Antioxidants in Down Syndrome: From Preclinical Studies to Clinical Trials
Abstract
:1. Oxidative Stress (OS) in Down Syndrome (DS)
1.1. Mechanisms of OS Involved in DS
1.2. Role of Oxidative Stress in DS Neurodegeneration and Cognitive Dysfunction
2. Brain Oxidative and Mitochondrial Profile in Mouse Models of DS
3. Antioxidant Therapy in DS: Preclinical and Clinical Studies
3.1. Antioxidant Therapies during Adulthood
3.2. Antioxidant Therapies in Early Life Stages
4. Targeting Mitochondrial Dysfunction to Reduce OS in DS
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Shin, M.; Besser, L.M.; Kucik, J.E.; Lu, C.; Siffel, C.; Correa, A. Prevalence of Down syndrome among children and adolescents in 10 regions of the United States. Pediatrics 2009, 124, 1565–1571. [Google Scholar] [CrossRef]
- Antonarakis, S.E.; Skotko, B.G.; Rafii, M.S.; Strydom, A.; Pape, S.E.; Bianchi, D.W.; Sherman, S.L.; Reeves, R.H. Down syndrome. Nat. Rev. Dis. Primers 2020, 6, 9. [Google Scholar] [CrossRef]
- Contestabile, A.; Fila, T.; Bartesaghi, R.; Ciani, E. Cell cycle elongation impairs proliferation of cerebellar granule cell precursors in the Ts65Dn mouse, an animal model for Down syndrome. Brain Pathol. 2009, 19, 224–237. [Google Scholar] [CrossRef] [PubMed]
- Lott, I.T. Antioxidants in Down syndrome. Biochim. Biophys. Acta 2012, 1822, 657–663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haydar, T.F.; Reeves, R.H. Trisomy 21 and early brain development. Trends Neurosci. 2012, 35, 81–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bianchi, P.; Ciani, E.; Guidi, S.; Trazzi, S.; Felice, D.; Grossi, G.; Fernandez, M.; Giuliani, A.; Calzà, L.; Bartesaghi, R. Early pharmacotherapy restores neurogenesis and cognitive performance in the Ts65Dn mouse model for down syndrome. J. Neurosci. 2010, 30, 8769–8779. [Google Scholar] [CrossRef] [Green Version]
- Bianchi, P.; Ciani, E.; Contestabile, A.; Guidi, S.; Bartesaghi, R. Lithium restores neurogenesis in the subventricular zone of the Ts65Dn mouse, a model for Down syndrome. Brain Pathol. 2010, 20, 106–118. [Google Scholar] [CrossRef]
- Trazzi, S.; Mitrugno, V.M.; Valli, E.; Fuchs, C.; Rizzi, S.; Guidi, S.; Perini, G.; Bartesaghi, R.; Ciani, E. APP-dependent up-regulation of Ptch1 underlies proliferation impairment of neural precursors in Down syndrome. Hum. Mol. Genet. 2011, 20, 1560–1573. [Google Scholar] [CrossRef] [Green Version]
- Stagni, F.; Giacomini, A.; Emili, M.; Guidi, S.; Bartesaghi, R. Neurogenesis impairment: An early developmental defect in Down syndrome. Free Radic. Biol. Med. 2018, 114, 15–32. [Google Scholar] [CrossRef]
- Sabbagh, M.N.; Fleisher, A.; Chen, K.; Rogers, J.; Berk, C.; Reiman, E.; Pontecorvo, M.; Mintun, M.; Skovronsky, D.; Jacobson, S.A.; et al. Positron emission tomography and neuropathologic estimates of fibrillar amyloid-β in a patient with Down syndrome and Alzheimer disease. Arch. Neurol. 2011, 68, 1461–1466. [Google Scholar] [CrossRef]
- Cenini, G.; Dowling, A.L.; Beckett, T.L.; Barone, E.; Mancuso, C.; Murphy, M.P.; Levine, H.; Lott, I.T.; Schmitt, F.A.; Butterfield, D.A.; et al. Association between frontal cortex oxidative damage and beta-amyloid as a function of age in Down syndrome. Biochim. Biophys. Acta 2012, 1822, 130–138. [Google Scholar] [CrossRef] [PubMed]
- Wilcock, D.M.; Griffin, W.S. Down’s syndrome, neuroinflammation, and Alzheimer neuropathogenesis. J. Neuroinflamm. 2013, 10, 84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiseman, F.K.; Al-Janabi, T.; Hardy, J.; Karmiloff-Smith, A.; Nizetic, D.; Tybulewicz, V.L.; Fisher, E.M.; Strydom, A. A genetic cause of Alzheimer disease: Mechanistic insights from Down syndrome. Nat. Rev. Neurosci. 2015, 16, 564–574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gomez, W.; Morales, R.; Maracaja-Coutinho, V.; Parra, V.; Nassif, M. Down syndrome and Alzheimer’s disease: Common molecular traits beyond the amyloid precursor protein. Aging 2020, 12, 1011–1033. [Google Scholar] [CrossRef] [PubMed]
- Casanova, M.F.; Walker, L.C.; Whitehouse, P.J.; Price, D.L. Abnormalities of the nucleus basalis in Down’s syndrome. Ann. Neurol. 1985, 18, 310–313. [Google Scholar] [CrossRef] [PubMed]
- McGeer, E.G.; Norman, M.; Boyes, B.; O’Kusky, J.; Suzuki, J.; McGeer, P.L. Acetylcholine and aromatic amine systems in postmortem brain of an infant with Down’s syndrome. Exp. Neurol. 1985, 87, 557–570. [Google Scholar] [CrossRef]
- Yates, C.M.; Ritchie, I.M.; Simpson, J.; Maloney, A.F.; Gordon, A. Noradrenaline in Alzheimer-type dementia and Down syndrome. Lancet 1981, 2, 39–40. [Google Scholar] [CrossRef]
- Di Carlo, M.; Giacomazza, D.; Picone, P.; Nuzzo, D.; San Biagio, P.L. Are oxidative stress and mitochondrial dysfunction the key players in the neurodegenerative diseases? Free Radic. Res. 2012, 46, 1327–1338. [Google Scholar] [CrossRef]
- Di Domenico, F.; Tramutola, A.; Foppoli, C.; Head, E.; Perluigi, M.; Butterfield, D.A. mTOR in Down syndrome: Role in Aß and tau neuropathology and transition to Alzheimer disease-like dementia. Free Radic. Biol. Med. 2018, 114, 94–101. [Google Scholar] [CrossRef]
- Perluigi, M.; Butterfield, D.A. Oxidative Stress and Down Syndrome: A Route toward Alzheimer-Like Dementia. Curr. Gerontol. Geriatr. Res. 2012, 2012. [Google Scholar] [CrossRef] [Green Version]
- De Haan, J.B.; Cristiano, F.; Iannello, R.C.; Kola, I. Cu/Zn superoxide dismutase and glutathione peroxidase during aging. Biochem. Mol. Biol. Int. 1995, 35, 1281–1297. [Google Scholar] [PubMed]
- Perluigi, M.; di Domenico, F.; Fiorini, A.; Cocciolo, A.; Giorgi, A.; Foppoli, C.; Butterfield, D.A.; Giorlandino, M.; Giorlandino, C.; Schininà, M.E.; et al. Oxidative stress occurs early in Down syndrome pregnancy: A redox proteomics analysis of amniotic fluid. Proteom. Clin. Appl. 2011, 5, 167–178. [Google Scholar] [CrossRef] [PubMed]
