Functional Properties and Antioxidant Activity of Morus alba L. Leaves var. Zolwinska Wielkolistna (WML-P)—The Effect of Controlled Conditioning Process
Abstract
:1. Introduction
2. Material and Methods
2.1. Plant Material
2.1.1. Conditioning
2.1.2. Extraction Process
2.2. Chemical Composition
2.2.1. Basic Chemical Composition
2.2.2. Dietary Fiber Fractions
2.2.3. Fatty Acids (FA) Composition
2.2.4. Amino Acids (AA)
2.2.5. Macro- and Microelements
2.2.6. Chlorophyll a and b
2.2.7. Phenolic Acids and Flavonols
2.2.8. Total Phenolics
2.2.9. 1-Deoxynojirimycin (DNJ)
2.3. Antioxidant Activity
2.3.1. Radical Scavenging Capacity Against DPPH
2.3.2. Total Antioxidant Capacity with ABTS•+
2.3.3. Chelating Activity
2.3.4. Ferric Reducing Antioxidant Potential (FRAP) Assay
2.4. Reagents
2.5. Statistical Analysis
3. Results and Discussion
3.1. Chemical Composition
3.2. Antioxidant Activity
3.3. Bioactive Compounds
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Thabti, I.; Elfalleh, W.; Hannachi, H.; Ferchichi, A.; Campos, M.D.G. Identification and quantification of phenolic acids and flavonol glycosides in Tunisian Morus species by HPLC-DAD and HPLC-MS. J. Funct. Foods 2012, 4, 367–374. [Google Scholar] [CrossRef]
- Yang, M.-Y.; Wu, C.-H.; Hung, T.-W.; Wang, C.-J. Endoplasmic reticulum stress-induced resistance to doxorubicin is reversed by mulberry leaf polyphenol extract in hepatocellular carcinomathrough inhibition of COX-2. Antioxidants 2020, 9, 26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Negro, C.; Aprile, A.; De Bellis, L.; Miceli, A. Nutraceutical properties of mulberries grown in southern Italy (Apulia). Antioxidants 2019, 8, 223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeszka-Skowron, M.; Flaczyk, E.; Kobus-Cisowska, J.; Kośmider, A.; Górecka, D. Optymalizacja procesu ekstrakcji związków fenolowych o aktywności przeciwrodnikowej z liści morwy białej za pomocą metody płaszczyzny odpowiedzi (RSM). Żywn. Nauk. Technoligia Jakość 2014, 1, 148–159. [Google Scholar] [CrossRef]
- Nakamura, S.; Hashiguchi, M.; Yamaguchi, Y.; Oku, T. Hypoglycemic effects of Morus alba leaf extract on postprandial glucose and insulin levels in patients with type 2 diabetes treated with sulfonylurea hypoglycemic agents. J. Diabetes Metab. 2011, 2, 158. [Google Scholar] [CrossRef] [Green Version]
- Kujawska, M.; Ewertowska, M.; Adamska, T.; Ignatowicz, E.; Flaczyk, E.; Przeor, M.; Kurpik, M.; Jodynis-Liebert, J. Protective effect of Morus alba leaf extract on N-nitrosodiethylamine-induced hepatocarcinogenesis in rats. In Vivo 2016, 30, 807–812. [Google Scholar] [CrossRef] [Green Version]
- Peng, C.-H.; Lin, H.-T.; Chung, D.-J.; Huang, C.-N.; Wang, C.-J. Mulberry Leaf Extracts prevent obesity-induced NAFLD with regulating adipocytokines, inflammation and oxidative stress. J. Food Drug Anal. 2018, 26, 778–787. [Google Scholar] [CrossRef]
