A | 917.88 ± 19.58 a | 850.52 ± 47.16 ab | 708.24 ± 27.07 b | <0.0001 | <0.0001 |
Profilins (µg/g DW) | 3.48 ± 0.38 A | 3.49 ± 0.34 A | 4.47 ± 0.56 a | 2.44 ± 0.27 c | 3.55 ± 0.80 b | N.S. | <0.0001 |
Total polyphenols (mg/100 g DW) | 1009.84 ± 0.55 B | 1172.36 ± 0.35A | 1029.83 ± 0.10 b | 1172.41 ± 0.08 a | 1071.07 ± 0.23 a | 0.0004 | 0.0135 |
Total phenolic acids | 313.23 ± 2.16 A | 359.33 ± 4.41 A | 307.39 ± 1.47 a | 352.85 ± 3.87 a | 348.61 ± 0.47 a | N.S. | N.S. |
Gallic acid | 2.24 ± 0.61 A | 2.46 ± 0.63 A | 1.49 ± 0.09 b | 1.80 ± 0.39 b | 3.75 ± 0.10 a | N.S. | <0.0001 |
Chlorogenic acid | 14.97 ± 3.39 B | 26.15 ± 2.73 A | 13.56 ± 0.43 b | 27.91 ± 0.50 a | 20.22 ± 0.54 ab | <0.0001 | <0.0001 |
Caffeic acid | 3.55 ± 0.78 A | 2.27 ± 0.49 B | 1.19 ± 0.12 c | 2.84 ± 0.31 b | 4.70 ± 0.15 a | <0.0001 | <0.0001 |
p-Coumaric acid | 13.92 ± 8.08 A | 13.43 ± 8.24 A | 8.29 ± 3.31 b | 8.65 ± 3.86 b | 24.08 ± 6.59 a | N.S. | <0.0001 |
Ferulic acid | 5.23 ± 1.35 B | 5.78 ± 1.67 A | 4.10 ± 1.39 b | 4.91 ± 1.08 b | 7.49 ± 1.36 a | 0.0350 | <0.0001 |
Ellagic acid | 273.49 ± 0.13 A | 307.86 ± 0.57 A | 280.74 ± 0.22 a | 296.94 ± 0.40 a | 294.33 ± 0.15 a | N.S. | N.S. |
Total flavonoids (mg/100 g DW) | 696.61 ± 2.54 B | 813.04 ± 1.35 A | 722.45 ± 3.04 b | 819.56 ± 1.33 a | 722.46 ± 1.19 b | <0.0001 | 0.0002 |
Total flavonols (mg/100 g DW) | 55.42 ± 2.68 A | 43.24 ± 2.91 B | 45.13 ± 2.34 b | 45.28 ± 1.79 b | 57.57 ± 1.96 a | 0.0027 | 0.0050 |
Quercetin-3-O-rutinoside | 7.85 ± 1.93 B | 8.83 ± 2.21 A | 8.30 ± 0.56 b | 9.09 ± 0.55 a | 7.63 ± 0.43 c | 0.0016 | 0.0013 |
Myricetin | 26.60 ± 0.68 A | 15.23 ± 0.55 B | 23.73 ± 0.08 a | 17.31 ±0.31 b | 21.72 ± 0.23 ab | <0.0001 | 0.0080 |
Luteolin | 11.87 ± 1.00 A | 8.93 ± 1.17 B | 4.86 ± 1.14 c | 9.39 ± 0.66 b | 16.96 ± 0.23 a | 0.0001 | <0.0001 |
Quercetin-3-O-glucoside | 4.37 ± 0.87 A | 4.73 ± 0.32 A | 2.87 ± 0.68 c | 4.75 ± 0.56 b | 6.03 ± 0.40 a | N.S. | <0.0001 |
Kaempferol | 4.72 ± 17.34 A | 5.51 ± 1.68 A | 5.37 ± 1.46 a | 4.74 ± 1.19 a | 5.24 ± 1.78 a | N.S. | N.S. |
Total anthocyanins (mg/100 g DW) | 641.20 ± 0.85 B | 769.80 ± 10.42 A | 677.31 ± 2.93 b | 774.28 ± 11.74 a | 664.89 ± 5.47 b | <0.0001 | 0.0001 |
Cyanidin-3-O-glucoside | 320.21 ± 17.34 B | 380.58 ± 15.68 A | 344.49 ± 3.46 ab | 384.90 ± 13.19 a | 321.79 ± 16.78 b | 0.0006 | 0.0060 |
Pelargonidin-3-O-glucoside | 95.47 ± 0.85 B | 141.44 ± 10.42 A | 106.05 ± 2.93 b | 135.16 ± 11.74 a | 114.16 ± 5.47 ab | <0.0001 | <0.0001 |
Delphinidinn-3-O-glucoside | 225.51 ± 14.36 A | 247.78 ± 15.36 A | 226.77 ± 6.20 b | 254.22 ± 8.38 a | 228.94 ± 14.66 b | N.S. | <0.0001 |
Bioactive Compounds | Organic Raspberry | Conventional Raspberry | ‘Laszka’ cv. | ‘Glen Ample’ cv. | ‘Polka’ cv. | p-Value | |
---|---|---|---|---|---|---|---|
System | Cultivar | ||||||