- Piccoli, C.; Izzo, A.; Scrima, R.; Bonfiglio, F.; Manco, R.; Negri, R.; Quarato, G.; Cela, O.; Ripoli, M.; Prisco, M.; et al. Chronic pro-oxidative state and mitochondrial dysfunctions are more pronounced in fibroblasts from Down syndrome foeti with congenital heart defects. Hum. Mol. Genet. 2013, 22, 1218–1232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Izzo, A.; Nitti, M.; Mollo, N.; Paladino, S.; Procaccini, C.; Faicchia, D.; Cali, G.; Genesio, R.; Bonfiglio, F.; Cicatiello, R.; et al. Metformin restores the mitochondrial network and reverses mitochondrial dysfunction in Down syndrome cells. Hum. Mol. Genet. 2017, 26, 1056–1069. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bordi, M.; Darji, S.; Sato, Y.; Mellen, M.; Berg, M.J.; Kumar, A.; Jiang, Y.; Nixon, R.A. mTOR hyperactivation in Down Syndrome underlies deficits in autophagy induction, autophagosome formation, and mitophagy. Cell Death Dis. 2019, 10, 563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mollo, N.; Cicatiello, R.; Aurilia, M.; Scognamiglio, R.; Genesio, R.; Charalambous, M.; Paladino, S.; Conti, A.; Nitsch, L.; Izzo, A. Targeting mitochondrial network architecture in Down syndrome and aging. Int. J. Mol. Sci. 2020, 21. [Google Scholar] [CrossRef] [PubMed]
- Helguera, P.; Seiglie, J.; Rodriguez, J.; Hanna, M.; Helguera, G.; Busciglio, J. Adaptive downregulation of mitochondrial function in down syndrome. Cell Metab. 2013, 17, 132–140. [Google Scholar] [CrossRef] [Green Version]
- Zamponi, E.; Helguera, P.R. The shape of mitochondrial dysfunction in down syndrome. Dev. Neurobiol. 2019, 79, 613–621. [Google Scholar] [CrossRef]
- Kim, S.H.; Vlkolinsky, R.; Cairns, N.; Lubec, G. Decreased levels of complex III core protein 1 and complex V beta chain in brains from patients with Alzheimer’s disease and Down syndrome. Cell. Mol. Life Sci. 2000, 57, 1810–1816. [Google Scholar] [CrossRef]
- Coskun, P.E.; Busciglio, J. Oxidative stress and mitochondrial dysfunction in Down’s syndrome: Relevance to aging and dementia. Curr. Gerontol. Geriatr. Res. 2012, 2012. [Google Scholar] [CrossRef]
- Valenti, D.; Manente, G.A.; Moro, L.; Marra, E.; Vacca, R.A. Deficit of complex I activity in human skin fibroblasts with chromosome 21 trisomy and overproduction of reactive oxygen species by mitochondria: Involvement of the cAMP/PKA signalling pathway. Biochem. J. 2011, 435, 679–688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valenti, D.; Tullo, A.; Caratozzolo, M.F.; Merafina, R.S.; Scartezzini, P.; Marra, E.; Vacca, R.A. Impairment of F1F0-ATPase, adenine nucleotide translocator and adenylate kinase causes mitochondrial energy deficit in human skin fibroblasts with chromosome 21 trisomy. Biochem. J. 2010, 431, 299–310. [Google Scholar] [CrossRef]
- Valenti, D.; Braidy, N.; De Rasmo, D.; Signorile, A.; Rossi, L.; Atanasov, A.G.; Volpicella, M.; Henrion-Caude, A.; Nabavi, S.M.; Vacca, R.A. Mitochondria as pharmacological targets in Down syndrome. Free Radic. Biol. Med. 2018, 114, 69–83. [Google Scholar] [CrossRef] [PubMed]
- Gulesserian, T.; Engidawork, E.; Fountoulakis, M.; Lubec, G. Antioxidant proteins in fetal brain: Superoxide dismutase-1 (SOD-1) protein is not overexpressed in fetal Down syndrome. J. Neural Transm. 2001, 61, 71–84. [Google Scholar]
- Sánchez-Font, M.F.; Sebastià, J.; Sanfeliu, C.; Cristòfol, R.; Marfany, G.; Gonzàlez-Duarte, R. Peroxiredoxin 2 (PRDX2), an antioxidant enzyme, is under-expressed in Down syndrome fetal brains. Cell. Mol. Life Sci. 2003, 60, 1513–1523. [Google Scholar] [CrossRef]
- Gimeno, A.; García-Giménez, J.L.; Audí, L.; Toran, N.; Andaluz, P.; Dasí, F.; Viña, J.; Pallardó, F.V. Decreased cell proliferation and higher oxidative stress in fibroblasts from Down syndrome fetuses. Preliminary Study. Biochim. Biophys. Acta. 2014, 1842, 116–125. [Google Scholar] [CrossRef] [Green Version]
- Muchová, J.; Žitňanová, I.; Ďuračková, Z. Oxidative stress and Down syndrome. Do antioxidants play a role in therapy? Physiol. Res. 2014, 63, 535–542. [Google Scholar]
- Parisotto, E.B.; Giaretta, A.G.; Zamoner, A.; Moreira, E.A.; Fröde, T.S.; Pedrosa, R.C.; Filho, D.W. Persistence of the benefit of an antioxidant therapy in children and teenagers with Down syndrome. Res. Dev. Disabil. 2015, 45, 14–20. [Google Scholar] [CrossRef]
- Garlet, T.R.; Parisotto, E.B.; de Medeiros, G.; Pereira, L.C.; Moreira, E.A.; Dalmarco, E.M.; Dalmarco, J.B.; Wilhelm Filho, D. Systemic oxidative stress in children and teenagers with Down syndrome. Life Sci. 2013, 93, 558–563. [Google Scholar] [CrossRef] [Green Version]
- Hamed, R.R.; Maharem, T.M.; Abdel-Meguid, N.; Sabry, G.M.; Abdalla, A.M.; Guneidy, R.A. Purification and biochemical characterization of glutathione S-transferase from Down syndrome and normal children erythrocytes: A comparative study. Res. Dev. Disabil. 2011, 32, 1470–1482. [Google Scholar] [CrossRef]
- Meguid, N.A.; Dardir, A.A.; El-Sayed, E.M.; Ahmed, H.H.; Hashish, A.F.; Ezzat, A. Homocysteine and oxidative stress in Egyptian children with Down syndrome. Clin. Biochem. 2010, 43, 963–967. [Google Scholar] [CrossRef] [PubMed]
- Saghazadeh, A.; Mahmoudi, M.; Dehghani Ashkezari, A.; Oliaie Rezaie, N.; Rezaei, N. Systematic review and meta-analysis shows a specific micronutrient profile in people with Down Syndrome: Lower blood calcium, selenium and zinc, higher red blood cell copper and zinc, and higher salivary calcium and sodium. PLoS ONE 2017, 12, e0175437. [Google Scholar] [CrossRef] [PubMed]
- Jackson, C.V.; Holland, A.J.; Williams, C.A.; Dickerson, J.W. Vitamin E and Alzheimer’s disease in subjects with Down’s syndrome. J. Ment. Defic. Res. 1988, 32, 479–484. [Google Scholar] [CrossRef] [PubMed]
- Whittle, N.; Sartori, S.B.; Dierssen, M.; Lubec, G.; Singewald, N. Fetal Down syndrome brains exhibit aberrant levels of neurotransmitters critical for normal brain development. Pediatrics 2007, 120, e1465–e1471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mazur-Kolecka, B.; Golabek, A.; Nowicki, K.; Flory, M.; Frackowiak, J. Amyloid-β impairs development of neuronal progenitor cells by oxidative mechanisms. Neurobiol. Aging 2006, 27, 1181–1192. [Google Scholar] [CrossRef] [PubMed]
- Busciglio, J.; Pelsman, A.; Wong, C.; Pigino, G.; Yuan, M.; Mori, H.; Yankner, B.A. Altered metabolism of the amyloid β precursor protein is associated with mitochondrial dysfunction in Down’s syndrome. Neuron 2002, 33, 677–688. [Google Scholar] [CrossRef] [Green Version]
- Helguera, P.; Pelsman, A.; Pigino, G.; Wolvetang, E.; Head, E.; Busciglio, J. ets-2 promotes the activation of a mitochondrial death pathway in Down’s syndrome neurons. J. Neurosci. 2005, 25, 2295–2303. [Google Scholar] [CrossRef]
- Head, E.; Lott, I.T.; Wilcock, D.M.; Lemere, C.A. Aging in Down syndrome and the development of Alzheimer’s disease neuropathology. Curr. Alzheimer Res. 2016, 13, 18–29. [Google Scholar] [CrossRef] [Green Version]
