Membrane-Based Processes Used in Municipal Wastewater Treatment for Water Reuse: State-Of-The-Art and Performance Analysis
Abstract
:1. Introduction
2. Performances of Membrane-Based Treatment Processes for Municipal Water Reuse
2.1. MF/UF Treatment Process after Secondary Treatment in WWTP
2.2. MF/UF Coupled with Chemical/Physical Processes after Secondary Treatment in WWTP
2.3. MBR-Based Treatment for Water Reuse
2.4. NF/RO/FO-Based Treatment Processes for Water Reuse
2.5. Membrane-Based Treatments with Disinfection and Advanced Oxidation Processes for Water Reuse
2.6. Water Recovery and Energy Consumption of Membrane-Bases Processes for Water Reuse
3. Challenges, Prospects and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Asano, T.; Levine, A.D. Wastewater reclamation, recycling and reuse: Past, present, and future. Water Sci. Technol. 1996, 33, 1–14. [Google Scholar] [CrossRef]
- Kadeli, L. Guidelines for Water Reuse; U.S. Environmental Protection Agency: Washington, DC, USA, 2012; p. 643.
- Hlavinek, P.; Popovska, C.; Mahrikova, I. Risk Management of Water Supply and Sanitation Systems; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2009; ISBN 978-90-481-2365-0. [Google Scholar]
- The Global Risks Report 2019; World Economic Forum: Cologny-Geneva, Switzerland, 2019; ISBN 978-1-944835-15-6.
- Wastewater Report 2018: The Reuse Opportunity; The International Water Association: London, UK, 2018; pp. 1–24.
- Lautze, J.; Stander, E.; Drechsel, P.; da Silva, A.K.; Keraita, B. Global Experiences in Water Reuse; International Water Management Institute (IWMI): Sunil Mawatha, Battaramulla, 2014; ISBN 978-92-9090-791-6. [Google Scholar]
- Angelakis, A.N.; Eslamian, S.; Dalezios, N. Water scarcity management: Part 1: Methodological framework. Int. J. Glob. Environ. Issues 2018, 17, 1. [Google Scholar] [CrossRef]
- Paul, R.; Kenway, S.; Mukheibir, P. How scale and technology influence the energy intensity of water recycling systems-An analytical review. J. Clean. Prod. 2019, 215, 1457–1480. [Google Scholar] [CrossRef] [Green Version]
- Alcalde Sanz, L.; Gawlik, B. Water Reuse in Europe-Relevant Guidelines, Needs for and Barriers to Innovation; Publications Office of the European Union: Luxembourg, 2014. [Google Scholar]
- UNESCO. Wastewater: The Untapped Resource; The United Nations World Water Development Report; UNESCO: Paris, France, 2017; ISBN 978-92-3-100201-4. [Google Scholar]
- Nahal, S. A Blue Revolution–global water. ESG Sustain. 2012, 1–139. [Google Scholar]
- Wade Miller, G. Integrated concepts in water reuse: Managing global water needs. Desalination 2006, 187, 65–75. [Google Scholar] [CrossRef]
- Lam, K.-C.; Zhu, T. Environmental Impact Assessment in China; Research Center for Strategic Environmental Assemet: Hong Kong, China, 2009. [Google Scholar]
- Saptarshi, D. Wastewater Recycling: A Multi-Billion Dollar Opportunity For India To Avoid The Impending Water Crisis. Available online: https://swachhindia.ndtv.com/wastewater-recycling-multi-billion-dollar-opportunity-india-avoid-forthcoming-water-crisis-7182/ (accessed on 16 November 2017).
- Mudgal, S.; Van Long, L.; Saïdi, N.; Haines, R.; McNeil, D.; Jeffrey, P.; Smith, H.; Knox, J.; European Commission; Directorate-General for the Environment; et al. Optimising Water Reuse in the EU: Final Report; Publications Office: Luxembourg, 2015; ISBN 978-92-79-46835-3.
- Kim, E.; Park, J.; Lee, J.; Han, I. Modernization of the Sewerage System in Korea; Republic of Korea Mnistry of Environment: Sejong, Korea, 2016.
- Tal, A. Rethinking the sustainability of Israel’s irrigation practices in the Drylands. Water Res. 2016, 90, 387–394. [Google Scholar] [CrossRef]
- Jacob, M. Progress against the National Target of 30% of Australia’s Wastewater Being Recycled by 2015; Department of Sustainability, Environment, Water, Population and Communities: Canberra, Australia, 2015; pp. 1–79.
- Jiménez-Cisneros, B. The Planned and Unplanned Reuse of Mexico City’s Wastewater; Universidad Nacional Autónoma de México: Mexico City, Mexico, 2012; p. 3. [Google Scholar]
- Asano, T.; Maeda, M.; Takaki, M.; Asano, T. Wastewater reclamation and reuse in Japan: Overview and implementation examples. Water Sci. Technol. 1996, 34, 219–226. [Google Scholar] [CrossRef]
- Ogoshi, M.; Suzuki, Y.; Asano, T. Water reuse in Japan. Water Sci. Technol. 2001, 43, 17–23. [Google Scholar] [CrossRef]
- Thai Pin Tan; Stuti Rawat. NEWater in Singapore; Glob. Water Forum: Singapore, 2018; Available online: https://globalwaterforum.org/2018/01/15/newater-in-singapore/ (accessed on 15 January 2018).
- Bahri, A.; Brissaud, F. Wastewater reuse in Tunisia: Assessing a national policy. Water Sci. Technol. 1996, 33, 87–94. [Google Scholar] [CrossRef]
- Klay, S.; Charef, A.; Ayed, L.; Houman, B.; Rezgui, F. Effect of irrigation with treated wastewater on geochemical properties (saltiness, C, N and heavy metals) of isohumic soils (Zaouit Sousse perimeter, Oriental Tunisia). Desalination 2010, 253, 180–187. [Google Scholar] [CrossRef]
- Hochstrat, R.; Wintgens, T.; Melin, T.; Jeffrey, P. Assessing the European wastewater reclamation and reuse potential—A scenario analysis. Desalination 2006, 188, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Tejero, I.F.G.; Zuazo, V.H.D. Water Scarcity and Sustainable Agriculture in Semiarid Environment: Tools, Strategies, and Challenges for Woody Crops; Academic Press: Cambridge, MA, USA, 2018; ISBN 978-0-12-813165-7. [Google Scholar]
- Bwapwa, J.; Jaiyeola, A. Treatment of Domestic/Municipal and Industrial Wastewater Using Microalgae: Review. Int. Proc. Chem. Biol. Environ. Eng. 2016, 97, 1–8. [Google Scholar] [CrossRef]
- Marcos von, S. Wastewater Characteristics, Treatment and Disposal; Biological Wastewater Treatment Series; IWA Publ.: London, UK, 2007; ISBN 978-1-84339-161-6. [Google Scholar]
- Nolde, E. Greywater reuse systems for toilet flushing in multi-storey buildings–over ten years experience in Berlin. Urban Water 2000, 1, 275–284. [Google Scholar] [CrossRef]
- Li, F.; Wichmann, K.; Otterpohl, R. Review of the technological approaches for grey water treatment and reuses. Sci. Total Environ. 2009, 407, 3439–3449. [Google Scholar] [CrossRef]
- Racar, M.; Dolar, D.; Špehar, A.; Košutić, K. Application of UF/NF/RO membranes for treatment and reuse of rendering plant wastewater. Process Saf. Environ. Prot. 2017, 105, 386–392. [Google Scholar] [CrossRef]
- Pidou, M. Hybrid Membrane Processes for Water Reuse; School of Applied Science Department of Sustainable Systems Centre for Water Science, Cranfield University: Cranfield, UK, 2006. [Google Scholar]
- Pasquini, L.; Munoz, J.-F.; Pons, M.-N.; Yvon, J.; Dauchy, X.; France, X.; Le, N.D.; France-Lanord, C.; Görner, T. Occurrence of eight household micropollutants in urban wastewater and their fate in a wastewater treatment plant. Statistical evaluation. Sci. Total Environ. 2014, 481, 459–468. [Google Scholar] [CrossRef]
- Touraud, E.; Roig, B.; Sumpter, J.P.; Coetsier, C. Drug residues and endocrine disruptors in drinking water: Risk for humans? Int. J. Hyg. Environ. Health 2011, 214, 437–441. [Google Scholar] [CrossRef]
- Henze, M. Wastewater Treatment: Biological and Chemical Processes; Springer: Berlin/Heidelberg, Germany, 1995; ISBN 978-3-540-58816-0. [Google Scholar]
- Organiztion, W.H. Guidelines for the Safe Use of Wastewater, Excreta and Greywater; World Health Organiztion: Geneva, Switzerland, 2006; Volume 4, ISBN 92-4-154685-9. [Google Scholar]
- European Parliament. European Parliament Legislative Resolution of 13 May 2020 on the Council Position at First Reading with a View to the Adoption of a Regulation of the European Parliament and of the Council on Minimum Requirements for Water Reuse(15301/2/2019–C9-0107/2020–2018/0169(COD)); European Union: Brussels, Belgium, 2020. [Google Scholar]
- Rhodes, R.; Trussell Henry, A.; Anderson Edmund, G.; Archuleta James, C. Water Reuse: Potential for Expanding the Nation’s Water Supply Through Reuse of Municipal Wastewater; National Academies Press: Washington, DC, USA, 2012; ISBN 978-0-309-22460-4.
