Antioxidants as Molecular Probes: Structurally Novel Dihydro-m-Terphenyls as Turn-On Fluorescence Chemodosimeters for Biologically Relevant Oxidants
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Experimental Information
2.2. Synthesis
2.2.1. Synthesis of Compounds A
2.2.2. Synthesis of Compounds B
2.3. Computational Studies
2.4.1. Native Fluorescence Studies
2.4.2. Fluorimetric Characterisation of the Analytical Reaction with ROS
2.4.3. Determination of Glucose in Aqueous Media Coupled to the Oxidation of Compounds A
3. Results and Discussion
3.1. Synthesis
3.2. Native Fluorescence Studies
3.3. Dihydro-m-Terphenyls A for ROS Fluorimetric Determination
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Halliwell, B.; Gutteridge, J.M.C. Free Radicals in Biology and Medicine, 5th ed.; Oxford University Press: Oxford, UK, 2015. [Google Scholar]
- Zhang, J.; Wang, X.; Vikash, V.; Ye, Q.; Wu, D.; Liu, Y.; Dong, W. ROS and ROS-mediated cellular signaling. Oxid. Med. Cell. Longev. 2016, 2016, 4350965. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.; Xu, X.; Leng, X.; He, M.; Wang, J.; Cheng, S.; Wu, H. Roles of reactive oxygen species in cell signaling pathways and immune responses to viral infections. Arch. Virol. 2017, 162, 603–610. [Google Scholar] [CrossRef]
- Santos, C.X.C.; Nabeebaccus, A.A.; Shah, A.M.; Camargo, L.L.; Filho, S.V.; Lopes, L.R. Endoplasmic reticulum stress and NOX-mediated reactive oxygen species signaling in the peripheral vasculature: Potential role in hypertension. Antioxid. Redox Signal. 2014, 20, 121–134. [Google Scholar] [CrossRef]
- Kanaan GN, Harper M-E, Cellular redox dysfunction in the development of cardiovascular diseases. Biochim. Biophys. Acta Gen. Subj. 2017, 1861, 2822–2829. [CrossRef] [PubMed]
- Costa, A.; Scholer-Dahirel, A.; Mechta-Grigoriou, F. The role of reactive oxygen species and metabolism on cancer cells and their microenvironment. Semin. Cancer Biol. 2014, 25, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Chio, I.I.C.; Tuveson, D.A. ROS in cancer: The burning question. Trends Mol. Med. 2017, 23, 411–429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Wang, W.; Li, L.; Perry, G.; Lee, H.; Zhu, X. Oxidative stress and mitochondrial dysfunction in Alzheimer’s disease. Biochim. Biophys. Acta 2014, 1842, 1240–1247. [Google Scholar] [CrossRef] [Green Version]
- Aliev, G.; Priyadarshini, M.; Reddy, V.P.; Grieg, N.H.; Kaminsky, Y.; Cacabelos, R.; Ashraf, G.M.; Jabir, N.R.; Kamal, M.A.; Nikolenko, V.N.; et al. Oxidative stress mediated mitochondrial and vascular lesions as markers in the pathogenesis of Alzheimer´s disease. Curr. Med. Chem. 2014, 21, 2208–2217. [Google Scholar] [CrossRef]
- Sanders, L.H.; McCoy, J.; Hu, X.; Mastroberardino, P.G.; Dickinson, B.C.; Chang, C.J.; Chu, C.T.; Van Houten, B.; Greenamyre, J.T. Mitochondrial DNA damage: Molecular marker of vulnerable nigral neurons in Parkinson’s disease. Neurobiol. Dis. 2014, 70, 214–223. [Google Scholar] [CrossRef] [Green Version]
- Mayes, J.; Tinker-Mill, C.; Kolosov, O.; Zhang, H.; Tabner, B.J.; Allsop, D. β-Amyloid fibrils in Alzheimer’s disease are not inert when bound to copper ions but can degrade hydrogen peroxide and generate reactive oxygen species. J. Biol. Chem. 2014, 289, 12052–12062. [Google Scholar] [CrossRef] [Green Version]