- Butterfield, D.A.; Boyd-Kimball, D. Redox proteomics and amyloid β-peptide: Insights into Alzheimer disease. J. Neurochem. 2019, 151, 459–487. [Google Scholar] [CrossRef] [Green Version]
- Perluigi, M.; Di Domenico, F.; Buttterfield, D.A. Unraveling the complexity of neurodegeneration in brains of subjects with Down syndrome: Insights from proteomics. Proteom. Clin. Appl. 2014, 8, 73–85. [Google Scholar] [CrossRef] [Green Version]
- Maines, M.D. The heme oxygenase system and its functions in the brain. Cell. Mol. Biol. 2000, 46, 573–585. [Google Scholar] [PubMed]
- Di Domenico, F.; Pupo, G.; Mancuso, C.; Barone, E.; Paolini, F.; Arena, A.; Blarzino, C.; Schmitt, F.A.; Head, E.; Butterfield, D.A.; et al. Bach1 overexpression in Down syndrome correlates with the alteration of the HO-1/BVR-a system: Insights for transition to Alzheimer’s disease. J. Alzheimers Dis. 2015, 44, 1107–1120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balcz, B.; Kirchner, L.; Cairns, N.; Fountoulakis, M.; Lubec, G.J. Increased brain protein levels of carbonyl reductase and alcohol dehydrogenase in Down syndrome and Alzheimer’s disease. Neural Transm. Suppl. 2001, 61, 193–201. [Google Scholar]
- Royston, M.C.; McKenzie, J.E.; Gentleman, S.M.; Sheng, J.G.; Mann, D.M.; Griffin, W.S.; Mrak, R.E. Overexpression of s100beta in Down’s syndrome: Correlation with patient age and with beta-amyloid deposition. Neuropathol. Appl. Neurobiol. 1999, 25, 387–393. [Google Scholar] [CrossRef]
- Esposito, G.; Imitola, J.; Lu, J.; De Filippis, D.; Scuderi, C.; Ganesh, V.S.; Folkerth, R.; Hecht, J.; Shin, S.; Iuvone, T.; et al. Genomic and functional profiling of human Down syndrome neural progenitors implicates S100B and aquaporin 4 in cell injury. Hum. Mol. Genet. 2008, 17, 440–457. [Google Scholar] [CrossRef] [Green Version]
- Esposito, G.; De Filippis, D.; Cirillo, C.; Sarnelli, G.; Cuomo, R.; Iuvone, T. The astroglial-derived S100beta protein stimulates the expression of nitric oxide synthase in rodent macrophages through p38 MAP kinase activation. Life Sci. 2006, 78, 2707–2715. [Google Scholar] [CrossRef]
- Butterfield, D.A.; Perluigi, M.; Reed, T.; Muharib, T.; Hughes, C.P.; Robinson, R.A.; Sultana, R. Redox proteomics in selected neurodegenerative disorders: From its infancy to future applications. Antioxid. Redox Signal. 2012, 17, 1610–1655. [Google Scholar] [CrossRef] [Green Version]
- Odetti, P.; Angelini, G.; Dapino, D.; Zaccheo, D.; Garibaldi, S.; Dagna-Bricarelli, F.; Piombo, G.; Perry, G.; Smith, M.; Traverso, N.; et al. Early glycoxidation damage in brains from Down’s syndrome. Biochem. Biophys. Res. Commun. 1998, 243, 849–851. [Google Scholar] [CrossRef]
- Busciglio, J.; Yankner, B.A. Apoptosis and increased generation of reactive oxygen species in Down’s syndrome neurons In Vitro. Nature 1995, 378, 776–779. [Google Scholar] [CrossRef]
- Nunomura, A.; Perry, G.; Pappolla, M.A.; Friedland, R.P.; Hirai, K.; Chiba, S.; Smith, M.A. Neuronal oxidative stress precedes amyloid-β deposition in down syndrome. J. Neuropathol. Exp. Neurol. 2000, 59, 1011–1017. [Google Scholar] [CrossRef]
- Di Domenico, F.; Coccia, R.; Cocciolo, A.; Murphy, M.P.; Cenini, G.; Head, E.; Butterfield, D.A.; Giorgi, A.; Schinina, M.E.; Mancuso, C.; et al. Impairment of proteostasis network in Down syndrome prior to the development of Alzheimer’s disease neuropathology: Redox proteomics analysis of human brain. Biochim. Biophys. Acta 2013, 1832, 1249–1259. [Google Scholar] [CrossRef] [PubMed]
- Hamlett, E.D.; Ledreux, A.; Potter, H.; Chial, H.J.; Patterson, D.; Espinosa, J.M.; Bettcher, B.M.; Granholm, A.C. Exosomal biomarkers in Down syndrome and Alzheimer’s disease. Free Radic. Biol. Med. 2018, 114, 110–121. [Google Scholar] [CrossRef] [PubMed]
- Morawiec, Z.; Janik, K.; Kowalski, M.; Stetkiewicz, T.; Szaflik, J.; Morawiec-Bajda, A.; Sobczuk, A.; Blasiak, J. DNA damage and repair in children with Down’s syndrome. Mutat. Res. 2008, 637, 118–123. [Google Scholar] [CrossRef] [PubMed]
- Necchi, D.; Pinto, A.; Tillhon, M.; Dutto, I.; Serafini, M.M.; Lanni, C.; Govoni, S.; Racchi, M.; Prosperi, E. Defective DNA repair and increased chromatin binding of DNA repair factors in Down syndrome fibroblasts. Mutat. Res. 2015, 780, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Tiano, L.; Padella, L.; Santoro, L.; Carnevali, P.; Principi, F.; Brugè, F.; Gabrielli, O.; Littarru, G.P. Prolonged coenzyme Q10 treatment in Down syndrome patients: Effect on DNA oxidation. Neurobiol. Aging 2012, 33, 626.e1–626.e8. [Google Scholar] [CrossRef]
- Martínez-Cué, C.; Rueda, N. Cellular senescence in neurodegenerative diseases. Front. Cell. Neurosci. 2020, 14, 16. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Chen, X.; Liu, T.; Gong, Y.; Chen, S.; Pan, G.; Cui, W.; Luo, Z.P.; Pei, M.; Yang, H.; et al. Melatonin reverses H2O2-induced premature senescence in mesenchymal stem cells via the SIRT1-dependent pathway. J. Pineal Res. 2015, 59, 190–205. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Sureda, V.; Vilches, Á.; Sánchez, O.; Audí, L.; Domínguez, C. Intracellular oxidant activity, antioxidant enzyme defense system, and cell senescence in fibroblasts with trisomy 21. Oxidative Med. Cell Longev. 2015, 2015. [Google Scholar] [CrossRef] [Green Version]
- Vidal, M.A.; Walker, N.J.; Napoli, E.; Borjesson, D.L. Evaluation of senescence in mesenchymal stem cells isolated from equine bone marrow, adipose tissue, and umbilical cord tissue. Stem Cells Dev. 2012, 21, 273–283. [Google Scholar] [CrossRef]
- Amiel, A.; Fejgin, M.D.; Liberman, M.; Sharon, Y.; Kidron, D.; Biron-Shental, T. Senescence in amniocytes and placentas from trisomy 21 pregnancies. J. Matern. Fetal Neonatal Med. 2013, 26, 1086–1089. [Google Scholar] [CrossRef]
- De Haan, J.B.; Cristiano, F.; Iannello, R.; Bladier, C.; Kelner, M.J.; Kola, I. Elevation in the ratio of Cu/Zn- superoxide dismutase to glutathione peroxidase activity induces features of cellular senescence and this effect is mediated by hydrogen peroxide. Hum. Mol. Genet. 1996, 5, 283–292. [Google Scholar] [CrossRef] [PubMed]
- Lott, I.T.; Head, E.; Doran, E.; Busciglio, J. Beta-amyloid, oxidative stress and Down syndrome. Curr. Alzheimer Res. 2006, 3, 521–528. [Google Scholar] [CrossRef]
- Gupta, M.; Dhanasekaran, A.R.; Gardiner, K.J. Mouse models of Down syndrome: Gene content and consequences. Mamm. Genome 2016, 27, 538–555. [Google Scholar] [CrossRef] [PubMed]