Bet v1 (µg/g DW) | 819.98 ± 34.59 1 A 2 | 822.94 ± 95.30 A | 804.42 ± 22.45 b | 861.73 ± 7.64 a | 798.22 ± 88.61 b | N.S. | 0.0002 |
Profilins (µg/g DW) | 3.40 ± 0.16 B | 4.71 ± 0.58 A | 5.98 ± 0.70 a | 3.68 ± 0.41 b | 2.50 ± 0.53 c | <0.0001 | <0.0001 |
Total polyphenols (mg/100 g DW) | 835.33 ± 0.07 B | 1067.16 ± 0.05 A | 836.18 ± 0.04 c | 931.41 ± 0.02 b | 1086.15 ± 0.07 a | <0.0001 | <0.0001 |
Total phenolic acids | 309.53 ± 9.67 B | 416.00 ± 4.48 A | 244.20 ± 2.14 c | 347.27 ± 4.01 b | 496.82 ± 6.69 a | <0.0001 | <0.0001 |
Gallic acid | 0.73 ± 0.05 B | 0.94 ± 0.23 A | 0.79 ± 0.13 b | 0.94 ± 0.03 a | 0.77 ± 0.02 b | 0.0031 | 0.0480 |
Chlorogenic acid | 39.56 ± 1.43 A | 41.02 ± 0.56 A | 38.03 ± 0.56 b | 52.16 ± 0.09 a | 30.67 ± 0.65 b | N.S. | 0.0002 |
Caffeic acid | 1.13 ± 0.14 B | 1.33 ± 0.44 A | 1.65 ± 0.09 a | 1.13 ± 0.04 ab | 0.92 ± 0.36 b | 0.0001 | <0.0001 |
p-Coumaric acid | 8.14 ± 9.97 A | 5.65 ± 80.20 B | 8.84 ± 9.88 a | 3.54 ± 2.45 b | 8.31 ± 49.89 a | <0.0001 | <0.0001 |
Ferulic acid | 1.49 ± 0.19 A | 1.59 ± 0.70 A | 1.63 ± 0.71 a | 1.13 ± 0.19 a | 1.85 ± 0.03 a | N.S. | N.S. |
Ellagic acid | 276.94 ± 0.81 B | 365.66 ± 3.99 A | 211.36 ± 0.52 b | 288.37 ± 0.73 b | 464.18 ± 3.32 a | <0.0001 | <0.0001 |
Total flavonoids (mg/100 g DW) | 525.80 ± 0.09 B | 651.16 ± 0.12 A | 591.98 ± 0.10 a | 584.14 ± 0.03 a | 589.32 ± 0.09 a | <0.0001 | N.S. |
Total flavonols (mg/100 g DW) | 23.84 ± 1.32 B | 32.50 ± 5.32 A | 25.45 ± 0.27 ab | 23.88 ± 0.77 b | 35.17 ± 4.51 a | <0.0001 | <0.0001 |
Quercetin-3-O-rutinoside | 6.92 ± 0.09 B | 14.10 ± 0.23 A | 9.10 ± 0.03 b | 6.58 ± 0.16 c | 15.85 ± 0.10 a | <0.0001 | <0.0001 |
Myricetin | 2.77 ± 0.14 A | 2.51 ± 0.40 B | 2.60 ± 0.11 a | 2.71 ± 0.09 a | 2.60 ± 0.30 a | 0.0330 | N.S. |
Luteolin | 1.07 ± 0.50 B | 1.59 ± 0.95 A | 0.90 ± 0.33 b | 1.41 ± 0.16 ab | 1.68 ± 0.83 a | <0.0001 | <0.0001 |
Quercetin-3-O-glucoside | 1.85 ± 0.11 B | 2.09 ± 0.90 A | 1.72 ± 0.57 b | 1.76 ± 0.39 b | 2.44 ± 0.56 a | 0.0078 | N.S. |
Kaempferol | 11.22 ± 2.51 B | 12.21 ± 2.05 A | 11.14 ± 2.32 b | 11.41 ± 1.22 b | 12.60 ± 1.13 a | 0.0025 | 0.0014 |
Total anthocyanins (mg/100 g DW) | 501.96 ± 2.25 B | 618.66 ± 2.67 A | 566.53 ± 3.35 a | 560.26 ± 2.46 a | 554.15 ± 3.06 a | <0.0001 | N.S. |
Cyanidin-3-O-glucoside | 260.54 ± 7.51 B | 354.68 ± 4.05 A | 311.39 ± 12.32 a | 307.01 ± 11.22 a | 304.43 ± 18.13 a | <0.0001 | N.S. |
Pelargonidin-3-O-glucoside | 55.24 ± 2.25 B | 72.24 ± 2.67 A | 65.82 ± 3.35 a | 62.79 ± 2.46 a | 62.61 ± 3.06 a | 0.0003 | N.S. |
Delphinidinn-3-O-glucoside | 186.18 ± 6.23 A | 191.74 ± 4.17 A | 189.32 ± 3.96 a | 190.46 ±1.11 a | 187.10 ± 5.16 a | N.S. | N.S. |
Organic Raspberry 2013 | Conventional Raspberry 2013 | ||||
---|---|---|---|---|---|
‘Laszka’ cv. | ‘Glen Ample’ cv. | ‘Polka’ cv. | ‘Laszka’ cv. | ‘Glen Ample’ cv. | ‘Polka’ cv. |