- Szczepaniak, O.; Kobus-Cisowska, J.; Kusek, W.; Przeor, M. Functional properties of Cornelian cherry (Cornus mas L.): A comprehensive review. Eur. Food Res. Technol. 2019, 245, 2071–2087. [Google Scholar] [CrossRef] [Green Version]
- Butt, M.S.; Nazir, A.; Sultan, M.T.; Schroën, K. Morus alba L. nature’s functional tonic. Trends Food Sci Tech. 2008, 19, 505–512. [Google Scholar] [CrossRef]
- Gültekin-Özgüven, M.; Karadağ, A.; Duman, Ş.; Özkal, B.; Özçelik, B. Fortification of dark chocolate with spray dried black mulberry (Morus nigra) waste extract encapsulated in chitosan-coated liposomes and bioaccessability studies. Food Chem. 2016, 201, 205–212. [Google Scholar] [CrossRef]
- Przeor, M.; Flaczyk, E. Antioxidant properties of Paratha type flat bread enriched with white mulberry leaf extract. Indian J. Tradit. Knowl. 2016, 15, 237–244. [Google Scholar]
- Gramza, A.; Korczak, J. Tea constituents (Camellia sinensis L.) as antioxidants in lipid systems. Trends Food Sci. Technol. 2005, 16, 351–358. [Google Scholar] [CrossRef]
- Przeor, M.; Flaczyk, E. Wpływ temperatury suszenia pędów i liści morwy białej (Morus alba) na aktywność przeciwutleniającą. Zesz. Probl. Postęp. Nauk Rol. 2011, 569, 277–283. [Google Scholar]
- Chon, S.-U.; Kim, Y.-M.; Park, Y.-J.; Heo, B.-G.; Park, Y.-S.; Gorinstein, S. Antioxidant and antiproliferative effects of methanol extracts from raw and fermented parts of mulberry plant (Morus alba L.). Eur. Food Res. Technol. 2009, 230, 231–237. [Google Scholar] [CrossRef]
- Jeszka-Skowron, M.; Flaczyk, E.; Jeszka, J.; Krejpcio, Z.; Król, E.; Buchowski, M. Mulberry leaf extract intake reduces hyperglycaemia in streptozotocin (STZ)-induced diabetic rats fed high-fat diet. J. Funct. Foods 2014, 8, 9–17. [Google Scholar] [CrossRef]
- AOAC. Methods of Food Analysis. In AOAC Official Methods of Analysis; AOAC: Rockville, Maryland, 2000. [Google Scholar]
- Dziedzic, K.; Górecka, D.; Szwengiel, A.; Sulewska, H.; Kreft, I.; Gujska, E.; Walkowiak, J. The Content of Dietary Fibre and Polyphenols in Morphological Parts of Buckwheat (Fagopyrum tataricum). Plant Foods Hum. Nutr. 2018, 73, 82–88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- AOCS. AOCS Official Method; American Oil Chemists’ Society: Champaign, IL, USA, 2009. [Google Scholar]
- Kmiecik, D.; Kobus-Cisowska, J.; Korczak, J. The content of anti-nutritional components in frozen fried-potato products. LWT-Food Sci. Technol. 2017, 85, 275–282. [Google Scholar] [CrossRef]
- AOAC. Amino Acids in Feeds. In AOAC Official Methods of Analysis; AOAC: Rockville, Maryland, 2000. [Google Scholar]