- Rueda, N.; Martínez-Cué, C. Mouse models of Down syndrome and Alzheimer’s Disease: Similarities and differences. In Recent Advances in Alzheimer Research; Salehi, A., Rafii, M., Phillips, C., Eds.; Bentham Books: Sharjah, UAE, 2015; Volume 1, pp. 191–250. [Google Scholar]
- Rueda, N.; Flórez, J.; Martínez-Cué, C. Mouse models of Down syndrome as a tool to unravel the causes of mental disabilities. Neural Plast. 2012, 2012. [Google Scholar] [CrossRef] [PubMed]
- Herault, Y.; Delabar, J.M.; Fisher, E.M.C.; Tybulewicz, V.L.J.; Yu, E.; Brault, V. Rodent models in Down syndrome research: Impact and future opportunities. Dis. Models Mech. 2017, 10, 1165–1186. [Google Scholar] [CrossRef] [Green Version]
- Lockrow, J.; Prakasam, A.; Huang, P.; Bimonte-Nelson, H.; Sambamurti, K.; Granholm, A.C. Cholinergic degeneration and memory loss delayed by vitamin E in a Down syndrome mouse model. Exp. Neurol. 2009, 216, 278–289. [Google Scholar] [CrossRef] [Green Version]
- Lockrow, J.; Boger, H.; Bimonte-Nelson, H.; Granholm, A.C. Effects of long-term memantine on memory and neuropathology in Ts65Dn mice, a model for Down syndrome. Behav. Brain Res. 2011, 221, 610–622. [Google Scholar] [CrossRef] [Green Version]
- Shichiri, M.; Yoshida, Y.; Ishida, N.; Hagihara, Y.; Iwahashi, H.; Tamai, H.; Niki, E. α-Tocopherol suppresses lipid peroxidation and behavioral and cognitive impairments in the Ts65Dn mouse model of Down syndrome. Free Radic. Biol. Med. 2011, 50, 1801–1811. [Google Scholar] [CrossRef]
- Corrales, A.; Parisotto, E.B.; Vidal, V.; García-Cerro, S.; Lantigua, S.; Diego, M.; Wilhem-Filho, D.; Sanchez-Barceló, E.J.; Martínez-Cué, C.; Rueda, N. Pre- and post-natal melatonin administration partially regulates brain oxidative stress but does not improve cognitive or histological alterations in the Ts65Dn mouse model of Down syndrome. Behav. Brain Res. 2018, 334, 142–154. [Google Scholar] [CrossRef] [Green Version]
- Corrales, A.; Vidal, R.; García, S.; Vidal, V.; Martínez, P.; García, E.; Flórez, J.; Sanchez-Barceló, E.J.; Martínez-Cué, C.; Rueda, N. Chronic melatonin treatment rescues electrophysiological and neuromorphological deficits in a mouse model of Down syndrome. J. Pineal Res. 2014, 56, 51–61. [Google Scholar] [CrossRef] [Green Version]
- Parisotto, E.B.; Vidal, V.; García-Cerro, S.; Lantigua, S.; Wilhelm Filho, D.; Sanchez-Barceló, E.J.; Martínez-Cué, C.; Rueda, N. Chronic melatonin administration reduced oxidative damage and cellular senescence in the hippocampus of a mouse model of down syndrome. Neurochem. Res. 2016, 41, 2904–2913. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valenti, D.; de Bari, L.; de Rasmo, D.; Signorile, A.; Henrion-Caude, A.; Contestabile, A.; Vacca, R.A. The polyphenols resveratrol and epigallocatechin-3-gallate restore the severe impairment of mitochondria in hippocampal progenitor cells from a Down syndrome mouse model. Biochim. Biophys. Acta 2016, 1862, 1093–1104. [Google Scholar] [CrossRef] [PubMed]
- Adorno, M.; Sikandar, S.; Mitra, S.S.; Kuo, A.; Nicolis Di Robilant, B.; Haro-Acosta, V.; Ouadah, Y.; Quarta, M.; Rodriguez, J.; Qian, D.; et al. Usp16 contributes to somatic stem-cell defects in Down’s syndrome. Nature 2013, 501, 380–384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Chang, J.; Shao, L.; Feng, W.; Luo, Y.; Chow, M.; Du, W.; Meng, A.; Zhou, D. Hematopoietic stem cells from Ts65Dn mice are deficient in the repair of DNA double-strand breaks. Radiat. Res. 2016, 185, 630–637. [Google Scholar] [CrossRef] [PubMed]
- Pawlikowski, B.; Betta, N.D.; Elston, T.; Williams, D.A.; Olwin, B.B. Muscle stem cell dysfunction impairs muscle regeneration in a mouse model of Down syndrome. Sci. Rep. 2018, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rueda, N.; Vidal, V.; García-Cerro, S.; Narcís, J.O.; Llorens-Martín, M.; Corrales, A.; Lantigua, S.; Iglesias, M.; Merino, J.; Merino, R.; et al. Anti-IL17 treatment ameliorates Down syndrome phenotypes in mice. Brain Behav. Immun. 2018, 73, 235–251. [Google Scholar] [CrossRef]
- García-Cerro, S.; Rueda, N.; Vidal, V.; Lantigua, S.; Martínez-Cué, C. Normalizing the gene dosage of Dyrk1A in a mouse model of Down syndrome rescues several Alzheimer’s disease phenotypes. Neurobiol. Dis. 2017, 106, 76–88. [Google Scholar] [CrossRef] [Green Version]
- Bambrick, L.L.; Fiskum, G. Mitochondrial dysfunction in mouse trisomy 16 brain. Brain Res. 2008, 1188, 9–16. [Google Scholar] [CrossRef]
- Zamponi, E.; Zamponi, N.; Coskun, P.; Quassollo, G.; Lorenzo, A.; Cannas, S.A.; Pigino, G.; Chialvo, D.R.; Gardiner, K.; Busciglio, J.; et al. Nrf2 stabilization prevents critical oxidative damage in Down syndrome cells. Aging Cell 2018, 17, e12812. [Google Scholar] [CrossRef]
- Ishihara, K.; Kawashita, E.; Shimizu, R.; Nagasawa, K.; Yasui, H.; Sago, H.; Yamakawa, K.; Akiba, S. Copper accumulation in the brain causes the elevation of oxidative stress and less anxious behavior in Ts1Cje mice, a model of Down syndrome. Free Radic. Biol. Med. 2019, 134, 248–259. [Google Scholar] [CrossRef]
- Ishihara, K.; Amano, K.; Takaki, E.; Ebrahim, A.S.; Shimohata, A.; Shibazaki, N.; Inoue, I.; Takaki, M.; Ueda, Y.; Sago, H.; et al. Increased lipid peroxidation in Down’s syndrome mouse models. J. Neurochem. 2009, 110, 1965–1976. [Google Scholar] [CrossRef] [PubMed]
- Shukkur, E.A.; Shimohata, A.; Akagi, T.; Yu, W.; Yamaguchi, M.; Murayama, M.; Chui, D.; Takeuchi, T.; Amano, K.; Subramhanya, K.H.; et al. Mitochondrial dysfunction and tau hyperphosphorylation in Ts1Cje, a mouse model for Down syndrome. Hum. Mol. Genet. 2006, 15, 2752–2762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naert, G.; Ferré, V.; Keller, E.; Slender, A.; Gibbins, D.; Fisher, E.M.; Tybulewicz, V.L.; Maurice, T. InVivo and Ex Vivo analyses of amyloid toxicity in the Tc1 mouse model of Down syndrome. J. Psychopharmacol. 2018, 32, 174–190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Necchi, D.; Lomoio, S.; Scherini, E. Dysfunction of the ubiquitin-proteasome system in the cerebellum of aging Ts65Dn mice. Exp. Neurol. 2011, 232, 114–118. [Google Scholar] [CrossRef] [PubMed]