- Foley, T.D. The cyclooxygenase hydroperoxide product PGG (2) activates synaptic Nitric Oxide Synthase: A possible antioxidant response to membrane lipid peroxidation. Biochem Biophys Res. Commun. 2001, 286, 235–238. [Google Scholar] [CrossRef] [PubMed]
- Gebicki, J.M. Oxidative stress, free radicals and protein peroxides. Arch. Biophys. 2016, 595, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Yap, Y.W.; Whiteman, M.; Cheung, N.S. Chlorinative stress: An underappreciated mediator of neurodegeneration? Cell. Signal. 2007, 19, 219–228. [Google Scholar] [CrossRef] [PubMed]
- Yin, W.; Zhu, H.; Wang, R. A sensitive and selective fluorescence probe based fluorescein for detection of hypochlorous acid and its application for biological imaging. Dye. Pigment. 2014, 107, 127–132. [Google Scholar] [CrossRef]
- Yao, S.-K.; Qian, Y. A naphthalimide–rhodamine two-photon fluorescent turn-on probe for hypochlorous acid by desulfurization-cyclization and fluorescence resonance energy transfer. Sens. Actuators B 2017, 252, 877–885. [Google Scholar] [CrossRef]
- Samanta, S.; Halder, S.; Manna, U.; Das, G. Specific detection of hypochlorite: A cyanine based turn-on fluorescent sensor. J. Chem. Sci. 2019, 131, 36. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Wang, F.; Hyun, J.Y.; Wei, T.; Qiang, J.; Ren, X.; Shin, I.; Yoon, J. Recent progress in the development of fluorescent, luminescent and colorimetric probes for detection of reactive oxygen and nitrogen species. Chem. Soc. Rev. 2016, 45, 2976–3016. [Google Scholar] [CrossRef]
- Winterbourn, C.C. The challenges of using fluorescent probes to detect and quantify specific reactive oxygen species in living cells. Biochim. Biophys. Acta 2014, 1840, 730–738. [Google Scholar] [CrossRef]
- Yang, Y.; Zhao, Q.; Feng, W.; Li, F. Luminescent chemodosimeters for bioimaging. Chem. Rev. 2013, 113, 192–270. [Google Scholar] [CrossRef]
- Newman, R.H.; Fosbrink, M.D.; Zhang, J. Genetically encodable fluorescent biosensors for tracking signaling dynamics in living cells. Chem. Rev. 2011, 111, 3614–3666. [Google Scholar] [CrossRef] [Green Version]
- Lou, Z.; Li, P.; Han, K. Redox-responsive fluorescent probes with different design strategies. Acc. Chem. Res. 2015, 48, 1358–1368. [Google Scholar] [CrossRef] [PubMed]
- Dikalov, S.I.; Harrison, D.G. Methods for detection of mitochondrial and cellular reactive oxygen species. Antioxid. Redox Sign. 2014, 20, 372–382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalyanaraman, B.; Darley-Usmar, V.; Davies, K.J.A.; Dennery, P.A.; Forman, H.J.; Grisham, M.B.; Mann, G.E.; Moore, K.; Roberts, L.J., II; Ischiropoulos, H. Measuring reactive oxygen and nitrogen species with fluorescent probes: Challenges and limitations. Free Radic. Biol. Med. 2012, 52, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Staderini, M.; Martín, M.A.; Bolognesi, M.L.; Menéndez, J.C. Imaging of β-amyloid plaques by near infrared fluorescent tracers: A new frontier for chemical neuroscience. Chem. Soc. Rev. 2015, 44, 1807–1819. [Google Scholar] [CrossRef]
- Kim, J.; Kim, Y. A water-soluble sulfonate-bodipy based fluorescent probe for selective detection of HOCl/OCl− in aqueous media. Analyst 2014, 139, 2986–2989. [Google Scholar] [CrossRef]
- Zhu, H.; Fan, J.; Wang, J.; Mu, H.; Peng, X. An “Enhanced PET”-based fluorescent probe with ultrasensitivity for imaging basal and elesclomol-induced HClO in cancer cells. J. Am. Chem. Soc. 2014, 136, 12820–12823. [Google Scholar] [CrossRef]