- AOAC. Standard Method Performance Requirements for Determination of Amino Acids in Infant Formula and Adult/Pediatric Nutritional Formula. In AOAC Offiicial Methods of Analysis; AOAC: Rockville, Maryland, 2014. [Google Scholar]
- Bader, N.R. Sample preparation for flame atomic absorption spectroscopy: An overview. Rasayan J. Chem. 2011, 4, 49–55. [Google Scholar]
- Eder, R. Pigments. In Handbook of Food Analysis; Nolle, L., Ed.; Marcel Dekker Inc.: New York, NY, USA, 2004; pp. 805–879. [Google Scholar]
- Siger, A.; Nogala-Kałucka, M.; Lampart-Szczapa, E.; Hoffmann, A. Zawartość związków fenolowych w nowych odmianach rzepaku. Rośl. Oleiste 2004, 25, 263–274. [Google Scholar]
- Kobus, J.; Flaczyk, E.; Siger, A.; Nogala-Kałucka, A.; Korczak, J.; Pegg, R. Phenolic compounds and antioxidant activity of extracts of Ginkgo leaves. Eur. J. Lipid Sci. Technol. 2009, 111, 1140–1150. [Google Scholar] [CrossRef]
- Cheung, L.; Cheung, P.; Ooi, V. Antioxidant activity and total phenolics of epigallocatechin gallate in the NBT-II bladder tumour cell line. Biol. Pharm. Bull. 2003, 18, 1676–1680. [Google Scholar]
- Kim, J.W.; Kim, S.U.; Lee, H.S.; Kim, I.; Ahn, M.Y.; Ryu, K.S. Determination of 1-deoxynojirimycin in Morus alba L. leaves by derivatization with 9-fluorenylmethyl chloroformate followed by reversed-phase high-performance liquid chromatography. J. Chromatogr. A 2003, 1002, 93–99. [Google Scholar] [CrossRef]
- Amarowicz, R.; Pegg, R.; Bautista, D. Antibacterial activity of green tea polyhenols against Escherichia coli K12. Nahrung 2000, 44, 60–62. [Google Scholar] [CrossRef]
- Re, R.; Pellegrinia, N.; Proteggentea, A.; Pannalaa, A.; Yanga, M.; Rice-Evansa, C. Antioxidant activity an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Tang, S.; Joe, K.; Sheehan, D.; Buckley, D. Antioxidative mechanisms of tea catechins in chicken meat system. Food Chem. 2002, 76, 45–51. [Google Scholar] [CrossRef]
- Benzie, I.; Strain, J. Ferric reducing antioxidant power assay: Direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. In Methods in Enzymology; Abelson, J., Simon, M., Eds.; Academic Press: Cambridge, MA, USA, 1999; pp. 15–27. [Google Scholar] [CrossRef]
- Łochyńska, M. Energy and Nutritional Properties of the White Mulberry (Morus alba L.). J. Agric. Sci. Technol. A 2015, 5, 709–716. [Google Scholar] [CrossRef] [Green Version]
- Przeor, M.; Flaczyk, E. Morwa biała-nieocenione znaczenie zdrowotne. Przem. Spoż. 2016, 5, 33–35. [Google Scholar] [CrossRef]
- Iqbal, S.; Younas, U.; Uddin, S.; Chan, K.W.; Sarfraz, R.A.; Uddin, K. Proximate composition and antioxidant potential of leaves from three varieties of Mulberry (Morus sp.): A comparative study. Int. J. Mol. Sci. 2012, 13, 6651–6664. [Google Scholar] [CrossRef]
- Yao, J.; Yan, B.; Wang, Y.; Zhang, Y. Nutritional evaluation of mulberry leaves as feeds for ruminants. Livest. Res. Rural Dev. 2000, 12, 9–16. [Google Scholar]