- Tramutola, A.; Pupo, G.; Di Domenico, F.; Barone, E.; Arena, A.; Lanzillotta, C.; Brokeaart, D.; Blarzino, C.; Head, E.; Butterfield, D.A.; et al. Activation of p53 in Down syndrome and in the Ts65Dn mouse brain is associated with a proapoptotic phenotype. J. Alzheimers Dis. 2016, 52, 359–371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aivazidis, S.; Coughlan, C.M.; Rauniyar, A.K.; Jiang, H.; Liggett, L.A.; Maclean, K.N.; Roede, J.R. The burden of trisomy 21 disrupts the proteostasis network in Down syndrome. PLoS ONE 2017, 12, e0176307. [Google Scholar] [CrossRef]
- Di Domenico, F.; Tramutola, A.; Barone, E.; Lanzillotta, C.; Defever, O.; Arena, A.; Zuliani, I.; Foppoli, C.; Iavarone, F.; Vincenzoni, F.; et al. Restoration of aberrant mTOR signaling by intranasal rapamycin reduces oxidative damage: Focus on HNE-modified proteins in a mouse model of Down syndrome. Redox Biol. 2019, 23. [Google Scholar] [CrossRef]
- Pelsman, A.; Hoyo-Vadillo, C.; Gudasheva, T.A.; Seredenin, S.B.; Ostrovskaya, R.U.; Busciglio, J. GVS-111 prevents oxidative damage and apoptosis in normal and Down’s syndrome human cortical neurons. Int. J. Dev. Neurosci. 2003, 21, 117–124. [Google Scholar] [CrossRef]
- Galano, A.; Tan, D.X.; Reiter, R.J. Melatonin as a naturally against oxidative stress: A physicochemical examination. J. Pineal Res. 2011, 51, 1–16. [Google Scholar] [CrossRef]
- Tan, D.X.; Manchester, L.C.; Qin, L.; Reiter, R.J. Melatonin: A Mitochondrial Targeting Molecule Involving Mitochondrial Protection and Dynamics. Int. J. Mol. Sci. 2016, 17, 2124. [Google Scholar] [CrossRef]
- Corrales, A.; Martínez, P.; García, S.; Vidal, V.; García, E.; Flórez, J.; Sánchez-Barceló, E.J.; Martínez-Cué, C.; Rueda, N. Long-term oral administration of melatonin improves spatial learning and memory and protects against cholinergic degeneration in middle-aged Ts65Dn mice, a model of Down syndrome. J. Pineal Res. 2013, 54, 346–358. [Google Scholar] [CrossRef] [PubMed]
- Lott, I.T.; Doran, E.; Nguyen, V.Q.; Tournay, A.; Head, E.; Gillen, D.L. Down syndrome and dementia: A randomized, controlled trial of antioxidant supplementation. Am. J. Med. Genet. 2011, 155A, 1939–1948. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sano, M.; Aisen, P.S.; Andrews, H.F.; Tsai, W.Y.; Lai, F.; Dalton, A.J. International Down Syndrome and Alzheimer’s Disease Consortium. Vitamin E in aging persons with Down syndrome: A randomized, placebo-controlled clinical trial. Neurology 2016, 86, 2071–2076. [Google Scholar] [CrossRef] [PubMed]
- Yaffe, K. Antioxidants and prevention of cognitive decline: Does duration of use matter? Arch. Intern. Med. 2007, 167, 2167–2168. [Google Scholar] [CrossRef] [PubMed]
- Lee, P.; Ulatowski, L.M. Vitamin E: Mechanism of transport and regulation in the CNS. IUBMB Life 2019, 71, 424–429. [Google Scholar] [CrossRef] [PubMed]
- Ulatowski, L.; Dreussi, C.; Noy, N.; Barnholtz-Sloan, J.; Klein, E.; Manor, D. Expression of the alpha-tocopherol transfer protein gene is regulated by oxidative stress and common single-nucleotide polymorphisms. Free Radic. Biol. Med. 2012, 53, 2318–2326. [Google Scholar] [CrossRef] [Green Version]
- Zana, M.; Szécsényi, A.; Czibula, A.; Bjelik, A.; Juhász, A.; Rimanóczy, A.; Szabó, K.; Vetró, A.; Szucs, P.; Várkonyi, A.; et al. Age-dependent oxidative stress-induced DNA damage in Down’s lymphocytes. Biochem. Biophys. Res. Commun. 2006, 345, 726–733. [Google Scholar] [CrossRef]
- Head, E.; Lott, I.T.; Patterson, D.; Doran, E.; Haier, R.J. Possible compensatory events in adult Down syndrome brain prior to the development of Alzheimer disease neuropathology: Targets for nonpharmacological intervention. J. Alzheimers Dis. 2007, 11, 61–76. [Google Scholar] [CrossRef] [Green Version]
- Rueda, N.; Flórez, J.; Martínez-Cué, C. Effects of chronic administration of SGS-111 during adulthood and during the pre- and post-natal periods on the cognitive deficits of Ts65Dn mice, a model of Down syndrome. Behav. Brain Res. 2008, 188, 355–367. [Google Scholar] [CrossRef]
- Stagni, F.; Giacomini, A.; Guidi, S.; Emili, M.; Uguagliati, B.; Salvalai, M.E.; Bortolotto, V.; Grilli, M.; Rimondini, R.; Bartesaghi, R. A flavonoid agonist of the TrkB receptor for BDNF improves hippocampal neurogenesis and hippocampus-dependent memory in the Ts65Dn mouse model of DS. Exp. Neurol. 2017, 298, 79–96. [Google Scholar] [CrossRef]
- Giacomini, A.; Stagni, F.; Emili, M.; Uguagliati, B.; Rimondini, R.; Bartesaghi, R.; Guidi, S. Timing of Treatment with the Flavonoid 7,8-DHF Critically Impacts on Its Effects on Learning and Memory in the Ts65Dn Mouse. Antioxidants 2019, 8, 163. [Google Scholar] [CrossRef] [Green Version]
- Guedj, F.; Hines, D.; Foley, J.C.; Haydon, P.G.; Bianchi, D.W. Translating the transcriptome to develop antenatal treatments for fetuses with Down syndrome. Reprod. Sci. 2013, 20, 64A. [Google Scholar]
- Stagni, F.; Giacomini, A.; Emili, M.; Guidi, S.; Sassi, M.; Ciani, E.; Rimondini, R.; Bartesaghi, R. Short- and long-term effects of neonatal pharmacotherapy with epigallocatechin-3-gallate on hippocampal development in the Ts65dn mouse model of Down syndrome. Neuroscience 2016, 333, 277–301. [Google Scholar] [CrossRef]
- Stringer, M.; Abeysekera, I.; Thomas, J.; LaCombe, J.; Stancombe, K.; Stewart, R.J.; Dria, K.J.; Wallace, J.M.; Goodlett, C.R.; Roper, R.J. Epigallocatechin-3-gallate (EGCG) consumption in the Ts65Dn model of Down syndrome fails to improve behavioral deficits and is detrimental to skeletal phenotypes. Physiol. Behav. 2017, 177, 230–241. [Google Scholar] [CrossRef]
- De la Torre, R.; De Sola, S.; Pons, M.; Duchon, A.; de Lagran, M.M.; Farré, M.; Fitó, M.; Benejam, B.; Langohr, K.; Rodriguez, J.; et al. Epigallocatechin-3-gallate, a DYRK1A inhibitor, rescues cognitive deficits in Down syndrome mouse models and in humans. Mol. Nutr. Food Res. 2014, 58, 278–288. [Google Scholar] [CrossRef]
- Rueda, N.; Vidal, V.; García-Cerro, S.; Puente, A.; Campa, V.; Lantigua, S.; Narcís, O.; Bartesaghi, R.; Martínez-Cué, C. Prenatal, but not postnatal, curcumin administration rescues neuromorphological and cognitive alterations in Ts65Dn Down syndrome mice. J. Nutr. 2020. [Google Scholar] [CrossRef]
- Day, S.M.; Yang, W.; Wang, X.; Stern, J.E.; Zhou, X.; Macauley, S.L.; Ma, T. Glucagon-like peptide-1 cleavage product improves cognitive function in a mouse model of Down syndrome. eNeuro 2019, 6. [Google Scholar] [CrossRef] [Green Version]
- Mollo, N.; Nitti, M.; Zerillo, L.; Faicchia, D.; Micillo, T.; Accarino, R.; Secondo, A.; Petrozziello, T.; Calì, G.; Cicatiello, R.; et al. Pioglitazone improves mitochondrial organization and bioenergetics in Down syndrome cells. Front. Genet. 2019, 10, 606. [Google Scholar] [CrossRef] [Green Version]