- Zhang, L.; Li, S.; Hong, M.; Xu, Y.; Wang, S.; Liu, Y.; Qian, Y.; Zhao, J. A colorimetric and ratiometric fluorescent probe for the imaging of endogenous hydrogen sulphide in living cells and sulphide determination in mouse hippocampus. Org. Biomol. Chem. 2014, 12, 5115–5125. [Google Scholar] [CrossRef]
- Zhang, L.; Zhao, Z.-M.; Miao, J.-Y.; Zhao, B.-X. A ratiometric fluorescence probe based on a novel FRET platform for imaging endogenous HOCl in the living cells. Sens. Actuators B 2016, 229, 408–413. [Google Scholar] [CrossRef]
- Li, X.; Li, J.; Tao, Y.; Peng, Z.; Lu, P.; Wang, Y. Oxazole-based high resolution ratiometric fluorescent probes for hydrogen peroxide detection. Sens. Actuators B 2017, 247, 609–616. [Google Scholar] [CrossRef]
- Zhuang, M.; Ding, C.; Zhu, A.; Tian, Y. Ratiometric fluorescence probe for monitoring hydroxyl radical in live cells based on gold nanoclusters. Anal. Chem. 2014, 86, 1829–1836. [Google Scholar] [CrossRef]
- Song, Z.; Kwok, R.T.K.; Ding, D.; Nie, H.; Lam, J.W.Y.; Liu, B.; Tang, B.Z. An AIE-active fluorescence turn-on bioprobe mediated by hydrogen-bonding interaction for highly sensitive detection of hydrogen peroxide and glucose. Chem. Commun. 2016, 52, 10076–10079. [Google Scholar] [CrossRef] [PubMed]
- Gui, S.; Huang, Y.; Hu, F.; Jin, Y.; Zhang, G.; Yan, L.; Zhang, D.; Zhao, R. Fluorescence turn-on chemosensor for highly selective and sensitive detection and bioimaging of Al3+ in living cells based on ion-induced aggregation. Anal. Chem. 2015, 87, 1470–1474. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, N.D.N.; Cole-Filipiak, N.C.; Horbury, M.D.; Staniforth, M.; Karsili, T.N.V.; Peperstraete, Y.; Stavros, V.G. Photophysics of the sunscreen ingredient menthyl anthranilate and its precursor methyl anthranilate: A bottom-up approach to photoprotection. J. Photochem. Photobiol. A Chem. 2018, 353, 376–384. [Google Scholar] [CrossRef]
- Nijegorodov, N.I.; Downey, W.S.; Danailov, M.B. Systematic investigation of absorption, fluorescence and laser properties of some p- and m-oligophenylenes. Spectrochim. Acta A 2000, 56, 783–795. [Google Scholar] [CrossRef]
- Bhalla, V.; Tejpal, R.; Kumar, M. Rhodamine appended terphenyl: A reversible “off–on” fluorescent chemosensor for mercury ions. Sens. Actuators B 2010, 151, 180–185. [Google Scholar] [CrossRef]
- Sasabe, H.; Seino, Y.; Kimura, M.; Kido, J. A m-terphenyl-modifed sulfone derivative as a host material for high-efficiency blue and green phosphorescent OLEDs. Chem. Mater. 2012, 24, 1404–1406. [Google Scholar] [CrossRef]
- Rocchi, D.; González, J.F.; Gómez-Carpintero, J.; González-Ruiz, V.; Martín, M.A.; Sridharan, V.; Menéndez, J.C. Three-component synthesis of a library of m-terphenyl derivatives with embedded β-aminoester moieties. ACS Comb. Sci. 2018, 20, 722–731. [Google Scholar] [CrossRef]
- International Conference on Harmonisation. Note for guidance on validation of analtical procedures: Methodology (CPMP/ICH/281/95). In Proceedings of the ICH Topic Q 2 B. Validation of Analytical Procedures: Methodology, Rockville, MD, USA, 6 November 1996. [Google Scholar]
- Wu, M.; Lin, Z.; Wolfbeis, O.S. Determination of the activity of catalase using a europium (III)-tetracycline-derived fluorescent substrate. Anal. Biochem. 2003, 320, 129–135. [Google Scholar] [CrossRef]