- Radojković, M.; Zeković, Z.; Mašković, P.; Vidović, S.; Mandić, A.; Mišan, A.; Đurović, S. Biological activities and chemical composition of Morus leaves extracts obtained by maceration and supercritical fluid extraction. J. Supercrit. Fluids 2016, 117, 50–58. [Google Scholar] [CrossRef]
- Fedko, M.; Kmiecik, D.; Siger, A.; Kulczyński, B.; Przeor, M.; Kobus-Cisowska, J. Comparative characteristics of oil composition in seeds of 31 Cucurbita varieties. J. Food Meas. Charact. 2020, 14, 894–904. [Google Scholar] [CrossRef]
- Sánchez-Salcedo, E.M.; Sendra, E.; Carbonell-Barrachina, Á.A.; Martínez, J.J.; Hernández, F. Fatty acids composition of Spanish black (Morus nigra L.) and white (Morus alba L.) mulberries. Food Chem. 2016, 190, 566–571. [Google Scholar] [CrossRef] [PubMed]
- Nookabkaew, S.; Rangkadilok, N.; Satayavivad, J. Determination of Trace Elements in Herbal Tea Products and Their Infusions Consumed in Thailand. J. Agric. Food Chem. 2006, 54, 6939–6944. [Google Scholar] [CrossRef] [PubMed]
- Radojković, M.M.; Zeković, Z.P.; Dojinović, B.P.; Stojanović, Z.S.; Cvetanović, A.D.; Manojlović, D.D. Characterization of Morus species in respect to micro, macro, and toxic elements. Acta Period. Technol. 2014, 45, 229–237. [Google Scholar] [CrossRef]
- Srivastava, S.; Kapoor, R.; Thathola, A.; Srivastava, R.P. Nutritional quality of leaves of some genotypes of mulberry (Morus alba). Int. J. Food Sci. Nutr. 2006, 57, 305–313. [Google Scholar] [CrossRef]
- Kim, G.-N.; Jang, H.-D. Flavonol Content in the Water Extract of the Mulberry (Morus alba L.) Leaf and Their Antioxidant Capacities. J. Food Sci. 2011, 76, C869–C873. [Google Scholar] [CrossRef]
- Sánchez-Salcedo, E.; Mena, P.; García-Viguera, C.; Hernández, F.; Martínez, J.J. (Poly)phenolic compounds and antioxidant activity of white (Morus alba) and black (Morus nigra) mulberry leaves: Their potential for new products rich in phytochemicals. J. Funct. Foods 2015, 18, 1039–1046. [Google Scholar] [CrossRef]
- Arabshahi-Delouee, S.; Urooj, A. Antioxidant properties of various solvent extracts of mulberry (Morus indica L.) leaves. Food Chem. 2007, 102, 1233–1240. [Google Scholar] [CrossRef]
- Tajner-Czopek, A.; Gertchen, M.; Rytel, E.; Kita, A.; Kucharska, A.Z.; Sokół-Łętowska, A. Study of antioxidant activity of some medicinal plants having high content of caffeic acid derivates. Antioxidants 2020, 9, 412. [Google Scholar] [CrossRef]
- Wanyo, P.; Siriamornpun, S.; Meeso, N. Improvement of quality and antioxidant properties of dried mulberry leaves with combined far-infrared radiation and air convection in Thai tea process. Food Bioprod. Process. 2011, 89, 22–30. [Google Scholar] [CrossRef]