- Bennett, F.C.; McClelland, S.; Kriegsmann, E.A.; Andrus, L.B.; Sells, C.J. Vitamin and mineral supplementation in Down’s syndrome. Pediatrics 1983, 72, 707–713. [Google Scholar]
- Weathers, C. Effects of nutritional supplementation on IQ and certain other variables associated with Down syndrome. Am. J. Ment. Defic. 1983, 88, 214–217. [Google Scholar]
- Smith, G.F.; Spiker, D.; Peterson, C.P.; Cicchetti, D.; Justine, P. Use of megadoses of vitamins with minerals in Down syndrome. J. Pediatr. 1984, 105, 228–234. [Google Scholar] [CrossRef]
- Bidder, R.T.; Gray, P.; Newcombe, R.G.; Evans, B.K.; Hughes, M. The effects of multivitamins and minerals on children with Down syndrome. Dev. Med. Child Neurol. 1989, 31, 532–537. [Google Scholar] [CrossRef]
- Ani, C.; Grantham-McGregor, S.; Muller, D. Nutritional supplementation in Down syndrome: Theoretical considerations and current status. Dev. Med. Child Neurol. 2000, 42, 207–213. [Google Scholar] [CrossRef]
- Ellis, J.M.; Tan, H.K.; Gilbert, R.E.; Muller, D.P.; Henley, W.; Moy, R.; Pumphrey, R.; Ani, C.; Davies, S.; Edwards, V.; et al. Supplementation with antioxidants and folinic acid for children with Down’s syndrome: Randomised controlled trial. Br. Med. J. 2008, 336, 594–597. [Google Scholar] [CrossRef] [Green Version]
- Blehaut, H.; Mircher, C.; Ravel, A.; Conte, M.; de Portzamparc, V.; Poret, G.; de Kermadec, F.H.; Rethore, M.O.; Sturtz, F.G. Effect of leucovorin (folinic acid) on the developmental quotient of children with Down’s syndrome (trisomy 21) and influence of thyroid status. PLoS ONE 2010, 5, e8394. [Google Scholar] [CrossRef] [Green Version]
- Lakshmi, K.T.; Surekha, R.H.; Srikanth, B.; Jyothy, A. Serum cholinesterases in Down syndrome children before and after nutritional supplementation. Singap. Med. J. 2008, 49, 561–564. [Google Scholar]
- Pueschel, S.M. The effect of acetyl-l-carnitine administration on persons with Down syndrome. Res. Dev. Disabil. 2006, 27, 599–604. [Google Scholar] [CrossRef]
- De la Torre, R.; de Sola, S.; Hernandez, G.; Farré, M.; Pujol, J.; Rodriguez, J.; Espadaler, J.M.; Langohr, K.; Cuenca-Royo, A.; Principe, A.; et al. TESDAD study group. Safety and efficacy of cognitive training plus epigallocatechin-3-gallate in young adults with Down’s syndrome (TESDAD): A double-blind, randomised, placebo-controlled, phase 2 trial. Lancet Neurol. 2016, 15, 801–810. [Google Scholar] [CrossRef]
- Vacca, R.A.; Valenti, D. Green tea EGCG plus fish oil omega-3 dietary supplements rescue mitochondrial dysfunctions and are safe in a Down’s syndrome child. Clin. Nutr. 2015, 34, 783–784. [Google Scholar] [CrossRef]
- Parisotto, E.B.; Garlet, T.R.; Cavalli, V.L.; Zamoner, A.; da Rosa, J.S.; Bastos, J.; Micke, G.A.; Fröde, T.S.; Pedrosa, R.C.; Wilhelm Filho, D. Antioxidant intervention attenuates oxidative stress in children and teenagers with Down syndrome. Res. Dev. Disabil. 2014, 35, 1228–1236. [Google Scholar] [CrossRef]
- Mustafa Nachvak, S.; Reza Neyestani, T.; Ali Mahboob, S.; Sabour, S.; Ali Keshawarz, S.; Speakman, J.R. α-Tocopherol supplementation reduces biomarkers of oxidative stress in children with Down syndrome: A randomized controlled trial. Eur. J. Clin. Nutr. 2014, 68, 1119–1123. [Google Scholar] [CrossRef] [Green Version]
- Larsen, E.L.; Padella, L.; Bergholdt, H.K.M.; Henriksen, T.; Santoro, L.; Gabrielli, O.; Poulsen, H.E.; Littarru, G.P.; Orlando, P.; Tiano, L. The effect of long-term treatment with coenzyme Q10 on nucleic acid modifications by oxidation in children with Down syndrome. Neurobiol. Aging 2018, 67, 159–161. [Google Scholar] [CrossRef] [PubMed]
- Annerén, G.; Gebre-Medhin, M.; Gustavson, K.H. Increased plasma and erythrocyte selenium concentrations but decreased erythrocyte glutathione peroxidase activity after selenium supplementation in children with Down syndrome. Acta Paediatr. Scand. 1989, 78, 879–884. [Google Scholar] [CrossRef] [PubMed]
- Gualandri, W.; Gualandri, L.; Demartini, G.; Esposti, R.; Marthyn, P.; Volontè, S.; Stangoni, L.; Borgonovo, M.; Fraschini, F. Redox balance in patients with Down’s syndrome before and after dietary supplementation with alpha-lipoic acid and L-cysteine. Int. J. Clin. Pharmacol. Res. 2003, 23, 23–30. [Google Scholar]
- Manchester, L.C.; Coto-Montes, A.; Boga, J.A.; Andersen, L.P.; Zhou, Z.; Galano, A.; Vriend, J.; Tan, D.X.; Reiter, R.J. Melatonin: An ancient molecule that makes oxygen metabolically tolerable. J. Pineal Res. 2015, 59, 403–419. [Google Scholar] [CrossRef] [PubMed]
- Tramutola, A.; Lanzillotta, C.; Di Domenico, F.; Head, E.; Butterfield, D.A.; Perluigi, M.; Barone, E. Brain insulin resistance triggers early onset Alzheimer disease in Down syndrome. Neurobiol. Dis. 2020, 137. [Google Scholar] [CrossRef] [PubMed]
- Tramutola, A.; Lanzillotta, C.; Barone, E.; Arena, A.; Zuliani, I.; Mosca, L.; Blarzino, C.; Butterfield, D.A.; Perluigi, M.; Di Domenico, F. Intranasal rapamycin ameliorates Alzheimer-like cognitive decline in a mouse model of Down syndrome. Transl. Neurodegener. 2018, 7, 28. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Chua, K.W.; Chua, C.C.; Yu, H.; Pei, A.; Chua, B.H.; Hamdy, R.C.; Xu, X.; Liu, C.F. Antioxidant activity of 7,8-dihydroxyflavone provides neuroprotection against glutamate-induced toxicity. Neurosci. Lett. 2011, 499, 181–185. [Google Scholar] [CrossRef]
- Guedj, F.; Bianchi, D.W.; Delabar, J.M. Prenatal treatment of Down syndrome: A reality? Curr. Opin. Obstet. Gynecol. 2014, 26, 92–103. [Google Scholar] [CrossRef]
- Wang, N.; Tan, H.Y.; Li, S.; Xu, Y.; Guo, W.; Feng, Y. Supplementation of Micronutrient Selenium in Metabolic Diseases: Its Role as an Antioxidant. Oxidative Med. Cell Longev. 2017, 2017. [Google Scholar] [CrossRef]
- Sun, A.Y.; Wang, Q.; Simonyi, A.; Sun, G.Y. Botanical phenolics and brain health. Neuromolecular Med. 2008, 10, 259–274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vacca, R.A.; Valenti, D.; Caccamese, S.; Daglia, M.; Braidy, N.; Nabavi, S.M. Plant polyphenols as natural drugs for the management of Down syndrome and related disorders. Neurosci. Biobehav. Rev. 2016, 71, 865–877. [Google Scholar] [CrossRef] [PubMed]