- Smith, K.; Liu, S.; Liu, Y.; Guo, S. Can China reduce energy for water? A review of energy for urban water supply and wastewater treatment and suggestions for change. Renew. Sustain. Energy Rev. 2018, 91, 41–58. [Google Scholar] [CrossRef]
- Sonune, A.; Ghate, R. Developments in wastewater treatment methods. Desalination 2004, 167, 55–63. [Google Scholar] [CrossRef]
- Rajasulochana, P.; Preethy, V. Comparison on efficiency of various techniques in treatment of waste and sewage water–A comprehensive review. Resour.-Effic. Technol. 2016, 2, 175–184. [Google Scholar] [CrossRef] [Green Version]
- Kalkan, Ç.; Yapsakli, K.; Mertoglu, B.; Tufan, D.; Saatci, A. Evaluation of Biological Activated Carbon (BAC) process in wastewater treatment secondary effluent for reclamation purposes. Desalination 2011, 265, 266–273. [Google Scholar] [CrossRef]
- Kivaisi, A.K. The potential for constructed wetlands for wastewater treatment and reuse in developing countries: A review. Ecol. Eng. 2001, 16, 545–560. [Google Scholar] [CrossRef]
- Kumar Gupta, V.; Ali, I.; Saleh, T.A.; Nayak, A.; Agarwal, S. Chemical treatment technologies for waste-water recycling—An overview. RSC Adv. 2012, 2, 6380–6388. [Google Scholar] [CrossRef]
- Wu, B. Membrane-based technology in greywater reclamation: A review. Sci. Total Environ. 2019, 656, 184–200. [Google Scholar] [CrossRef]
- Cherchi, C.; Kesaano, M.; Badruzzaman, M.; Schwab, K.; Jacangelo, J.G. Municipal reclaimed water for multi-purpose applications in the power sector: A review. J. Environ. Manag. 2019, 236, 561–570. [Google Scholar] [CrossRef]
- Warsinger, D.M.; Chakraborty, S.; Tow, E.W.; Plumlee, M.H.; Bellona, C.; Loutatidou, S.; Karimi, L.; Mikelonis, A.M.; Achilli, A.; Ghassemi, A.; et al. A review of polymeric membranes and processes for potable water reuse. Prog. Polym. Sci. 2018, 81, 209–237. [Google Scholar] [CrossRef]
- Song, X.; Luo, W.; Hai, F.I.; Price, W.E.; Guo, W.; Ngo, H.H.; Nghiem, L.D. Resource recovery from wastewater by anaerobic membrane bioreactors: Opportunities and challenges. Bioresour. Technol. 2018, 270, 669–677. [Google Scholar] [CrossRef]
- Diaz-Elsayed, N.; Rezaei, N.; Guo, T.; Mohebbi, S.; Zhang, Q. Wastewater-based resource recovery technologies across scale: A review. Resour. Conserv. Recycl. 2019, 145, 94–112. [Google Scholar] [CrossRef]
- Gupta, V.K. Suhas Application of low-cost adsorbents for dye removal–A review. J. Environ. Manag. 2009, 90, 2313–2342. [Google Scholar] [CrossRef]
- Lee, K.P.; Arnot, T.C.; Mattia, D. A review of reverse osmosis membrane materials for desalination—Development to date and future potential. J. Membr. Sci. 2011, 370, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Shon, H.K.; Phuntsho, S.; Chaudhary, D.S.; Vigneswaran, S.; Cho, J. Nanofiltration for water and wastewater treatment-A mini review. Drink. Water Eng. Sci. 2013, 6, 47–53. [Google Scholar] [CrossRef] [Green Version]
- Padaki, M.; Surya Murali, R.; Abdullah, M.S.; Misdan, N.; Moslehyani, A.; Kassim, M.A.; Hilal, N.; Ismail, A.F. Membrane technology enhancement in oil–water separation. A review. Desalination 2015, 357, 197–207. [Google Scholar] [CrossRef]
- Van der Bruggen, B.; Mänttäri, M.; Nyström, M. Drawbacks of applying nanofiltration and how to avoid them: A review. Sep. Purif. Technol. 2008, 63, 251–263. [Google Scholar] [CrossRef]
- Tchobanoglous, G.H. Wastewater Engineering Treatment and Resource Recovery; McGraw-Hill Education: New York, NY, USA, 2013; pp. 1–2048. [Google Scholar]
- Bruggen, B.V.D.; Vandecasteele, C.; Gestel, T.V.; Doyen, W.; Leysen, R. A review of pressure-driven membrane processes in wastewater treatment and drinking water production. Environ. Prog. 2003, 22, 46–56. [Google Scholar] [CrossRef]
- Guo, W.; Ngo, H.-H.; Li, J. A mini-review on membrane fouling. Bioresour. Technol. 2012, 122, 27–34. [Google Scholar] [CrossRef]
- Lin, H.; Peng, W.; Zhang, M.; Chen, J.; Hong, H.; Zhang, Y. A review on anaerobic membrane bioreactors: Applications, membrane fouling and future perspectives. Desalination 2013, 314, 169–188. [Google Scholar] [CrossRef]
- Field, R.W.; Pearce, G.K. Critical, sustainable and threshold fluxes for membrane filtration with water industry applications. Adv. Colloid Interface Sci. 2011, 164, 38–44. [Google Scholar] [CrossRef]
- Mortensen Eric, R.; Cath Tzahi, Y.; Brant Jonathan, A.; Dennett Keith, E.; Childress Amy, E. Evaluation of Membrane Processes for Reducing Total Dissolved Solids Discharged to the Truckee River. J. Environ. Eng. 2007, 133, 1136–1144. [Google Scholar] [CrossRef]
- Nguyen, T.-T.; Kook, S.; Lee, C.; Field, R.W.; Kim, I.S. Critical flux-based membrane fouling control of forward osmosis: Behavior, sustainability, and reversibility. J. Membr. Sci. 2019, 570–571, 380–393. [Google Scholar] [CrossRef] [Green Version]
- Bacchin, P.; Aimar, P.; Field, R.W. Critical and sustainable fluxes: Theory, experiments and applications. J. Membr. Sci. 2006, 281, 42–69. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Fatah, M.A. Nanofiltration systems and applications in wastewater treatment: Review article. Ain Shams Eng. J. 2018, 9, 3077–3092. [Google Scholar] [CrossRef]
- Asano, T. (Ed.) Water Reuse: Issues, Technology, and Applications, 1st ed.; McGraw-Hill: New York, NY, USA, 2007; ISBN 978-0-07-145927-3. [Google Scholar]
- Nath, K. Membrane Separation Processes; PHI Learning Pvt. Ltd.: Delhi, India, 2017; ISBN 978-81-203-5291-9. [Google Scholar]
- Dach, H. Comparaison des Opérations de Nanofiltration et D’osmose Inverse pour le Dessalement Sélectif des eaux Saumatres: De L’échelle du Laboratoire au Pilote Industriel. Ph.D. Thesis, Université d’Angers, Angers, France, 2008. [Google Scholar]
- Gallego-Molina, A.; Mendoza-Roca, J.A.; Aguado, D.; Galiana-Aleixandre, M.V. Reducing pollution from the deliming–bating operation in a tannery. Wastewater reuse by microfiltration membranes. Chem. Eng. Res. Des. 2013, 91, 369–376. [Google Scholar] [CrossRef]
- Wintgens, T.; Melin, T.; Schäfer, A.; Khan, S.; Muston, M.; Bixio, D.; Thoeye, C. The role of membrane processes in municipal wastewater reclamation and reuse. Desalination 2005, 178, 1–11. [Google Scholar] [CrossRef]
- Madaeni, S.S.; Fane, A.G.; Grohmann, G.S. Virus removal from water and wastewater using membranes. J. Membr. Sci. 1995, 102, 65–75. [Google Scholar] [CrossRef]
- Huang, H.; Young, T.A.; Schwab, K.J.; Jacangelo, J.G. Mechanisms of virus removal from secondary wastewater effluent by low pressure membrane filtration. J. Membr. Sci. 2012, 409–410, 1–8. [Google Scholar] [CrossRef]
- Herath, G.; Yamamoto, K.; Urase, T. Removal of viruses by microfiltration membranes at different solution environments. Water Sci. Technol. 1999, 40, 331–338. [Google Scholar] [CrossRef]
- Langlet, J.; Ogorzaly, L.; Schrotter, J.-C.; Machinal, C.; Gaboriaud, F.; Duval, J.F.L.; Gantzer, C. Efficiency of MS2 phage and Qβ phage removal by membrane filtration in water treatment: Applicability of real-time RT-PCR method. J. Membr. Sci. 2009, 326, 111–116. [Google Scholar] [CrossRef]
- Herath, G.; Yamamoto, K.; Urase, T. The effect of suction velocity on concentration polarization in microfiltration membranes under turbulent flow conditions. J. Membr. Sci. 2000, 169, 175–183. [Google Scholar] [CrossRef]
- Zheng, X.; Lü, W.; Yang, M.; Liu, J. Evaluation of virus removal in MBR using coliphages T4. Chin. Sci. Bull. 2005, 50, 862–867. [Google Scholar] [CrossRef]
- Ahn, K.-H.; Song, K.-G. Treatment of domestic wastewater using microfiltration for reuse of wastewater. Desalination 1999, 126, 7–14. [Google Scholar] [CrossRef]
- Reissmann, F.G.; Uhl, W. Ultrafiltration for the reuse of spent filter backwash water from drinking water treatment. Desalination 2006, 198, 225–235. [Google Scholar] [CrossRef]
- Falsanisi, D.; Liberti, L.; Notarnicola, M. Ultrafiltration (UF) Pilot Plant for Municipal Wastewater Reuse in Agriculture: Impact of the Operation Mode on Process Performance. Water 2010, 2, 872–885. [Google Scholar] [CrossRef] [Green Version]