- Zhang, D.-Y.; Wan, Y.; Hao, J.-Y.; Hu, R.-Z.; Chen, C.; Yao, X.-H.; Zhao, W.-G.; Liu, Z.-Y.; Li, L. Evaluation of the alkaloid, polyphenols, and antioxidant contents of various mulberry cultivars from different planting areas in eastern China. Ind. Crops Prod. 2018, 122, 298–307. [Google Scholar] [CrossRef]
- Lee, W.J.; Choi, S.W. Quantitative Changes of Polyphenolic Compounds in Mulberry (Morus alba L.) Leaves in Relation to Varieties, Harvest Period, and Heat Processing. Prev. Nutr. food Sci. 2012, 17, 280–285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flaczyk, E.; Kobus-Cisowska, J.; Przeor, M.; Korczak, J.; Remiszewski, M.; Korbas, E.; Buchowski, M. Chemical characterization and antioxidative properties of Polish variety of Morus alba L. leaf aqueous extracts from the laboratory and pilot-scale processes. Agric. Sci. 2013, 04, 141–147. [Google Scholar] [CrossRef] [Green Version]
Component | Derived Products of WML-P | ||||
---|---|---|---|---|---|
0 h (Control) | 1 h | 2 h | 3 h | 4 h | |
A. Basic Components [g/100 g] | |||||
Dry matter | 99.01 a ± 0.09 | 98.95 a ± 0.08 | 98.73 a ± 0.36 | 98.88 a ± 0.11 | 99.09 a ± 0.02 |
Ash | 15.77 e ± 0.12 | 13.29 b ± 0.05 | 12.37 a ± 0.11 | 13.57 c ± 0.06 | 13.83 d ± 0.03 |
Lipids | 1.79 b ± 0.16 | 1.24 a,b ± 0.47 | 1.14 a ± 0.19 | 1.12 a ± 0.16 | 1.02 a ± 0.03 |
Proteins | 12.78 b ± 0.33 | 13.35 b ± 0.16 | 12.50 a,b ± 0.49 | 13.42 b ± 0.29 | 11.50 a ± 0.73 |
Carbohydrates | 69.67 | 72.12 | 73.99 | 71.88 | 73.64 |
B. Amino Acids (AA) [g/100 g] | |||||
Phenylalanine (Phe) | 1.333 ± 0.044 | 0.944 ± 0.023 | 0.957 ± 0.031 | 1.022 ± 0.053 | 0.849 ± 0.161 |
Isoleucine (Ile) | 1.126 ± 0.132 | 0.867 ± 0.038 | 0.795 ± 0.008 | 0.895 ± 0.086 | 0.697 ± 0.098 |
Leucine (Leu) | 2.291 ± 0.177 | 1.714 ± 0.089 | 1.588 ± 0.017 | 1.714 ± 0.040 | 1.425 ± 0.221 |
Lysine (Lys) | 1.271 ± 0.111 | 0.920 ± 0.008 | 0.812 ± 0.022 | 0.854 ± 0.025 | 0.686 ± 0.125 |
Threonine (Thr) | 1.353 ± 0.194 | 1.085 ± 0.051 | 0.959 ± 0.080 | 0.945 ± 0.009 | 0.905 ± 0.127 |
Valine (Val) | 1.431 ± 0.098 | 1.052 ± 0.062 | 1.013 ± 0.005 | 1.132 ± 0.084 | 0.837 ± 0.124 |
Arginine (Arg) | 2.099 ± 0.162 | 1.726 ± 0.087 | 1.521 ± 0.039 | 1.554 ± 0.033 | 1.371 ± 0.100 |
Histidine (His) | 0.730 ± 0.021 | 0.510 ± 0.033 | 0.477 ± 0.047 | 0.534 ± 0.026 | 0.416 ± 0.030 |
Total EAA | 8.805 | 6.582 | 6.124 | 6.562 | 5.399 |
Total EAA + semi-EAA | 11.634 | 8.818 | 8.122 | 8.650 | 7.186 |
Alanine (Ala) | 1.883 ± 0.242 | 1.295 ± 0.093 | 1.148 ± 0.038 | 1.213 ± 0.048 | 1.031 ± 0.115 |
Glycine (Gly) | 1.659 ± 0.073 | 1.259 ± 0.049 | 1.298 ± 0.171 | 1.249 ± 0.006 | 1.104 ± 0.069 |
Aspartic acid (Asp) | 3.179 ± 0.493 | 2.584 ± 0.219 | 2.281 ± 0.093 | 2.472 ± 0.061 | 2.100 ± 0.124 |
Glutamic acid (Glu) | 3.605 ± 0.483 | 2.959 ± 0.428 | 2.537 ± 0.043 | 2.733 ± 0.023 | 2.301 ± 0.303 |
Proline (Pro) | 1.298 ± 0.078 | 0.947 ± 0.033 | 0.887 ± 0.032 | 0.935 ± 0.013 | 0.766 ± 0.120 |