- Dey, A.; Bhattacharya, R.; Mukherjee, A.; Pandey, D.K. Natural products against Alzheimer’s disease: Pharmaco-therapeutics and biotechnological interventions. Biotechnol. Adv. 2017, 35, 178–216. [Google Scholar] [CrossRef] [PubMed]
- Traina, G. The neurobiology of acetyl-l-carnitine. Front. Biosci. 2016, 21, 1314–1329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sergi, G.; Pizzato, S.; Piovesan, F.; Trevisan, C.; Veronese, N.; Manzato, E. Effects of acetyl-l-carnitine in diabetic neuropathy and other geriatric disorders. Aging Clin. Exp. Res. 2018, 30, 133–138. [Google Scholar] [CrossRef] [PubMed]
- Manna, C.; Tagliafierro, L.; Scala, I.; Granese, B.; Andria, G.; Zappia, V. The role of iron toxicity in oxidative stress-induced cellular degeneration in down syndrome: Protective effects of phenolic antioxidants. Curr. Nutr. Food Sci. 2012, 8, 206–212. [Google Scholar] [CrossRef]
- Ng, T.P.; Chiam, P.C.; Lee, T.; Chua, H.C.; Lim, L.; Kua, E.H. Curry consumption and cognitive function in the elderly. Am. J. Epidemiol. 2006, 164, 898–906. [Google Scholar] [CrossRef] [Green Version]
- Sanmukhani, J.; Satodia, V.; Trivedi, J.; Patel, T.; Tiwari, D.; Panchal, B.; Goel, A.; Tripathi, C.B. Efficacy and safety of curcumin in major depressive disorder: A randomized controlled trial. Phytother. Res. 2014, 28, 579–585. [Google Scholar] [CrossRef]
- Bayen, E.; Possin, K.L.; Chen, Y.; Cleret de Langavant, L.; Yaffe, K. Prevalence of aging, dementia, and multimorbidity in older adults with down syndrome. JAMA Neurol. 2018, 75, 1399–1406. [Google Scholar] [CrossRef]
- Palumbo, M.L.; McDougle, C.J. Pharmacotherapy of Down syndrome. Expert Opin. Pharmacother. 2018, 19, 1875–1889. [Google Scholar] [CrossRef]
- Ballard, C.; Mobley, W.; Hardy, J.; Williams, G.; Corbett, A. Dementia in Down’s syndrome. Lancet Neurol. 2016, 15, 622–636. [Google Scholar] [CrossRef]
- Lee, S.E.; Duran-Martinez, M.; Khantsis, S.; Bianchi, D.W.; Guedj, F. Challenges and opportunities for translation of therapies to improve cognition in Down syndrome. Trends Mol. Med. 2020, 26, 150–169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Antioxidant Drug | Model of DS | Dosage and Treatment Duration | Results | References |
---|---|---|---|---|
Vitamin E (α-tocopherol) | Adult Ts65Dn mice (4 months of age) | 50 ± 5 mg/kg/day supplemented in the diet for 5 months | Improvement of spatial memory, reduction of cholinergic neurodegeneration, normalization of OS markers | [77] |
Pregnant Ts65Dn females and their pups | Pregnant Ts65Dn females received (0.1% (w/w) α-tocopherol acetate per kilogram of diet) from the day of conception throughout the pregnancy and the pups received the same diet from the day of birth for 12 weeks | Reduction of levels of lipid peroxidation products, attenuation of cognitive impairment, improvement of the hippocampal hypocellularity | [79] | |
SGS-111 | DS cortical neurons cultures | Various doses from 10 nM to 100 µM (30 min before the addition of H2O2 to the cultures and until 24 h later) | Inhibition of the accumulation of intracellular free radicals and lipid peroxidation damage in neurons treated with H2O2. Reduction of the appearance of degenerative changes and increment of neuronal survival | [99] |
Adult Ts65Dn mice (6 months of age). Pregnant Ts65Dn females and their pups over their entire life (5 months) | In both studies: 0.5 mg/kg (daily subcutaneously injected). Duration of adult treatment: 6 weeks. Duration of pre- and postnatal treatment: 5 months | No evidence of changes in behavior or cognition | [110] | |
Melatonin | Adult Ts65Dn (6 months of age) | 0.5 mg/day in their drinking water for 6 months | Improvement in spatial learning, reduction of cholinergic neurodegeneration, improvement of hippocampal neurogenesis, reduction of synaptic inhibition, restoration of hippocampal LTP, reduction of protein and lipid oxidative damage and of the density of senescent cells in the hippocampus | [81,82,102] |
Pregnant Ts65Dn females and their pups | 0.5 mg/day in their drinking water during pregnancy to TS females until the weaning of the offspring, and to the pups until the age of 5 months | No effect on cognitive or neurogenesis abnormalities. Modulation of antioxidant enzymes: SOD in the cortex, and catalase in the hippocampus. No effect on lipid and protein oxidative damage | [80] | |
7, 8-dihydroxyflavone | Ts65Dn pups, young and adult stages | In all studies: 5 mg/kg (daily subcutaneously injected). Postnatal treatment: for 12 days. Adolescent treatment: from P3 to adolescence (P45–50) Adult treatment: 6 weeks | Postnatal treatment: restoration of hippocampal neurogenesis and dendritic spine development, but 1 month after cessation of the treatment there was no evidence of pro-cognitive effects. Adolescent treatment: improvement in cognition. Adult treatment: no effect on cognition | [111,112] |
Apigenin | Ts1Cje mothers and their pups | 200–250 mg/kg/day in chow, during pregnancy to the mothers and to their pups up until 8–10 weeks of postnatal life | Improvement of exploratory behavior | [113] |
Epigallocatechin-3-gallate (EGCG)and Resveratrol | Neuronal progenitor cells isolated from the hippocampus of the Ts65Dn mouse | EGCG and Resveratrol, 20 μM and 10 μM, respectively, for 24 h | Restoration of mitochondrial homeostasis and promotion of proliferation in neuronal progenitors | [83] |
Epigallocatechin-3-gallate | Ts65Dn pups | 25 mg/kg in a daily subcutaneous injection from postnatal day 3 to postnatal day 15 | At P15 the treatment rescues hippocampal neurogenesis. This effect was not evident 1 month later after cessation of the treatment | [114] |
Ts65Dn pups | 0.4 mg/mL in their drinking water (≈50 mg/kg/day) from postnatal day 24 to postnatal day 68 (≈6 weeks) | No improvement in cognitive deficits and produced detrimental skeletal effects | [115] | |
Young adult Ts65Dn (3 months of age) | 90 mg/mL for a dose of 2–3 mg per day in drinking water for 1 month | Improvement of hippocampal-dependent learning deficits | [116] | |
Curcumin | Pregnant Ts65Dn mice and their pups and young mice | In both studies: 300 mg/kg in a daily subcutaneous injection. Prenatal treatment: from embryonic day 10 to postnatal day 2. Postnatal treatment: from postnatal day 2 to postnatal day 15 | Prenatal effects: increase in brain weight, cell proliferation, and pro-cognitive long-term effects. Postnatal effects: no effect on cognition | [117] |