- Muthukumaran, S.; Nguyen, D.A.; Baskaran, K. Performance evaluation of different ultrafiltration membranes for the reclamation and reuse of secondary effluent. Desalination 2011, 279, 383–389. [Google Scholar] [CrossRef]
- Ang, W.L.; Mohammad, A.W.; Hilal, N.; Leo, C.P. A review on the applicability of integrated/hybrid membrane processes in water treatment and desalination plants. Desalination 2015, 363, 2–18. [Google Scholar] [CrossRef]
- Yue, X.; Koh, Y.K.K.; Ng, H.Y. Effects of dissolved organic matters (DOMs) on membrane fouling in anaerobic ceramic membrane bioreactors (AnCMBRs) treating domestic wastewater. Water Res. 2015, 86, 96–107. [Google Scholar] [CrossRef]
- Pollice, A.; Lopez, A.; Laera, G.; Rubino, P.; Lonigro, A. Tertiary filtered municipal wastewater as alternative water source in agriculture: A field investigation in Southern Italy. Sci. Total Environ. 2004, 324, 201–210. [Google Scholar] [CrossRef]
- Michael-Kordatou, I.; Michael, C.; Duan, X.; He, X.; Dionysiou, D.D.; Mills, M.A.; Fatta-Kassinos, D. Dissolved effluent organic matter: Characteristics and potential implications in wastewater treatment and reuse applications. Water Res. 2015, 77, 213–248. [Google Scholar] [CrossRef]
- Matilainen, A.; Vepsäläinen, M.; Sillanpää, M. Natural organic matter removal by coagulation during drinking water treatment: A review. Adv. Colloid Interface Sci. 2010, 159, 189–197. [Google Scholar] [CrossRef]
- Guo, W.S.; Vigneswaran, S.; Ngo, H.H.; Chapman, H. Experimental investigation of adsorption–flocculation–microfiltration hybrid system in wastewater reuse. J. Membr. Sci. 2004, 242, 27–35. [Google Scholar] [CrossRef] [Green Version]
- Karakashev, D.; Schmidt, J.E.; Angelidaki, I. Innovative process scheme for removal of organic matter, phosphorus and nitrogen from pig manure. Water Res. 2008, 42, 4083–4090. [Google Scholar] [CrossRef]
- Hatt, J.W.; Germain, E.; Judd, S.J. Precoagulation-microfiltration for wastewater reuse. Water Res. 2011, 45, 6471–6478. [Google Scholar] [CrossRef]
- Seo, G.T.; Suzuki, Y.; Ohgaki, S. Biological powdered activated carbon (BPAC) microfiltration for wastewater reclamation and reuse. Desalination 1996, 106, 39–45. [Google Scholar] [CrossRef]
- Shanmuganathan, S.; Johir, M.A.H.; Nguyen, T.V.; Kandasamy, J.; Vigneswaran, S.L. Experimental evaluation of microfiltration–granular activated carbon (MF–GAC)/nano filter hybrid system in high quality water reuse. J. Membr. Sci. 2015, 476, 1–9. [Google Scholar] [CrossRef]
- Vigneswaran, S.; Guo, W.S.; Smith, P.; Ngo, H.H. Submerged membrane adsorption hybrid system (SMAHS): Process control and optimization of operating parameters. Desalination 2007, 202, 392–399. [Google Scholar] [CrossRef]
- Snyder, S.A.; Adham, S.; Redding, A.M.; Cannon, F.S.; DeCarolis, J.; Oppenheimer, J.; Wert, E.C.; Yoon, Y. Role of membranes and activated carbon in the removal of endocrine disruptors and pharmaceuticals. Desalination 2007, 202, 156–181. [Google Scholar] [CrossRef]
- Konieczny, K.; Bodzek, M.; Rajca, M. A coagulation–MF system for water treatment using ceramic membranes. Desalination 2006, 198, 92–101. [Google Scholar] [CrossRef]
- Zheng, X.; Mehrez, R.; Jekel, M.; Ernst, M. Effect of slow sand filtration of treated wastewater as pre-treatment to UF. Desalination 2009, 249, 591–595. [Google Scholar] [CrossRef]
- Fan, L.; Nguyen, T.; Roddick, F.A.; Harris, J.L. Low-pressure membrane filtration of secondary effluent in water reuse: Pre-treatment for fouling reduction. J. Membr. Sci. 2008, 320, 135–142. [Google Scholar] [CrossRef]
- Barbot, E.; Dussouillez, P.; Bottero, J.Y.; Moulin, P. Coagulation of bentonite suspension by polyelectrolytes or ferric chloride: Floc breakage and reformation. Chem. Eng. J. 2010, 156, 83–91. [Google Scholar] [CrossRef]
- Prihasto, N.; Liu, Q.-F.; Kim, S.-H. Pre-treatment strategies for seawater desalination by reverse osmosis system. Desalination 2009, 249, 308–316. [Google Scholar] [CrossRef]
- Shon, H.K.; Vigneswaran, S.; Kim, I.S.; Cho, J.; Ngo, H.H. Fouling of ultrafiltration membrane by effluent organic matter: A detailed characterization using different organic fractions in wastewater. J. Membr. Sci. 2006, 278, 232–238. [Google Scholar] [CrossRef]
- Fabris, R.; Lee, E.K.; Chow, C.W.K.; Chen, V.; Drikas, M. Pre-treatments to reduce fouling of low pressure micro-filtration (MF) membranes. J. Membr. Sci. 2007, 289, 231–240. [Google Scholar] [CrossRef]
- Lu, N.C.; Liu, J.C. Removal of phosphate and fluoride from wastewater by a hybrid precipitation–microfiltration process. Sep. Purif. Technol. 2010, 74, 329–335. [Google Scholar] [CrossRef]
- Lee, J.-D.; Lee, S.-H.; Jo, M.-H.; Park, P.-K.; Lee, C.-H.; Kwak, J.-W. Effect of Coagulation Conditions on Membrane Filtration Characteristics in Coagulation−Microfiltration Process for Water Treatment. Environ. Sci. Technol. 2000, 34, 3780–3788. [Google Scholar] [CrossRef]
- Kim, K.-Y.; Kim, H.-S.; Kim, J.; Nam, J.-W.; Kim, J.-M.; Son, S. A hybrid microfiltration–granular activated carbon system for water purification and wastewater reclamation/reuse. Desalination 2009, 243, 132–144. [Google Scholar] [CrossRef]
- Otaki, M.; Yano, K.; Ohgaki, S. Virus removal in a membrane separation process. Water Sci. Technol. 1998, 37, 107–116. [Google Scholar] [CrossRef]
- Liu, P.; Hill, V.R.; Hahn, D.; Johnson, T.B.; Pan, Y.; Jothikumar, N.; Moe, C.L. Hollow-fiber ultrafiltration for simultaneous recovery of viruses, bacteria and parasites from reclaimed water. J. Microbiol. Methods 2012, 88, 155–161. [Google Scholar] [CrossRef]
- Hlavinek, P.; Kukharchyk, T.; Marsalek, J.; Mahrikova, I. Integrated Urban Water Resources Management; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2006; ISBN 978-1-4020-4684-1. [Google Scholar]
- Crini, G.; Lichtfouse, E. Advantages and disadvantages of techniques used for wastewater treatment. Environ. Chem. Lett. 2019, 17, 145–155. [Google Scholar] [CrossRef]
- Crini, G.; Lichtfouse, E.; Wilson, L.D.; Morin-Crini, N. Adsorption-Oriented Processes Using Conventional and Non-conventional Adsorbents for Wastewater Treatment. In Green Adsorbents for Pollutant Removal: Fundamentals and Design; Crini, G., Lichtfouse, E., Eds.; Environmental Chemistry for a Sustainable World; Springer International Publishing: Cham, Switzerland, 2018; pp. 23–71. ISBN 978-3-319-92111-2. [Google Scholar]
- Abdessemed, D.; Nezzal, G.; Ben Aim, R. Coagulation—Adsorption—Ultrafiltration for wastewater treatment and reuse. Desalination 2000, 131, 307–314. [Google Scholar] [CrossRef]
- Lee, C.W.; Bae, S.D.; Han, S.W.; Kang, L.S. Application of ultrafiltration hybrid membrane processes for reuse of secondary effluent. Desalination 2007, 202, 239–246. [Google Scholar] [CrossRef]
- Gómez, M.; de la Rua, A.; Garralón, G.; Plaza, F.; Hontoria, E.; Gómez, M.A. Urban wastewater disinfection by filtration technologies. Desalination 2006, 190, 16–28. [Google Scholar] [CrossRef]
- Gómez, M.; Plaza, F.; Garralón, G.; Pérez, J.; Gómez, M.A. A comparative study of tertiary wastewater treatment by physico-chemical-UV process and macrofiltration–ultrafiltration technologies. Desalination 2007, 202, 369–376. [Google Scholar] [CrossRef]
- Hernández Leal, L.; Temmink, H.; Zeeman, G.; Buisman, C.J.N. Bioflocculation of grey water for improved energy recovery within decentralized sanitation concepts. Bioflocculation Grey Water Improv. Energy Recovery Decentralized Sanit. Concepts 2010, 101, 9065–9070. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, Z. Distribution and transformation of molecular weight of organic matters in membrane bioreactor and conventional activated sludge process. Chem. Eng. J. 2009, 150, 396–402. [Google Scholar] [CrossRef]
- Ottoson, J.; Hansen, A.; Björlenius, B.; Norder, H.; Stenström, T.A. Removal of viruses, parasitic protozoa and microbial indicators in conventional and membrane processes in a wastewater pilot plant. Water Res. 2006, 40, 1449–1457. [Google Scholar] [CrossRef]
- Judd, S. The MBR Book: Principles and Applications of Membrane Bioreactors for Water and Wastewater Treatment; Elsevier: Amsterdam, The Netherlands, 2010; ISBN 978-0-08-096767-7. [Google Scholar]