Serine (Ser) | 1.418 ± 0.116 | 1.116 ± 0.043 | 1.038 ± 0.077 | 1.082 ± 0.006 | 0.920 ± 0.102 |
Total NEAA | 13.042 | 10.160 | 9.189 | 9.684 | 8.222 |
EAA/NEAA | 67.5% | 64.8% | 66.6% | 67.8% | 65.7% |
Total amino acids | 24.676 | 18.978 | 17.311 | 18.334 | 15.408 |
C. Fatty Acids (FA) Profile [% of total] | |||||
Palmitic acid C16:0 | 27.01 a,b,c ± 0.65 | 27.65 c ± 0.49 | 27.24 b,c ± 0.26 | 25.78 a ± 0.90 | 26.23 a,b ± 0.68 |
Palmitoleic acid C16:1 n-9 c | 2.51 a ± 0.13 | 2.39 a ± 0.46 | 2.53 a ± 0.21 | 2.66 a ± 0.20 | 2.61 a ± 0.21 |
Margaric acid C17:0 | 0.66 c ± 0.01 | 0.59 b,c ± 0.10 | 0.49 a,b ± 0.06 | 0,45 a ± 0.03 | 0.43 a ± 0.01 |
Stearic acid C18:0 | 6.05 a ± 0.21 | 5.16 a ± 0.30 | 5.57 a ± 0.89 | 4.84 a ± 0.56 | 5.55 a ± 0.63 |
Elaidic acid C18:1 n-9t | n.d. | n.d. | n.d. | n.d. | n.d. |
Oleic acid C18:1 n-9 c | 4.46 a ± 0.38 | 4.33 a ± 0.62 | 4.58 a ± 0.29 | 5.41 b ± 0.24 | 4.49 a ± 0.22 |
Linoleic acid C18:2 n-6 c | 10.46 a ± 0.40 | 10.94 a,b ± 0.27 | 11.68 c ± 0.26 | 11.49 b,c± 0.43 | 11.12 a,b,c ± 0.14 |
α-linolenic acid C18:3 n-3 | 45.60 b ± 0.57 | 45.81 b ± 0.64 | 44.15 a ± 0.95 | 45.66 b ± 0.31 | 45.73 b ± 0.10 |
Arachidic acid C20:0 | 0.57 a,b ± 0.10 | 0.47 a ± 0.08 | 0.66 b,c ± 0.05 | 0.73 c ± 0.02 | 0.74 c ± 0.02 |
Cis-1-eicosenoic acid C20:1 | 0.55 b ± 0.13 | 0.31 a ± 0.02 | 0.35 a ± 0.04 | 0.30 a ± 0.03 | 0.41 a ± 0.02 |
Behenic acid C22:0 | 0.48 a ± 0.11 | 0.59 a ± 0.08 | 0.59 a ± 0.06 | 0.57 a ± 0.02 | 0.58 a ± 0.02 |
Erucic acid C22:1 n-9 | 0.72 a ± 0.11 | 0.69 a ± 0.13 | 1.15 b ± 0.12 | 1.08 b ± 0.11 | 1.16 b ± 0.15 |
Nervonic acid C24:1 | 0.93 a ± 0.17 | 1.07 a ± 0.03 | 1.01 a ± 0.03 | 1.03 a ± 0.09 | 0.95 a ± 0.03 |
UFA/SFA | 1.87 | 1.90 | 1.89 | 2.09 | 1.98 |
D. Minerals | |||||
Macroelements [mg/g] | |||||
Mg | 3.49 a ± 0.17 | 3.44 a ± 0.18 | 3.37 a ±0.14 | 3.54 a,b ± 0.21 | 3.51 a,b ± 0.09 |
Ca | 27.92 b ± 0.44 | 25.04 a ± 0.68 | 24.72 a ± 1.63 | 24.15 a ± 1.31 | 25.74 a,b ± 0.54 |
K | 67.79 a ± 3.25 | 64.52 a ± 2.93 | 70.96 a ± 3.17 | 69.67 a ± 2.34 | 64.63 a ± 2.98 |
[µg/g] | |||||
Na | 88.73 a ± 0.34 | 95.54 b ± 0.62 | 92.99 a ± 2.25 | 100.78 b ± 4.40 | 94.96 a ± 6.11 |
Microelements [µg/g] | |||||
Fe | 79.87 a ± 1.11 | 79.73 a ± 8.69 | 78.74 a ± 1.15 | 78.30 a ± 5.33 | 80.28 a ± 7.75 |
Mn | 27.01 a ± 1.33 | 27.11 a ± 1.77 | 26.81 a ± 0.35 | 27.54 a ± 1.09 | 25.03 a ± 2.18 |
Zn | 24.09 a ± 0.74 | 23.57 a ± 0.69 | 24.20 a ± 0.79 | 25.54 a ± 1.38 | 24.14 a ± 1.04 |
Cu | 4.98 a ± 0.89 | 5.22 a ± 0.35 | 5.02 a ± 0.26 | 4.95 a ± 0.32 | 5.09 a ± 0.69 |
E. Dietary Fiber and Fractions [g/100 g] | |||||
NDF | 26.42 a ± 1.16 | 27.91 a,b ± 0.98 | 27.83 a,b ± 0.56 | 30.01 b ± 0.36 | 29.73 b ± 1.07 |
ADF | 19.34 a ± 0.40 | 20.06 a ± 0.45 | 20.30 a ± 1.01 | 20.67 a ± 0.98 | 19.92 a ± 0.78 |