Glucagon-like peptide 1 | Adult Ts65Dn mice (9 months of age) | 500 ng/g daily via intraperitoneal injection for 2–3 weeks | Reduction of mitochondrial ROS generation, of dendritic spine morphology alterations, and improvement of LTP and cognitive alterations | [118] |
Rapamycin | Adult Ts65Dn mice (6 months of age) | Three times per week with a dose of 0.1 μg/μL (1 μg/mouse) by intranasal route for 12 weeks | Restoration of mTOR pathway and reduction of lipoxidized proteins, rescue of autophagy and insulin signaling. Improvement in cognition | [96,98] |
Pioglitazone | Trisomic fetal fibroblasts | 5 mM for 3 days | Improvement of mitochondrial bioenergetics: increase of basal ATP content and oxygen consumption rate and decrease of ROS production | [119] |
Metformin | Trisomic fetal fibroblasts | 0.05 or 0.5 mM for 3 days | Reduction of mitochondrial abnormalities: increases in ATP production, oxygen consumption rate, and mitochondrial activity. Reversion of mitochondrial fragmentation and promotion of mitochondrial network | [24] |
Type of Trial | Antioxidant | Subjects/Cell Type | Dosage and Treatment Duration | Results | References |
---|---|---|---|---|---|
R, DB, PC | α-tocopherol, ascorbic acid and α-lipoic acid | 53 individuals with DS and dementia (average age ≈ 50 years) | Daily dose of 900 IU of α-tocopherol, 200 mg of ascorbic acid, and 600 mg of α-lipoic acid for 2 years | No improvement in cognitive functioning or stabilization of cognitive decline | [103] |
R, DB, PC | Vitamin E (α-tocopherol) | 337 adults with DS older than 50 years of age | 1000 IU of vitamin E, twice daily for 3 years | No retardation in the progression of cognitive deterioration | [104] |
DB, case-control study, PC crossover trial | Mixture of vitamins and minerals | A total of 115 children with DS (in the four studies) aged between 7.5 months and 17 years old | Between 4 and 8 months depending on the study | No significant effect on development or behavior. No effect on intelligence quotient tests. No effect on standard psychological tests. Induction of various side-effects | [120,121,122,123,124] |
R, PC | Mixture of vitamins and minerals | 156 children with DS, less than 7 months old | Daily supplementation with 10 μg of selenium, 5 mg of zinc, 0.9 mg of vitamin A, 100 mg of vitamin E, 50 mg of vitamin C, and 0.1 mg of folinic acid for 18 months | No benefits in psychomotor development, language acquisition or in the levels of markers of OS in red blood cells | [125] |
R, DB | Leucovorin (folinic acid) | 117 children with DS aged between 3 and 30 months old | Daily dose of 1 ± 0.3 mg/kg for 12 months | Improvement of psychomotor development. No effect on sociability, language or coordination | [126] |
Pilot study | Mixture of nutrients zinc, vitamins (A, C, E, B1, B2, B3, B6, B9, B12) and minerals | 40 children with DS aged between 5 and 16 years old | 5000 IU of vitamin A, 25 IU of vitamin E, 100 mg of ascorbic acid, 10 mg of thiamine mononitrate, 10 mg of riboflavin, 3 mg of pyridoxine hydrochloride, 5 µg of cyanocobalamin, 50 mg of niacinamide, 1 mg of folic acid, 12.5 mg of calcium pantothenate, 2.5 mg of copper, 60 µg of selenium, 1.4 mg of manganese and 5 µg of chromium for 6 months | Reduction of serum acetyl- and Butyrylcholinesterase. Improvement in cognitive skills and behavioral patterns | [127] |
DB | Acetyl-l-carnitine | 40 adults with DS aged between 18 and 30 years old | Ascending doses: 10 mg/kg/day for the first month, 20 mg/kg/day for the second month and afterwards 30 mg/kg/day for the rest of the study. Duration: 6 months, followed by a 3-month “wash-out” period | No effect on cognitive abilities, behavioral problems or daily living skills | [128] |
Pilot study | Epigallocatechin-3-gallate (EGCG) | 31 young adults with DS aged between 14 and 29 years old | 9 mg/kg/day for 6 months | Positive effects on memory recognition, working memory, and quality of life | [116] |
R, DB, PC | EGCG | 84 young adults with DS aged between 16 and 34 years old | 9 mg/kg/day for 12 months | Improvement in visual recognition memory, inhibitory control, and adaptive behavior | [129] |
CR | EGCG plus omega-3 fish oil | One DS child, 10 years and 3 months old | EGCG: 10 mg/kg/day and omega-3 fish oil: 8 mg/kg/day for 6 months | Improvement in the ability to perform tasks requiring concentration. Restoration of mitochondrial respiratory chain complex activities in lymphocytes from peripheral blood | [130] |
Vitamin E, vitamin C | Healthy and DS children between 3 and 14 years of age | Vitamin C (500 mg/day), vitamin E (400 mg/day) administered daily for 6 months | Attenuation of systemic oxidative damage in the blood of DS subjects. These effects persisted for at least 6 months after the cessation of the antioxidant therapy | [38,131] | |
α-tocopherol or α-lipoic acid | 93 DS children between 7 and 15 years of age | α-tocopherol (400 IU/day) or α-lipoic acid (100 mg/day) for 4 months | Attenuation of OS at the DNA level in serum after 20 months of treatment. No effect on RNA or DNA oxidation after 4 years of treatment | [132] | |
Coenzyme Q10 | Children (aged 5–12 years, n = 20) and teenagers (aged 13–17 years, n = 8) with DS | 4 mg/kg/day for 20 months (children), and 4 years (teenagers) | Reduced the activity of GPx in erythrocytes | [65,133] | |
Selenium | 48 children with DS (aged between 6 months and 16 years) | 10 µg/kg body weight/day for 6 months | Improvement of the rest-activity rhythms | [134] | |
α-lipoic acid and L-cysteine | 20 children with DS (aged between 1 and 16 years old) with redox imbalance | One capsule per day that contained 200 mg of α-lipoic acid, and 200 mg of L-cysteine, over several treatment cycles (one treatment cycle = 30 days plus a 30 day wash-out period) | Reduction of serum ROS | [135] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rueda Revilla, N.; Martínez-Cué, C. Antioxidants in Down Syndrome: From Preclinical Studies to Clinical Trials. Antioxidants 2020, 9, 692. https://doi.org/10.3390/antiox9080692
Rueda Revilla N, Martínez-Cué C. Antioxidants in Down Syndrome: From Preclinical Studies to Clinical Trials. Antioxidants. 2020; 9(8):692. https://doi.org/10.3390/antiox9080692
Chicago/Turabian StyleRueda Revilla, Noemí, and Carmen Martínez-Cué. 2020. "Antioxidants in Down Syndrome: From Preclinical Studies to Clinical Trials" Antioxidants 9, no. 8: 692. https://doi.org/10.3390/antiox9080692