- Atasoy, E.; Murat, S.; Baban, A.; Tiris, M. Membrane Bioreactor (MBR) Treatment of Segregated Household Wastewater for Reuse. CLEAN–Soil Air Water 2007, 35, 465–472. [Google Scholar] [CrossRef]
- Hai, F.I.; Yamamoto, K.; Lee, C.-H. Membrane Biological Reactors: Theory, Modeling, Design, Management and Applications to Wastewater Reuse, 2nd ed.; IWA Publishing: London, UK, 2018; ISBN 978-1-78040-916-0. [Google Scholar]
- Purnell, S.; Ebdon, J.; Buck, A.; Tupper, M.; Taylor, H. Removal of phages and viral pathogens in a full-scale MBR: Implications for wastewater reuse and potable water. Water Res. 2016, 100, 20–27. [Google Scholar] [CrossRef] [Green Version]
- Xing, C.-H.; Tardieu, E.; Qian, Y.; Wen, X.-H. Ultrafiltration membrane bioreactor for urban wastewater reclamation. J. Membr. Sci. 2000, 177, 73–82. [Google Scholar] [CrossRef]
- Tam, L.S.; Tang, T.W.; Lau, G.N.; Sharma, K.R.; Chen, G.H. A pilot study for wastewater reclamation and reuse with MBR/RO and MF/RO systems. Desalination 2007, 202, 106–113. [Google Scholar] [CrossRef]
- Fountoulakis, M.S.; Markakis, N.; Petousi, I.; Manios, T. Single house on-site grey water treatment using a submerged membrane bioreactor for toilet flushing. Sci. Total Environ. 2016, 551–552, 706–711. [Google Scholar] [CrossRef]
- Merz, C.; Scheumann, R.; El Hamouri, B.; Kraume, M. Membrane bioreactor technology for the treatment of greywater from a sports and leisure club. Desalination 2007, 215, 37–43. [Google Scholar] [CrossRef]
- Santasmasas, C.; Rovira, M.; Clarens, F.; Valderrama, C. Grey water reclamation by decentralized MBR prototype. Resour. Conserv. Recycl. 2013, 72, 102–107. [Google Scholar] [CrossRef]
- Kraume, M.; Scheumann, R.; Baban, A.; El Hamouri, B. Performance of a compact submerged membrane sequencing batch reactor (SM-SBR) for greywater treatment. Desalination 2010, 250, 1011–1013. [Google Scholar] [CrossRef]
- Francy, D.S.; Stelzer, E.A.; Bushon, R.N.; Brady, A.M.G.; Williston, A.G.; Riddell, K.R.; Borchardt, M.A.; Spencer, S.K.; Gellner, T.M. Comparative effectiveness of membrane bioreactors, conventional secondary treatment, and chlorine and UV disinfection to remove microorganisms from municipal wastewaters. Water Res. 2012, 46, 4164–4178. [Google Scholar] [CrossRef]
- Farahbakhsh, K.; Smith, D.W. Removal of coliphages in secondary effluent by microfiltration—Mechanisms of removal and impact of operating parameters. Water Res. 2004, 38, 585–592. [Google Scholar] [CrossRef]
- Zanetti, F.; De Luca, G.; Sacchetti, R. Performance of a full-scale membrane bioreactor system in treating municipal wastewater for reuse purposes. Bioresour. Technol. 2010, 101, 3768–3771. [Google Scholar] [CrossRef]
- De Luca, G.; Sacchetti, R.; Leoni, E.; Zanetti, F. Removal of indicator bacteriophages from municipal wastewater by a full-scale membrane bioreactor and a conventional activated sludge process: Implications to water reuse. Bioresour. Technol. 2013, 129, 526–531. [Google Scholar] [CrossRef]
- Hirani, Z.M.; DeCarolis, J.F.; Adham, S.S.; Jacangelo, J.G. Peak flux performance and microbial removal by selected membrane bioreactor systems. Water Res. 2010, 44, 2431–2440. [Google Scholar] [CrossRef]
- Chaudhry, R.M.; Nelson, K.L.; Drewes, J.E. Mechanisms of Pathogenic Virus Removal in a Full-Scale Membrane Bioreactor. Environ. Sci. Technol. 2015, 49, 2815–2822. [Google Scholar] [CrossRef]
- Lv, W.; Zheng, X.; Yang, M.; Zhang, Y.; Liu, Y.; Liu, J. Virus removal performance and mechanism of a submerged membrane bioreactor. Process Biochem. 2006, 41, 299–304. [Google Scholar] [CrossRef]
- Shang, C.; Wong, H.M.; Chen, G. Bacteriophage MS-2 removal by submerged membrane bioreactor. Water Res. 2005, 39, 4211–4219. [Google Scholar] [CrossRef] [PubMed]
- Ueda, T.; Horan, N.J. Fate of indigenous bacteriophage in a membrane bioreactor. Water Res. 2000, 34, 2151–2159. [Google Scholar] [CrossRef]
- Quist-Jensen, C.A.; Macedonio, F.; Drioli, E. Membrane technology for water production in agriculture: Desalination and wastewater reuse. Desalination 2015, 364, 17–32. [Google Scholar] [CrossRef]
- Lee, J.; Ahn, W.-Y.; Lee, C.-H. Comparison of the filtration characteristics between attached and suspended growth microorganisms in submerged membrane bioreactor. Water Res. 2001, 35, 2435–2445. [Google Scholar] [CrossRef]
- Meng, F.; Chae, S.-R.; Drews, A.; Kraume, M.; Shin, H.-S.; Yang, F. Recent advances in membrane bioreactors (MBRs): Membrane fouling and membrane material. Water Res. 2009, 43, 1489–1512. [Google Scholar] [CrossRef]
- Robles, Á.; Ruano, M.V.; Charfi, A.; Lesage, G.; Heran, M.; Harmand, J.; Seco, A.; Steyer, J.-P.; Batstone, D.J.; Kim, J.; et al. A review on anaerobic membrane bioreactors (AnMBRs) focused on modelling and control aspects. Bioresour. Technol. 2018, 270, 612–626. [Google Scholar] [CrossRef] [Green Version]
- Bouhabila, E.H.; Ben Aïm, R.; Buisson, H. Fouling characterisation in membrane bioreactors. Sep. Purif. Technol. 2001, 22–23, 123–132. [Google Scholar] [CrossRef]
- Verrecht, B.; Maere, T.; Nopens, I.; Brepols, C.; Judd, S. The cost of a large-scale hollow fibre MBR. Water Res. 2010, 44, 5274–5283. [Google Scholar] [CrossRef]
- Hong, S.P.; Bae, T.H.; Tak, T.M.; Hong, S.; Randall, A. Fouling control in activated sludge submerged hollow fiber membrane bioreactors. Desalination 2002, 143, 219–228. [Google Scholar] [CrossRef]
- Fan, F.; Zhou, H. Interrelated effects of aeration and mixed liquor fractions on membrane fouling for submerged membrane bioreactor processes in wastewater treatment. Environ. Sci. Technol. 2007, 41, 2523–2528. [Google Scholar] [CrossRef]
- Bilad, M.R.; Mezohegyi, G.; Declerck, P.; Vankelecom, I.F.J. Novel magnetically induced membrane vibration (MMV) for fouling control in membrane bioreactors. Water Res. 2012, 46, 63–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Low, S.C.; Cheong, K.T.; Lim, H.L. A vibration membrane bioreactor. Desalin. Water Treat. 2009, 5, 42–47. [Google Scholar] [CrossRef] [Green Version]
- Harb, M.; Hong, P.Y. Anaerobic Membrane Bioreactor Effluent Reuse: A Review of Microbial Safety Concerns. Fermentation 2017, 3, 39. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.M.; Martin Garcia, N.; Soares, A.; Jefferson, B.; McAdam, E.J. Comparison of fouling between aerobic and anaerobic MBR treating municipal wastewater. H2Open J. 2018, 1, 131–159. [Google Scholar] [CrossRef]
- Le-Clech, P.; Chen, V.; Fane, T.A.G. Fouling in membrane bioreactors used in wastewater treatment. J. Membr. Sci. 2006, 284, 17–53. [Google Scholar] [CrossRef]
- Liu, H.; Gu, J.; Wang, S.; Zhang, M.; Liu, Y. Performance, membrane fouling control and cost analysis of an integrated anaerobic fixed-film MBR and reverse osmosis process for municipal wastewater reclamation to NEWater-like product water. J. Membr. Sci. 2020, 593, 117442. [Google Scholar] [CrossRef]
- Li, Y.; Sim, L.N.; Ho, J.S.; Chong, T.H.; Wu, B.; Liu, Y. Integration of an anaerobic fluidized-bed membrane bioreactor (MBR) with zeolite adsorption and reverse osmosis (RO) for municipal wastewater reclamation: Comparison with an anoxic-aerobic MBR coupled with RO. Chemosphere 2020, 245, 125569. [Google Scholar] [CrossRef]
- Nataraj, S.K.; Sridhar, S.; Shaikha, I.N.; Reddy, D.S.; Aminabhavi, T.M. Membrane-based microfiltration/electrodialysis hybrid process for the treatment of paper industry wastewater. Sep. Purif. Technol. 2007, 57, 185–192. [Google Scholar] [CrossRef]
- Hosseinzadeh, M.; Nabi Bidhendi, G.; Torabian, A.; Mehrdadi, N. A Study on Membrane Bioreactor for Water Reuse from the Effluent of Industrial Town Wastewater Treatment Plant. Iran. J. Toxicol. 2014, 8, 983–990. [Google Scholar]
- Atanasova, N.; Dalmau, M.; Comas, J.; Poch, M.; Rodriguez-Roda, I.; Buttiglieri, G. Optimized MBR for greywater reuse systems in hotel facilities. J. Environ. Manag. 2017, 193, 503–511. [Google Scholar] [CrossRef]
- Chae, S.R.; Kang, S.T.; Lee, S.M.; Lee, E.S.; Oh, S.E.; Watanabe, Y.; Shin, H.S. High reuse potential of effluent from an innovative vertical submerged membrane bioreactor treating municipal wastewater. Desalination 2007, 202, 83–89. [Google Scholar] [CrossRef]