ADL | 0.10 a ± 0.01 | 0.09 a ± 0.01 | 0.13 b ± 0.01 | 0.18 c ± 0.01 | 0.16 c ± 0.00 |
Hemicelluloses | 7.09 a ± 0.98 | 7.84 a,b,c ± 0.91 | 7.53 a,b ± 0.73 | 9.33 b,c ± 0.69 | 9.81 c ± 0.48 |
Celluloses | 19.23 a ± 0.40 | 19.97 a ± 0.45 | 20.17 a ± 1.00 | 20.49 a ± 0.98 | 19.76 a ± 0.78 |
IDF | 54.57 a ± 0.91 | 58.57 b ± 0.47 | 58.61 b ± 1.29 | 59.75 b ± 1.24 | 58.74 b ± 0.47 |
SDF | 4.44 a ± 0.13 | 4.49 a ± 0.24 | 4.91 a ± 0.17 | 4.47 a ± 0.42 | 4.44 a ± 0.23 |
TDF | 59.01 a ± 0.84 | 63.06 b ± 0.70 | 63.52 b ± 1.12 | 64.23 b ± 1.43 | 63.18 b ± 0.46 |
F. Chlorophyll [mg/g] | |||||
Chlorophyll a | 1.834 b ± 0.023 | 1.216 a ± 0.010 | 0.945 a ± 0.064 | 1.121 a ± 0.297 | 1.217 a ± 0.135 |
66% | 59% | 61% | 60% | 55% | |
Chlorophyll b | 0.919 a ± 0.082 | 0.834 a ± 0.172 | 0.602 a ± 0.140 | 0.747 a ± 0.312 | 1.015 a ± 0.405 |
34% | 41% | 39% | 40% | 45% | |
Total | 2.753 | 2.050 | 1.546 | 1.868 | 2.232 |
Test | Derived Products of WML-P | ||||
---|---|---|---|---|---|
0 h (Control) | 1 h | 2 h | 3 h | 4 h | |
Total Phenolics [mg GAE/g] | 2.468 a ± 0.500 | 2.352 a ± 0.074 | 3.376 b ± 0.034 | 3.591 b ± 0.028 | 2.175 a ± 0.067 |
ABTS•+ Test [µM TE/g] | 23.630 d ± 0.019 | 23.892 d ± 0.004 | 17.235 b ± 0.011 | 16.033 a ± 0.004 | 20.110 c ± 0.003 |
DPPH• Test [µM TE/g] | 49.420 a ± 0.005 | 53.241 c ± 0.014 | 62.517 d ± 0.004 | 51.323 b ± 0.009 | 51.546 b ± 0.052 |
Chelating Activity [%] | 40.383 a ± 0.164 | 53.174 d ± 0.388 | 54.129 d ± 0.842 | 50.471 c ± 0.827 | 43.085 b ± 0.623 |
FRAP Test [µM Fe2+/mg] | 0.221 a ± 0.042 | 0.248 a ± 0.034 | 0.250 a ± 0.013 | 0.187 a ± 0.023 | 0.190 a ± 0.042 |
Bioactive Compounds | Derived Products of WML-P | ||||
---|---|---|---|---|---|
0 h (Control) | 1 h | 2 h | 3 h | 4 h | |
A. Phenolic Acids [mg/g] | |||||
Gallic Acid (GAL) | 0.190 a ± 0.005 | 0.268 c ± 0.001 | 0.261 c ± 0.007 | 0.231 b ± 0.006 | 0.197 a ± 0.001 |
Protocatechuic Acid (PRO) | 0.137 a ± 0.009 | 0.256 d ± 0.002 | 0.259 d ± 0.004 | 0.181 b ± 0.012 | 0.215 c ± 0.003 |
4-hydroxybenzoic Acid (HYD) | 0.100 a ± 0.001 | 0.111 a,b ± 0.001 | 0.119 b ± 0.003 | 0.112 a,b ± 0.010 | 0.125 b ± 0.005 |
Vanillic Acid (VAN) | 0.160 a ± 0.003 | 0.219 b ± 0.002 | 0.234 b,c ± 0.002 | 0.245 c ± 0.015 | 0.311 d ± 0.004 |
Chlorogenic Acid (CAF) | 0.375 b ± 0.003 | 0.528 c ± 0.012 | 0.727 d ± 0.015 | 0.358 b ± 0.017 | 0.162 a ± 0.011 |
Caffeic Acid (CHL) | 0.378 b ± 0.007 | 0.527 c ± 0.012 | 0.726 d ± 0.015 | 0.347 b ± 0.018 | 0.164 a ± 0.012 |
p-coumaric Acid (CUM) | 0.047 a ± 0.007 | 0.065 a ± 0.003 | 0.061 a ± 0.012 | 0.159 b ± 0.068 | 0.098 a,b ± 0.003 |
Ferullic Acid (FER) | 0.139 a ± 0.006 | 0.231 c ± 0.005 | 0.265 d ± 0.009 | 0.200 b ± 0.007 | 0.160 a ± 0.013 |
Sinapic Acid (SIN) | 0.204 b ± 0.012 | 0.179 a ± 0.008 | 0.206 b ± 0.004 | 0.277 c ± 0.007 | 0.309 d ± 0.004 |