- Aon, M.A.; Cortassa, S.; O’rourke, B. Redox-optimized ROS balance: A unifying hypothesis. Biochim. Biophys. Acta 2010, 1797, 865–877. [Google Scholar] [CrossRef] [Green Version]
Compound | R1 | R2 | R3 | R4 | A, % | B, % |
---|---|---|---|---|---|---|
1 | (CH2)3CH3 | CH2CH3 | H | H | 88 | 93 |
2 | (CH2)3CH3 | CH2CH3 | Cl | H | 70 | 92 |
3 | (CH2)3CH3 | CH2CH3 | H | CH3 | 72 | 91 |
4 | (CH2)3CH3 | CH2CH3 | H | OCH3 | 70 | 89 |
5 | (CH2)3CH3 | C(CH3)3 | H | H | 70 | 88 |
6 | CH2Ph | CH2CH3 | H | H | 78 | 78 |
7 | CH2Ph | C(CH3)3 | H | H | 80 | 78 |
8 | Ph | CH2CH3 | H | H | 73 | 94 |
9 | 4-MeC6H4 | CH2CH3 | H | H | 72 | 92 |
10 | 4-MeOC6H4 | CH2CH3 | H | H | 76 | 91 |
Sensor | Analyte | Linear range | R2 | LOD | LOQ |
---|---|---|---|---|---|
A1 | H2O2 | 0–5.0 × 10−5 M | 0.9993 | 1.08 × 10−6 M | 3.59 × 10−6 M |
NaClO | 0–5.0 × 10−5 M | 0.9954 | 2.75 × 10−6 M | 9.15 × 10−6 M | |
tBuO-OH | 0–5.0 × 10−5 M | 0.9908 | 3.91 × 10−6 M | 1.30 × 10−5 M | |
A6 | H2O2 | 0–5.0 × 10−5 M | 0.9909 | 3.88 × 10−6 M | 1.29 × 10−5 M |
NaClO | 0–7.0 × 10−5 M | 0.9645 | 9.07 × 10−6 M | 2.48 × 10−5 M | |
tBuO-OH | 0–5.0 × 10−5 M | 0.9719 | 6.98 × 10−6 M | 2.33 × 10−5 M |
Sensor | Analyte | Concentration | % RSD (n = 5) a |
---|---|---|---|
A1 | H2O2 | 1.0 × 10−5 M | 1.3 |
H2O2 | 3.0 × 10−5 M | 2.4 | |
tBuO-OH | 1.0 × 10−5 M | 1.6 | |
tBuO-OH | 3.0 × 10−5 M | 4.6 | |
ClO- | 1.0 × 10−5 M | 2.6 | |
ClO- | 3.0 × 10−5 M | 2.1 | |
A6 | H2O2 | 1.0 × 10−5 M | 3.6 |
H2O2 | 3.0 × 10−5 M | 4.6 | |
tBuO-OH | 1.0 × 10−5 M | 6.9 | |
tBuO-OH | 3.0 × 10−5 M | 5.6 | |
ClO- | 1.0 × 10−5 M | 11.0 | |
ClO- | 3.0 × 10−5 M | 7.0 |
Linear Range | R2 | % RSD (n = 6) a | [Glucose] Found with A1 | [Glucose] Found with Amplex® Red b | |
---|---|---|---|---|---|
1.25 μM | 10 μM | 5.0 μM | 5.0 μM | ||
0–5 μM | 0.9970 | 6.56 | 2.35 | 4.96 μM (−0.8%) | 4.86 μM (−2.8%) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Ruiz, V.; Rajesh, J.; Olives, A.I.; Rocchi, D.; Gómez-Carpintero, J.; González, J.F.; Sridharan, V.; Martín, M.A.; Menéndez, J.C. Antioxidants as Molecular Probes: Structurally Novel Dihydro-m-Terphenyls as Turn-On Fluorescence Chemodosimeters for Biologically Relevant Oxidants. Antioxidants 2020, 9, 605. https://doi.org/10.3390/antiox9070605
González-Ruiz V, Rajesh J, Olives AI, Rocchi D, Gómez-Carpintero J, González JF, Sridharan V, Martín MA, Menéndez JC. Antioxidants as Molecular Probes: Structurally Novel Dihydro-m-Terphenyls as Turn-On Fluorescence Chemodosimeters for Biologically Relevant Oxidants. Antioxidants. 2020; 9(7):605. https://doi.org/10.3390/antiox9070605
Chicago/Turabian StyleGonzález-Ruiz, Víctor, Jegathalaprathaban Rajesh, Ana I. Olives, Damiano Rocchi, Jorge Gómez-Carpintero, Juan F. González, Vellaisamy Sridharan, M. Antonia Martín, and J. Carlos Menéndez. 2020. "Antioxidants as Molecular Probes: Structurally Novel Dihydro-m-Terphenyls as Turn-On Fluorescence Chemodosimeters for Biologically Relevant Oxidants" Antioxidants 9, no. 7: 605. https://doi.org/10.3390/antiox9070605
APA StyleGonzález-Ruiz, V., Rajesh, J., Olives, A. I., Rocchi, D., Gómez-Carpintero, J., González, J. F., Sridharan, V., Martín, M. A., & Menéndez, J. C. (2020). Antioxidants as Molecular Probes: Structurally Novel Dihydro-m-Terphenyls as Turn-On Fluorescence Chemodosimeters for Biologically Relevant Oxidants. Antioxidants, 9(7), 605. https://doi.org/10.3390/antiox9070605