- Tepuš, B.; Simonič, M.; Petrinić, I. Comparison between nitrate and pesticide removal from ground water using adsorbents and NF and RO membranes. J. Hazard. Mater. 2009, 170, 1210–1217. [Google Scholar] [CrossRef] [PubMed]
- Garcia, N.; Moreno, J.; Cartmell, E.; Rodriguez-Roda, I.; Judd, S. The application of microfiltration-reverse osmosis/nanofiltration to trace organics removal for municipal wastewater reuse. Environ. Technol. 2013, 34, 3183–3189. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.Y.; Yang, Q.; Chung, T.-S.; Rajagopalan, R. Enhanced forward osmosis from chemically modified polybenzimidazole (PBI) nanofiltration hollow fiber membranes with a thin wall. Chem. Eng. Sci. 2009, 64, 1577–1584. [Google Scholar] [CrossRef]
- Su, J.; Yang, Q.; Teo, J.F.; Chung, T.-S. Cellulose acetate nanofiltration hollow fiber membranes for forward osmosis processes. J. Membr. Sci. 2010, 355, 36–44. [Google Scholar] [CrossRef]
- Tang, W.; Ng, H.Y. Concentration of brine by forward osmosis: Performance and influence of membrane structure. Desalination 2008, 224, 143–153. [Google Scholar] [CrossRef]
- Li, L.; Shi, W.; Yu, S. Research on Forward Osmosis Membrane Technology Still Needs Improvement in Water Recovery and Wastewater Treatment. Water 2020, 12, 107. [Google Scholar] [CrossRef] [Green Version]
- Fang, Y.; Bian, L.; Bi, Q.; Li, Q.; Wang, X. Evaluation of the pore size distribution of a forward osmosis membrane in three different ways. J. Membr. Sci. 2014, 454, 390–397. [Google Scholar] [CrossRef]
- Bellona, C.; Drewes, J.E.; Xu, P.; Amy, G. Factors affecting the rejection of organic solutes during NF/RO treatment—A literature review. Water Res. 2004, 38, 2795–2809. [Google Scholar] [CrossRef]
- Dolar, D.; Racar, M.; Košutić, K. Municipal Wastewater Reclamation and Water Reuse for Irrigation by Membrane Processes. Chem. Biochem. Eng. Q 2019, 3, 417–425. [Google Scholar] [CrossRef]
- Bunani, S.; Yörükoğlu, E.; Sert, G.; Yüksel, Ü.; Yüksel, M.; Kabay, N. Application of nanofiltration for reuse of municipal wastewater and quality analysis of product water. Desalination 2013, 315, 33–36. [Google Scholar] [CrossRef]
- Gozálvez-Zafrilla, J.M.; Sanz-Escribano, D.; Lora-García, J.; León Hidalgo, M.C. Nanofiltration of secondary effluent for wastewater reuse in the textile industry. Desalination 2008, 222, 272–279. [Google Scholar] [CrossRef]
- Potts, D.E.; Ahlert, R.C.; Wang, S.S. A critical review of fouling of reverse osmosis membranes. Desalination 1981, 36, 235–264. [Google Scholar] [CrossRef]
- Greenlee, L.F.; Lawler, D.F.; Freeman, B.D.; Marrot, B.; Moulin, P. Reverse osmosis desalination: Water sources, technology, and today’s challenges. Water Res. 2009, 43, 2317–2348. [Google Scholar] [CrossRef] [PubMed]
- Radjenović, J.; Petrović, M.; Ventura, F.; Barceló, D. Rejection of pharmaceuticals in nanofiltration and reverse osmosis membrane drinking water treatment. Water Res. 2008, 42, 3601–3610. [Google Scholar] [CrossRef] [PubMed]
- Bellona, C.; Drewes, J.E. The role of membrane surface charge and solute physico-chemical properties in the rejection of organic acids by NF membranes. J. Membr. Sci. 2005, 249, 227–234. [Google Scholar] [CrossRef]
- Jacob, M.; Guigui, C.; Cabassud, C.; Darras, H.; Lavison, G.; Moulin, L. Performances of RO and NF processes for wastewater reuse: Tertiary treatment after a conventional activated sludge or a membrane bioreactor. Desalination 2010, 250, 833–839. [Google Scholar] [CrossRef]
- Uyanık, İ.; Özkan, O.; Koyuncu, İ. NF-RO Membrane Performance for Treating the Effluent of an Organized Industrial Zone Wastewater Treatment Plant: Effect of Different UF Types. Water 2017, 9, 506. [Google Scholar] [CrossRef] [Green Version]
- Falizi, N.J.; Hacıfazlıoğlu, M.C.; Parlar, İ.; Kabay, N.; Pek, T.Ö.; Yüksel, M. Evaluation of MBR treated industrial wastewater quality before and after desalination by NF and RO processes for agricultural reuse. J. Water Process Eng. 2018, 22, 103–108. [Google Scholar] [CrossRef]
- Gündoğdu, M.; Jarma, Y.A.; Kabay, N.; Pek, T.Ö.; Yüksel, M. Integration of MBR with NF/RO processes for industrial wastewater reclamation and water reuse-effect of membrane type on product water quality. J. Water Process Eng. 2019, 29, 100574. [Google Scholar] [CrossRef]
- Silva, L.L.S.; Moreira, C.G.; Curzio, B.A.; da Fonseca, F.V. Micropollutant Removal from Water by Membrane and Advanced Oxidation Processes—A Review. J. Water Resour. Prot. 2017, 9, 411–431. [Google Scholar] [CrossRef] [Green Version]
- Dolar, D.; Gros, M.; Rodriguez-Mozaz, S.; Moreno, J.; Comas, J.; Rodriguez-Roda, I.; Barceló, D. Removal of emerging contaminants from municipal wastewater with an integrated membrane system, MBR–RO. J. Hazard. Mater. 2012, 239–240, 64–69. [Google Scholar] [CrossRef] [PubMed]
- Simon, A.; Nghiem, L.D.; Le-Clech, P.; Khan, S.J.; Drewes, J.E. Effects of membrane degradation on the removal of pharmaceutically active compounds (PhACs) by NF/RO filtration processes. J. Membr. Sci. 2009, 340, 16–25. [Google Scholar] [CrossRef]
- Leiknes, T.; Ødegaard, H.; Myklebust, H. Removal of natural organic matter (NOM) in drinking water treatment by coagulation–microfiltration using metal membranes. J. Membr. Sci. 2004, 242, 47–55. [Google Scholar] [CrossRef]
- Al-Juboori, R.A.; Yusaf, T. Biofouling in RO system: Mechanisms, monitoring and controlling. Desalination 2012, 302, 1–23. [Google Scholar] [CrossRef]
- Baker, J.S.; Dudley, L.Y. Biofouling in membrane systems—A review. Desalination 1998, 118, 81–89. [Google Scholar] [CrossRef]
- Kim, A.S.; Chen, H.; Yuan, R. EPS biofouling in membrane filtration: An analytic modeling study. J. Colloid Interface Sci. 2006, 303, 243–249. [Google Scholar] [CrossRef]
- Malaeb, L.; Ayoub, G.M. Reverse osmosis technology for water treatment: State of the art review. Desalination 2011, 267, 1–8. [Google Scholar] [CrossRef]
- Chae, S.-R.; Yamamura, H.; Choi, B.; Watanabe, Y. Fouling characteristics of pressurized and submerged PVDF (polyvinylidene fluoride) microfiltration membranes in a pilot-scale drinking water treatment system under low and high turbidity conditions. Desalination 2009, 244, 215–226. [Google Scholar] [CrossRef]
- Valavala, R.; Sohn, J.; Han, J.; Her, N.; Yoon, Y.; Valavala, R.; Sohn, J.; Han, J.; Her, N.; Yoon, Y. Pretreatment in Reverse Osmosis Seawater Desalination: A Short Review. Environ. Eng. Res. 2011, 16, 205–212. [Google Scholar] [CrossRef]
- Jamaly, S.; Darwish, N.N.; Ahmed, I.; Hasan, S.W. A short review on reverse osmosis pretreatment technologies. Desalination 2014, 354, 30–38. [Google Scholar] [CrossRef]
- Boddu, V.M.; Paul, T.; Page, M.A.; Byl, C.; Ward, L.; Ruan, J. Gray water recycle: Effect of pretreatment technologies on low pressure reverse osmosis treatment. J. Environ. Chem. Eng. 2016, 4, 4435–4443. [Google Scholar] [CrossRef] [Green Version]
- Alturki, A.A.; Tadkaew, N.; McDonald, J.A.; Khan, S.J.; Price, W.E.; Nghiem, L.D. Combining MBR and NF/RO membrane filtration for the removal of trace organics in indirect potable water reuse applications. J. Membr. Sci. 2010, 365, 206–215. [Google Scholar] [CrossRef]
- Jacob, M.; Li, C.; Guigui, C.; Cabassud, C.; Lavison, G.; Moulin, L. Performance of NF/RO process for indirect potable reuse: Interactions between micropollutants, micro-organisms and real MBR permeate. Desalin. Water Treat. 2012, 46, 75–86. [Google Scholar] [CrossRef]
- Tay, M.F.; Liu, C.; Cornelissen, E.R.; Wu, B.; Chong, T.H. The feasibility of nanofiltration membrane bioreactor (NF-MBR)+reverse osmosis (RO) process for water reclamation: Comparison with ultrafiltration membrane bioreactor (UF-MBR)+RO process. Water Res. 2018, 129, 180–189. [Google Scholar] [CrossRef]
- Gu, J.; Liu, H.; Wang, S.; Zhang, M.; Liu, Y. An innovative anaerobic MBR-reverse osmosis-ion exchange process for energy-efficient reclamation of municipal wastewater to NEWater-like product water. J. Clean. Prod. 2019, 230, 1287–1293. [Google Scholar] [CrossRef]