Total | 1.730 | 2.384 | 2.858 | 2.110 | 1.741 |
B. Flavonols [mg/g] | |||||
Rutin (RUT) | 0.283 a ± 0.014 | 0.550 c ± 0.049 | 0.580 c ± 0.001 | 0.429 b ± 0.021 | 0.421 b ± 0.075 |
Isoquercetin (ISQ) | 0.209 a ± 0.009 | 0.283 b ± 0.011 | 0.320 c ± 0.001 | 0.283 b ± 0.006 | 0.287 b ± 0.018 |
Quercetin 3-O-(6′′-O-malonyl)-β-d-glucoside (MAL) | 0.207 b ± 0.025 | 0.258 c ± 0.033 | 0.274 c ± 0.009 | 0.206 b ± 0.010 | 0.157 a ± 0.004 |
Astragalin (AST) | 0.203 a ± 0.012 | 0.342 b ± 0.011 | 0.435 c ± 0.004 | 0.321 b ± 0.044 | 0.313 b ± 0.078 |
Myricetin (MYR) | 0.062 a ± 0.001 | 0.145 d ± 0.011 | 0.156 e ± 0.001 | 0.119 c ± 0.002 | 0.089 b ± 0.002 |
Quercetin (QUE) | 0.032 b ± 0.005 | 0.022 a ± 0.004 | 0.025 a,b ± 0.000 | 0.049 c ± 0.009 | 0.064 d ± 0.000 |
Kaempferol (KEM) | 0.008 c ± 0.001 | 0.004 a,b ± 0.001 | 0.003 a ± 0.000 | 0.004 b ± 0.000 | 0.008 c ± 0.000 |
Isorhamnetin (ISR) | 0.001 b ± 0.000 | 0.001 b ± 0.000 | 0.000 a ± 0.000 | 0.002 c ± 0.000 | 0.000 a ± 0.000 |
Total | 1.005 | 1.605 | 1.793 | 1.413 | 1.339 |
C. Iminosugar [mg/g] | |||||
1-deoxynojirimycin (DNJ) | 0.617 b ± 0.038 | 0.472 a ± 0.017 | 0.461 a ± 0.030 | 0.596 b ± 0.017 | 0.394 a ± 0.058 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Przeor, M.; Flaczyk, E.; Kmiecik, D.; Buchowski, M.S.; Staniek, H.; Tomczak-Graczyk, A.; Kobus-Cisowska, J.; Gramza-Michałowska, A.; Foksowicz-Flaczyk, J. Functional Properties and Antioxidant Activity of Morus alba L. Leaves var. Zolwinska Wielkolistna (WML-P)—The Effect of Controlled Conditioning Process. Antioxidants 2020, 9, 668. https://doi.org/10.3390/antiox9080668
Przeor M, Flaczyk E, Kmiecik D, Buchowski MS, Staniek H, Tomczak-Graczyk A, Kobus-Cisowska J, Gramza-Michałowska A, Foksowicz-Flaczyk J. Functional Properties and Antioxidant Activity of Morus alba L. Leaves var. Zolwinska Wielkolistna (WML-P)—The Effect of Controlled Conditioning Process. Antioxidants. 2020; 9(8):668. https://doi.org/10.3390/antiox9080668
Chicago/Turabian StylePrzeor, Monika, Ewa Flaczyk, Dominik Kmiecik, Maciej S. Buchowski, Halina Staniek, Aneta Tomczak-Graczyk, Joanna Kobus-Cisowska, Anna Gramza-Michałowska, and Joanna Foksowicz-Flaczyk. 2020. "Functional Properties and Antioxidant Activity of Morus alba L. Leaves var. Zolwinska Wielkolistna (WML-P)—The Effect of Controlled Conditioning Process" Antioxidants 9, no. 8: 668. https://doi.org/10.3390/antiox9080668
APA StylePrzeor, M., Flaczyk, E., Kmiecik, D., Buchowski, M. S., Staniek, H., Tomczak-Graczyk, A., Kobus-Cisowska, J., Gramza-Michałowska, A., & Foksowicz-Flaczyk, J. (2020). Functional Properties and Antioxidant Activity of Morus alba L. Leaves var. Zolwinska Wielkolistna (WML-P)—The Effect of Controlled Conditioning Process. Antioxidants, 9(8), 668. https://doi.org/10.3390/antiox9080668