920.20 | 769.20 | 667.10 | 918.50 | 934.50 | 742.70 |
890.30 | 779.40 | 687.11 | 899.70 | 935.60 | 752.30 |
944.10 | 759.90 | 660.30 | 934.50 | 924.50 | 739.90 |
Organic Raspberry 2014 | Conventional Raspberry 2014 | ||||
‘Laszka’ cv. | ‘Glen Ample’ cv. | ‘Polka’ cv. | ‘Laszka’ cv. | ‘Glen Ample’ cv. | ‘Polka’ cv. |
783.90 | 895.90 | 756.00 | 830.10 | 813.70 | 827.70 |
799.20 | 945.60 | 788.90 | 823.40 | 825.60 | 839.90 |
777.80 | 866.70 | 765.80 | 812.12 | 822.90 | 811.00 |
Organic Raspberry 2013 | Conventional Raspberry 2013 | ||||
---|---|---|---|---|---|
‘Laszka’ cv. | ‘Glen Ample’ cv. | ‘Polka’ cv. | ‘Laszka’ cv. | ‘Glen Ample’ cv. | ‘Polka’ cv. |
6.263 | 3.767 | 3.56 | 2.483 | 1.214 | 6.712 |
6.759 | 2.682 | 3.62 | 2.864 | 1.790 | 5.922 |
6.099 | 3.434 | 3.46 | 2.323 | 1.777 | 6.331 |
Organic Raspberry 2014 | Conventional Raspberry 2014 | ||||
‘Laszka’ cv. | ‘Glen Ample’ cv. | ‘Polka’ cv. | ‘Laszka’ cv. | ‘Glen Ample’ cv. | ‘Polka’ cv. |
3.740 | 2.284 | 4.741 | 8.139 | 5.104 | 2.54 |
3.705 | 2.203 | 4.153 | 8.981 | 4.927 | 2.39 |
3.323 | 2.345 | 4.099 | 8.009 | 5.244 | 2.57 |
Type of Regression | 2013 | 2014 | ||
---|---|---|---|---|
Organic Raspberry | Conventional Raspberry | Organic Raspberry | Conventional Raspberry | |
polyphenols/Bet v1 | +0.8349 | +0.7017 | +0.6213 | +0.7705 |
p-value | 0.006 | 0.0048 | 0.0116 | 0.0019 |
polyphenols/profilins | +0.7934 | +0.933 | +0.8958 | +0.8235 |
p-value | 0.0130 | <0.0001 | 0.0001 | 0.0007 |
anthocyanins/Bet v1 | +0.6995 | +0.5631 | +0.8445 | +0.9065 |
p-value | 0.0050 | 0.019 | 0.0005 | <0.0001 |
anthocyanins/profilins | +0.6781 | +0.9852 | +0.7650 | +0.8235 |
p-value | 0.0064 | <0.0001 | <0.0001 | 0.0002 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hallmann, E.; Ponder, A.; Aninowski, M.; Narangerel, T.; Leszczyńska, J. The Interaction between Antioxidants Content and Allergenic Potency of Different Raspberry Cultivars. Antioxidants 2020, 9, 256. https://doi.org/10.3390/antiox9030256
Hallmann E, Ponder A, Aninowski M, Narangerel T, Leszczyńska J. The Interaction between Antioxidants Content and Allergenic Potency of Different Raspberry Cultivars. Antioxidants. 2020; 9(3):256. https://doi.org/10.3390/antiox9030256
Chicago/Turabian StyleHallmann, Ewelina, Alicja Ponder, Mateusz Aninowski, Tuya Narangerel, and Joanna Leszczyńska. 2020. "The Interaction between Antioxidants Content and Allergenic Potency of Different Raspberry Cultivars" Antioxidants 9, no. 3: 256. https://doi.org/10.3390/antiox9030256
APA StyleHallmann, E., Ponder, A., Aninowski, M., Narangerel, T., & Leszczyńska, J. (2020). The Interaction between Antioxidants Content and Allergenic Potency of Different Raspberry Cultivars. Antioxidants, 9(3), 256. https://doi.org/10.3390/antiox9030256