- Yin, Z.; Yang, C.; Long, C.; Li, A. Effect of integrated pretreatment technologies on RO membrane fouling for treating textile secondary effluent: Laboratory and pilot-scale experiments. Chem. Eng. J. 2018, 332, 109–117. [Google Scholar] [CrossRef]
- Ferrari, F.; Pijuan, M.; Rodriguez-Roda, I.; Blandin, G. Exploring Submerged Forward Osmosis for Water Recovery and Pre-Concentration of Wastewater before Anaerobic Digestion: A Pilot Scale Study. Membranes 2019, 9, 97. [Google Scholar] [CrossRef] [Green Version]
- Zou, S.; He, Z. Enhancing wastewater reuse by forward osmosis with self-diluted commercial fertilizers as draw solutes. Water Res. 2016, 99, 235–243. [Google Scholar] [CrossRef] [Green Version]
- Hube, S.; Eskafi, M.; Hrafnkelsdóttir, K.F.; Bjarnadóttir, B.; Bjarnadóttir, M.Á.; Axelsdóttir, S.; Wu, B. Direct membrane filtration for wastewater treatment and resource recovery: A review. Sci. Total Environ. 2020, 710, 136375. [Google Scholar] [CrossRef]
- Luo, W.; Phan, H.V.; Xie, M.; Hai, F.I.; Price, W.E.; Elimelech, M.; Nghiem, L.D. Osmotic versus conventional membrane bioreactors integrated with reverse osmosis for water reuse: Biological stability, membrane fouling, and contaminant removal. Water Res. 2017, 109, 122–134. [Google Scholar] [CrossRef] [PubMed]
- Kwan, S.E.; Bar-Zeev, E.; Elimelech, M. Biofouling in forward osmosis and reverse osmosis: Measurements and mechanisms. J. Membr. Sci. 2015, 493, 703–708. [Google Scholar] [CrossRef]
- Cath, T.Y.; Childress, A.E.; Elimelech, M. Forward osmosis: Principles, applications, and recent developments. J. Membr. Sci. 2006, 281, 70–87. [Google Scholar] [CrossRef]
- Volpin, F.; Fons, E.; Chekli, L.; Kim, J.E.; Jang, A.; Shon, H.K. Hybrid forward osmosis-reverse osmosis for wastewater reuse and seawater desalination: Understanding the optimal feed solution to minimise fouling. Process Saf. Environ. Prot. 2018, 117, 523–532. [Google Scholar] [CrossRef]
- Chun, Y.; Mulcahy, D.; Zou, L.; Kim, I.S. A Short Review of Membrane Fouling in Forward Osmosis Processes. Membranes 2017, 7, 30. [Google Scholar] [CrossRef] [Green Version]
- Ansari, A.J.; Hai, F.I.; Price, W.E.; Drewes, J.E.; Nghiem, L.D. Forward osmosis as a platform for resource recovery from municipal wastewater-A critical assessment of the literature. J. Membr. Sci. 2017, 529, 195–206. [Google Scholar] [CrossRef] [Green Version]
- Der Bruggen, B.V.; Luis, P. Forward osmosis: Understanding the hype. Rev. Chem. Eng. 2015, 31, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Corzo, B.; de la Torre, T.; Sans, C.; Escorihuela, R.; Navea, S.; Malfeito, J.J. Long-term evaluation of a forward osmosis-nanofiltration demonstration plant for wastewater reuse in agriculture. Chem. Eng. J. 2018, 338, 383–391. [Google Scholar] [CrossRef]
- Cornelissen, E.R.; Harmsen, D.; Beerendonk, E.F.; Qin, J.J.; Oo, H.; de Korte, K.F.; Kappelhof, J.W.M.N. The innovative Osmotic Membrane Bioreactor (OMBR) for reuse of wastewater. Water Sci. Technol. 2011, 63, 1557–1565. [Google Scholar] [CrossRef]
- Zhang, H.; Ma, Y.; Jiang, T.; Zhang, G.; Yang, F. Influence of activated sludge properties on flux behavior in osmosis membrane bioreactor (OMBR). J. Membr. Sci. 2012, 390–391, 270–276. [Google Scholar] [CrossRef]
- Sun, Y.; Tian, J.; Zhao, Z.; Shi, W.; Liu, D.; Cui, F. Membrane fouling of forward osmosis (FO) membrane for municipal wastewater treatment: A comparison between direct FO and OMBR. Water Res. 2016, 104, 330–339. [Google Scholar] [CrossRef] [PubMed]
- Husnain, T.; Liu, Y.; Riffat, R.; Mi, B. Integration of forward osmosis and membrane distillation for sustainable wastewater reuse. Sep. Purif. Technol. 2015, 156, 424–431. [Google Scholar] [CrossRef] [Green Version]
- Giagnorio, M.; Ricceri, F.; Tagliabue, M.; Zaninetta, L.; Tiraferri, A. Hybrid Forward Osmosis–Nanofiltration for Wastewater Reuse: System Design. Membranes 2019, 9, 61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valladares Linares, R.; Li, Z.; Yangali-Quintanilla, V.; Ghaffour, N.; Amy, G.; Leiknes, T.; Vrouwenvelder, J.S. Life cycle cost of a hybrid forward osmosis–low pressure reverse osmosis system for seawater desalination and wastewater recovery. Water Res. 2016, 88, 225–234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shanmuganathan, S.; Vigneswaran, S.; Nguyen, T.V.; Loganathan, P.; Kandasamy, J. Use of nanofiltration and reverse osmosis in reclaiming micro-filtered biologically treated sewage effluent for irrigation. Desalination 2015, 364, 119–125. [Google Scholar] [CrossRef]
- Bunani, S.; Yörükoğlu, E.; Yüksel, Ü.; Kabay, N.; Yüksel, M.; Sert, G. Application of reverse osmosis for reuse of secondary treated urban wastewater in agricultural irrigation. Desalination 2015, 364, 68–74. [Google Scholar] [CrossRef]
- Wang, L.; Liang, W.; Chen, W.; Zhang, W.; Mo, J.; Liang, K.; Tang, B.; Zheng, Y.; Jiang, F. Integrated aerobic granular sludge and membrane process for enabling municipal wastewater treatment and reuse water production. Chem. Eng. J. 2018, 337, 300–311. [Google Scholar] [CrossRef]
- Luo, W.; Hai, F.I.; Price, W.E.; Elimelech, M.; Nghiem, L.D. Evaluating ionic organic draw solutes in osmotic membrane bioreactors for water reuse. J. Membr. Sci. 2016, 514, 636–645. [Google Scholar] [CrossRef] [Green Version]
- Dialynas, E.; Diamadopoulos, E. Integration of a membrane bioreactor coupled with reverse osmosis for advanced treatment of municipal wastewater. Desalination 2009, 238, 302–311. [Google Scholar] [CrossRef]
- Mishra, V.; Abrol, G.S.; Dubey, N. Chapter 14-Sodium and Calcium Hypochlorite as Postharvest Disinfectants for Fruits and Vegetables. In Postharvest Disinfection of Fruits and Vegetables; Siddiqui, M.W., Ed.; Academic Press: Cambridge, MA, USA, 2018; pp. 253–272. ISBN 978-0-12-812698-1. [Google Scholar]
- Li, H.Y.; Osman, H.; Kang, C.W.; Ba, T. Numerical and experimental investigation of UV disinfection for water treatment. Appl. Therm. Eng. 2017, 111, 280–291. [Google Scholar] [CrossRef]
- Collivignarelli, M.; Abbà, A.; Benigna, I.; Sorlini, S.; Torretta, V. Overview of the Main Disinfection Processes for Wastewater and Drinking Water Treatment Plants. Sustainability 2017, 10, 86. [Google Scholar] [CrossRef] [Green Version]
- Gadelha, J.R.; Allende, A.; López-Gálvez, F.; Fernández, P.; Gil, M.I.; Egea, J.A. Chemical risks associated with ready-to-eat vegetables: Quantitative analysis to estimate formation and/or accumulation of disinfection byproducts during washing. EFSA J. 2019, 17, e170913. [Google Scholar] [CrossRef] [Green Version]
- De Sanctis, M.; Del Moro, G.; Levantesi, C.; Luprano, M.L.; Di Iaconi, C. Integration of an innovative biological treatment with physical or chemical disinfection for wastewater reuse. Sci. Total Environ. 2016, 543, 206–213. [Google Scholar] [CrossRef] [PubMed]
- Sharma, V.K. Disinfection performance of Fe(VI) in water and wastewater: A review. Water Sci. Technol. 2007, 55, 225–232. [Google Scholar] [CrossRef] [PubMed]
- Furst, K.E.; Pecson, B.M.; Webber, B.D.; Mitch, W.A. Tradeoffs between pathogen inactivation and disinfection byproduct formation during sequential chlorine and chloramine disinfection for wastewater reuse. Water Res. 2018, 143, 579–588. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, X.; He, W.; Han, H. Simultaneous control of microorganisms and disinfection by-products by sequential chlorination. Biomed. Environ. Sci. BES 2007, 20, 119. [Google Scholar]
- Li, S.; Shu, Y.; Tang, X.; Lin, P.; Wang, J.; Zhang, X.; Chen, C. Reaction patterns of NDMA precursors during the sequential chlorination process of short-term free chlorination and monochloramination. Sep. Purif. Technol. 2018, 204, 196–204. [Google Scholar] [CrossRef]
- Wang, X.; Hu, X.; Hu, C.; Wei, D. Sequential use of ultraviolet light and chlorine for reclaimed water disinfection. J. Environ. Sci. 2011, 23, 1605–1610. [Google Scholar] [CrossRef]
- Haaken, D.; Dittmar, T.; Schmalz, V.; Worch, E. Disinfection of biologically treated wastewater and prevention of biofouling by UV/electrolysis hybrid technology: Influence factors and limits for domestic wastewater reuse. Water Res. 2014, 52, 20–28. [Google Scholar] [CrossRef]
- Liberti, L.; Lopez, A.; Notarnicola, M.; Barnea, N.; Pedahzur, R.; Fattal, B. Comparison of advanced disinfecting methods for municipal wastewater reuse in agriculture. Water Sci. Technol. 2000, 42, 215–220. [Google Scholar] [CrossRef]
- Agulló-Barceló, M.; Polo-López, M.I.; Lucena, F.; Jofre, J.; Fernández-Ibáñez, P. Solar Advanced Oxidation Processes as disinfection tertiary treatments for real wastewater: Implications for water reclamation. Appl. Catal. B Environ. 2013, 136–137, 341–350. [Google Scholar] [CrossRef]
- Ike, I.A.; Lee, Y.; Hur, J. Impacts of advanced oxidation processes on disinfection byproducts from dissolved organic matter upon post-chlor(am)ination: A critical review. Chem. Eng. J. 2019, 375, 121929. [Google Scholar] [CrossRef]
- Bhagyaraj, S.M.; Oluwafemi, O.S.; Kalarikkal, N.; Thomas, S. Applications of Nanomaterials: Advances and Key Technologies; Woodhead Publishing: Cambridge, UK, 2018; ISBN 978-0-08-101972-6. [Google Scholar]
- Ike, I.A.; Linden, K.G.; Orbell, J.D.; Duke, M. Critical review of the science and sustainability of persulphate advanced oxidation processes. Chem. Eng. J. 2018, 338, 651–669. [Google Scholar] [CrossRef]
- Von Gunten, U. Oxidation Processes in Water Treatment: Are We on Track? Environ. Sci. Technol. 2018, 52, 5062–5075. [Google Scholar] [CrossRef]
- Ganiyu, S.O.; van Hullebusch, E.D.; Cretin, M.; Esposito, G.; Oturan, M.A. Coupling of membrane filtration and advanced oxidation processes for removal of pharmaceutical residues: A critical review. Sep. Purif. Technol. 2015, 156, 891–914. [Google Scholar] [CrossRef]
- Brienza, M.; Katsoyiannis, I.A. Sulfate Radical Technologies as Tertiary Treatment for the Removal of Emerging Contaminants from Wastewater. Sustainability 2017, 9, 1604. [Google Scholar] [CrossRef] [Green Version]
- Ferro, G.; Fiorentino, A.; Alferez, M.C.; Polo-López, M.I.; Rizzo, L.; Fernández-Ibáñez, P. Urban wastewater disinfection for agricultural reuse: Effect of solar driven AOPs in the inactivation of a multidrug resistant E. coli strain. Appl. Catal. B Environ. 2015, 178, 65–73. [Google Scholar] [CrossRef]
- Ho, D.P.; Vigneswaran, S.; Ngo, H.H. Photocatalysis-membrane hybrid system for organic removal from biologically treated sewage effluent. Sep. Purif. Technol. 2009, 68, 145–152. [Google Scholar] [CrossRef]
- Qi, L.; Wang, X.; Xu, Q. Coupling of biological methods with membrane filtration using ozone as pre-treatment for water reuse. Desalination 2011, 270, 264–268. [Google Scholar] [CrossRef]
- Song, W.; Ravindran, V.; Koel, B.E.; Pirbazari, M. Nanofiltration of natural organic matter with H2O2/UV pretreatment: Fouling mitigation and membrane surface characterization. J. Membr. Sci. 2004, 241, 143–160. [Google Scholar] [CrossRef]
- Holloway, R.W.; Miller-Robbie, L.; Patel, M.; Stokes, J.R.; Munakata-Marr, J.; Dadakis, J.; Cath, T.Y. Life-cycle assessment of two potable water reuse technologies: MF/RO/UV–AOP treatment and hybrid osmotic membrane bioreactors. J. Membr. Sci. 2016, 507, 165–178. [Google Scholar] [CrossRef] [Green Version]
- James, C.P.; Germain, E.; Judd, S. Micropollutant removal by advanced oxidation of microfiltered secondary effluent for water reuse. Sep. Purif. Technol. 2014, 127, 77–83. [Google Scholar] [CrossRef] [Green Version]
- Moser, P.B.; Ricci, B.C.; Reis, B.G.; Neta, L.S.F.; Cerqueira, A.C.; Amaral, M.C.S. Effect of MBR-H2O2/UV Hybrid pre-treatment on nanofiltration performance for the treatment of petroleum refinery wastewater. Sep. Purif. Technol. 2018, 192, 176–184. [Google Scholar] [CrossRef]
- Szymański, K.; Morawski, A.W.; Mozia, S. Effectiveness of treatment of secondary effluent from a municipal wastewater treatment plant in a photocatalytic membrane reactor and hybrid UV/H2O2–ultrafiltration system. Chem. Eng. Process.-Process Intensif. 2018, 125, 318–324. [Google Scholar] [CrossRef]
- Rodríguez-Chueca, J.; Mesones, S.; Marugán, J. Hybrid UV-C/microfiltration process in membrane photoreactor for wastewater disinfection. Environ. Sci. Pollut. Res. Int. 2019, 26, 36080–36087. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Alba, A.R.; Hernando, D.; Agüera, A.; Cáceres, J.; Malato, S. Toxicity assays: A way for evaluating AOPs efficiency. Water Res. 2002, 36, 4255–4262. [Google Scholar] [CrossRef]
- Belgiorno, V.; Rizzo, L.; Fatta, D.; Della Rocca, C.; Lofrano, G.; Nikolaou, A.; Naddeo, V.; Meric, S. Review on endocrine disrupting-emerging compounds in urban wastewater: Occurrence and removal by photocatalysis and ultrasonic irradiation for wastewater reuse. Desalination 2007, 215, 166–176. [Google Scholar] [CrossRef]
- Gerrity, D.; Pecson, B.; Trussell, R.S.; Trussell, R.R. Potable reuse treatment trains throughout the world. J. Water Supply Res. Technol.-Aqua 2013, 62, 321–338. [Google Scholar] [CrossRef]
- Nghiem, L.D.; Tadkaew, N.; Sivakumar, M. Removal of trace organic contaminants by submerged membrane bioreactors. Desalination 2009, 236, 127–134. [Google Scholar] [CrossRef]
- Wang, X.; Hu, X.; Wang, H.; Hu, C. Synergistic effect of the sequential use of UV irradiation and chlorine to disinfect reclaimed water. Water Res. 2012, 46, 1225–1232. [Google Scholar] [CrossRef]
- Park, C.; Hong, S.-W.; Chung, T.H.; Choi, Y.-S. Performance evaluation of pretreatment processes in integrated membrane system for wastewater reuse. Desalination 2010, 250, 673–676. [Google Scholar] [CrossRef]
- Chuang, Y.-H.; Szczuka, A.; Shabani, F.; Munoz, J.; Aflaki, R.; Hammond, S.D.; Mitch, W.A. Pilot-scale comparison of microfiltration/reverse osmosis and ozone/biological activated carbon with UV/hydrogen peroxide or UV/free chlorine AOP treatment for controlling disinfection byproducts during wastewater reuse. Water Res. 2019, 152, 215–225. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Pignatello, J.J.; Ma, J.; Mitch, W.A. Effect of matrix components on UV/H2O2 and UV/S2O82− advanced oxidation processes for trace organic degradation in reverse osmosis brines from municipal wastewater reuse facilities. Water Res. 2016, 89, 192–200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blackbeard, J.; Lloyd, J.; Magyar, M.; Mieog, J.; Linden, K.G.; Lester, Y. Demonstrating organic contaminant removal in an ozone-based water reuse process at full scale. Environ. Sci. Water Res. Technol. 2016, 2, 213–222. [Google Scholar] [CrossRef]
- Kim, J.; Song, I.; Oh, H.; Jong, J.; Park, J.; Choung, Y. A laboratory-scale graywater treatment system based on a membrane filtration and oxidation process—Characteristics of graywater from a residential complex. Desalination 2009, 238, 347–357. [Google Scholar] [CrossRef]
- RO Reject Recovery; Pure Water Group: Sprundel, Switzerland, 2019; Available online: https://purewatergroup.com/ro-reject-recovery/ (accessed on 21 June 2020).
- Venzke, C.D.; Giacobbo, A.; Ferreira, J.Z.; Bernardes, A.M.; Rodrigues, M.A.S. Increasing water recovery rate of membrane hybrid process on the petrochemical wastewater treatment. Process Saf. Environ. Prot. 2018, 117, 152–158. [Google Scholar] [CrossRef]
- Singh, N.; Dhiman, S.; Basu, S.; Balakrishnan, M.; Petrinic, I.; Helix-Nielsen, C. Dewatering of sewage for nutrients and water recovery by Forward Osmosis (FO) using divalent draw solution. J. Water Process Eng. 2019, 31, 100853. [Google Scholar] [CrossRef]
- Pretel, R.; Robles, A.; Ruano, M.V.; Seco, A.; Ferrer, J. The operating cost of an anaerobic membrane bioreactor (AnMBR) treating sulphate-rich urban wastewater. Sep. Purif. Technol. 2014, 126, 30–38. [Google Scholar] [CrossRef]
- Choukr-Allah, R.; Ragab, R.; Rodriguez-Clemente, R. Integrated Water Resources Management in the Mediterranean Region: Dialogue towards New Strategy; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; ISBN 978-94-007-4755-5. [Google Scholar]
- Relatif à L’utilisation D’eaux Issues du Traitement D’épuration des Eaux Résiduaires Urbaines Pour L’irrigation de Cultures ou D’espaces Verts. Available online: https://www.legifrance.gouv.fr/affichTexte.do?cidTexte=JORFTEXT000022753522 (accessed on 2 August 2010).
- Gurel, M.; Iskender, G.; Ovez, S.; Arslan-Alaton, I.; Tanik, A.; Orhon, D. A global overview of treated wastewater guidelines and standards for agricultural reuse. Fresenius Environ. Bull. 2007, 16, 590–595. [Google Scholar]
- Li, Y.; Su, Y.; Zhao, X.; Zhang, R.; Liu, Y.; Fan, X.; Zhu, J.; Ma, Y.; Liu, Y.; Jiang, Z. Preparation of Antifouling Nanofiltration Membrane via Interfacial Polymerization of Fluorinated Polyamine and Trimesoyl Chloride. Ind. Eng. Chem. Res. 2015, 54, 8302–8310. [Google Scholar] [CrossRef]
- Kang, G.; Cao, Y. Development of antifouling reverse osmosis membranes for water treatment: A review. Water Res. 2012, 46, 584–600. [Google Scholar] [CrossRef] [PubMed]
- Rana, D.; Matsuura, T. Surface Modifications for Antifouling Membranes. Chem. Rev. 2010, 110, 2448–2471. [Google Scholar] [CrossRef] [PubMed]
- Alzahrani, S.; Mohammad, A.W. Challenges and trends in membrane technology implementation for produced water treatment: A review. J. Water Process Eng. 2014, 4, 107–133. [Google Scholar] [CrossRef]
- Li, Y.S.; Yan, L.; Xiang, C.B.; Hong, L.J. Treatment of oily wastewater by organic–inorganic composite tubular ultrafiltration (UF) membranes. Desalination 2006, 196, 76–83. [Google Scholar] [CrossRef]
- Rashid, S.S.; Liu, Y.-Q. Assessing environmental impacts of large centralized wastewater treatment plants with combined or separate sewer systems in dry/wet seasons by using LCA. Environ. Sci. Pollut. Res. 2020, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Aygun, A.; Nas, B.; Berktay, A. Influence of High Organic Loading Rates on COD Removal and Sludge Production in Moving Bed Biofilm Reactor. Environ. Eng. Sci. 2008, 25, 1311–1316. [Google Scholar] [CrossRef]
- Marks, J.S. Taking the public seriously: The case of potable and non potable reuse. Desalination 2006, 187, 137–147. [Google Scholar] [CrossRef]
- Aitken, V.; Bell, S.; Hills, S.; Rees, L. Public acceptability of indirect potable water reuse in the south-east of England. Water Supply 2014, 14, 875–885. [Google Scholar] [CrossRef] [Green Version]
- Burgess, J.; Meeker, M.; Minton, J.; O’Donohue, M. International research agency perspectives on potable water reuse. Environ. Sci. Water Res. Technol. 2015, 1, 563–580. [Google Scholar] [CrossRef] [Green Version]
- Meneses, M.; Pasqualino, J.C.; Castells, F. Environmental assessment of urban wastewater reuse: Treatment alternatives and applications. Chemosphere 2010, 81, 266–272. [Google Scholar] [CrossRef]
- Pasqualino, J.C.; Meneses, M.; Castells, F. Life Cycle Assessment of Urban Wastewater Reclamation and Reuse Alternatives. J. Ind. Ecol. 2011, 15, 49–63. [Google Scholar] [CrossRef]
- Jeong, H.; Broesicke, O.A.; Drew, B.; Crittenden, J.C. Life cycle assessment of small-scale greywater reclamation systems combined with conventional centralized water systems for the City of Atlanta, Georgia. J. Clean. Prod. 2018, 174, 333–342. [Google Scholar] [CrossRef]
Application | Major Constraints | Percentage Contribution | |
---|---|---|---|
Types | Examples | ||
Potable reuse | Indirect and direct drinking | Public perception issues | 2.3% |
Non potable urban reuse | Public parks and schoolyards Highway medians Residential landscapes Fire protection Toilet flushing | Dual distribution system costs The requirement for dual piping systems The greater burden on cross connection control | 8.3% |
Agricultural Irrigation | Nonfood crops Commercial nurseries Pasture lands | Seasonal demand Usually away from the point of water reclamation Public perception issues High–total dissolved solids (TDS) reclaimed water can adversely affect plant health | 32% |
Landscape Irrigation | Parks and schoolyards Roadway medians Residential lawns Golf courses Cemeteries Greenbelts | Seasonal demand Usually away from the point of water reclamation High TDS reclaimed water can adversely affect plant health | 20% |
Recreation | Ponds and lakes Golf courses | Site specific | 6.4% |
Environmental enhancements | Artificial wetlands Natural wetlands Stream flows | Site specific | 8% |
Industries | Process water Boiler water makeup Cooling tower water Geothermal energy | Constant demand, but site-specific Limited demand Treatment required depends on end-use | 19.3% |
Groundwater recharge | Groundwater replenishment Barrier against brackish or seawater intrusion Ground subsidence control | Appropriate hydrogeological conditions needed High level of treatment required Potential for water quality degradation in the subsurface | 2.0% |
Others | 1.7% |
Country/Region | Water Reuse Volume Estimation (×106 m3·d−1) | Water Reuse Rate * | Year | Reference |
---|---|---|---|---|
U.S.A | 13.0 | 9.7% | 2000 | [12] |
China | 5.90 | 2.9% | 2015 | [13] |
Arab region (Arabian Peninsula) | 3.63 | 23% | 2013 | [10] |
India | 3.54 | 30% | 2017 | [14] |
Europe | 2.65 | 2.4% | 2006 | [15] |
Korea | 2.58 | 13.5% | 2014 | [16] |
Israel | 1.1 | 87% | 2016 | [17] |
Australia | 0.8 | 16.8% | 2010 | [18] |
Mexico | 0.67 | 9.0% | 2010 | [19] |
Japan | 0.59 | 1.5% | 2014 | [20,21] |
Singapore | 0.58 | 40% | 2013 | [22] |
Tunisia | 0.4 | 83% | 2006 | [23,24] |
Wastewater Constituents | Contents | Risks |
---|---|---|
Microorganisms | Pathogenic bacteria, viruses and worms’ eggs | Risk when exposed to humans and animal by inhalation or drinking |
Micropollutants | Pesticides, pharmaceuticals, fuel additives, cyanotoxins, personal care products, detergents | Environmental as well as further expected impacts on humans, such as genotoxic, immunotoxic, carcinogenic and fertility-impairing effects |
Suspended solids | Particles, solids, colloids | Carrying pollutants and pathogens |
Biodegradable organic matters | Organic carbon, sugar, protein, ammonia | Oxygen depletion in rivers, lakes and fjords; fish death; odors |
Other organic matters | Fat, oil and grease, coloring, solvents, phenols | Toxic effect, esthetic inconveniences, bioaccumulation in the food chain |
Other Nutrients | Nitrogen (ammonium, nitrates), phosphorus | Eutrophication, oxygen depletion, toxic effect |
Metals | Hg, Pb, Cd, Cr, Cu, Ni | Toxic effect, bioaccumulation |
Others inorganic materials | Acids, for example, hydrogen sulfide, bases | Corrosion, toxic effect |
Thermal effects | Hot water | Changing living conditions for flora and fauna |
Odor (and taste) | Hydrogen sulfide | Esthetic inconveniences, toxic effect |
Radioactivity | Toxic effect, accumulation |
Organization | Category | Typical Application | pH | TSS (mg·L−1) | Turbidity (NTU) | BOD5 (mg·L−1) | Residual Cl−1 (mg·L−1) | Fecal Coliform (E. coli as an Indicator) (100 mL−1) |
---|---|---|---|---|---|---|---|---|
EU Parliament | Agriculture irrigation | A | ≤10 | ≤5 | ≤5 | ≤ 10/below detection limit | ||
B | Directive 91/271/EEC | – | Council Directive 91/271/EEC | ≤100 | ||||
C | – | ≤1000 | ||||||
D | – | ≤10,000 | ||||||
WHO guidelines | Agriculture irrigation | Food crop irrigation (uncooked) | 6–9 | ND | ≤2 | ≤10 | 1 | ND |
Non-food crops and crops consumed after processing | 6–9 | ≤30 | – | ≤30 | 1 | ≤ 200 | ||
Landscape irrigation | Parks; schoolyards; Playgrounds | 6–9 | ND | ≤2 | ≤10 | 1 | ND | |
Golf courses; Cemeteries; Greenbelts; Residential | 6–9 | ≤30 | – | ≤30 | 1 | ≤200 | ||
Industrial recycling and reuse | Cooling water; boiler feed; Process water; Heavy construction | – | ≤30 | – | ≤30 | – | ≤200 | |
Groundwater | Groundwater replenishment; saltwater intrusion control; Subsidence control | Site-specific; specific guidelines do not exist. | ||||||
Recreational Environmental uses | Lakes and ponds; marsh enhancement; streamflow augmentation; fisheries; snowmaking | 6–9 | ND | ≤2 | ≤10 | 1 | ND | |
Non-potable urban uses | Fire protection; air conditioning; toilet flushing | 6–9 | ND | ≤2 | ≤10 | 1 | ND | |
Potable uses | Blending in water supply reservoirs; Blending in groundwater; Direct pipe-to-pipe water supply | Meet requirements for safe drinking water; specific guidelines do not exist. |
Characters | MF | UF | NF | RO (Low-Pressure) |
---|---|---|---|---|
Separation mechanism | Sieve | Sieve | Sieve, solution/diffusion, Exclusion, electric repulsion | Solution/diffusion, Exclusion |
Membrane | Porous isotropic | Porous asymmetric | Finely porous asymmetric/composite | Nonporous asymmetric/composite |
Molecular weight cutoff | >1000 kDa | 1–300 kDa | 200–1000 Da | – |
Retained compounds | Colloids, TSS turbidity, some protozoan oocysts, cysts, some bacteria and viruses | Macromolecules, proteins, colloids, bacteria, viruses | LMWC, mono-, di- and oligo-, saccharides; polyvalent anions, some hardness, viruses | LMWC, sodium, chloride, glucose, amino acids, hardness, ions |
Transmembrane pressure (TMP) | <5 bar | <10 bar | <20 bar | <100 bar |
Flow modes | Crossflow, Dead-end | Crossflow, Dead-end | Crossflow | Crossflow |
Geometry | Hollow fiber, spiral wound, plate and frame, tubular | Hollow fiber, spiral wound, plate and frame, tubular | Hollow fiber, spiral wound, tubular | Hollow fiber, spiral wound |
Process (scale and Operating Duration) | Feed Wastewater | Operating Conditions | Feed Characteristics | Permeate Quality/Removal Rate | Application for Reuse | Standard Basis | References |
---|---|---|---|---|---|---|---|
MF (pilot plant, 120 d) | Domestic wastewater (septic tank effluent) | Capacity: 10 m3·d−1 MF: 0.1 μm; TMP: 0.20–0.50 bar | COD: 10–622 mg·L−1 BOD5: 25–110 mg·L−1 TOC: 2.8–22.6 mg·L−1 TSS: 5–645 mg·L−1; Turbidity: 2.7–123 NTU Color: 5–109 CU | COD: 1–30 mg·L−1, 92.8% BOD5: 1–7 mg·L−1, 92.9% TOC: 0.4–8.1 mg·L−1, 65.8% TSS: 0–2 mg·L−1, 99.8% Turbidity: 0–4.2 NTU, 99.4% Color: 2–32 CU, 76.2% | Toilet flushing | Not mentioned | [75] |
UF (pilot plant, 2 years) | Secondary effluent of WWTP | TMP: 0.1–0.7 bar UF: 0.03 μm | TSS: 96–165 mg·L−1 COD: 167–307 mg·L−1 PO4–P: 1.0–3.9 mg·L−1 NH4–N: 3.0–33 mg·L−1 Norg: 9–16 mg·L−1 | TSS: 3–9 mg·L−1 COD: 42–103 mg·L−1 PO4–P: 0.8–3.4 mg·L−1 NH4–N: 4.0–33 mg·L−1 Norg: 2–5 mg·L−1 LRV (total coliforms): 3.7 LRV (fecal coliforms): 4.2 LRV (E. coli): 3.7 | Crops irrigation (tomato and fennel) | Meeting WHO guidelines | [81] |
Prefilter +UF(pilot plant, two months) | Secondary effluent of WWTP | UF: 0.01 μm (200 kDa), UF modes: crow flow Inlet flow: 10 m3·h−1 TMP: 0.30–1.20 bar | pH: 6.3–7.5 T: 19–25 °C EC: 1584–1950 μS·cm−1 Turbidity: 1–7 NTU TSS: 1–8 mg·L−1 COD: 26–69 mg·L−1 E. coli: 3000–36,000 CFU·100 mL−1 Total coliforms: 9100–96,000 CFU·100 mL−1 | Turbidity: < 0.2 NTU TSS: < 0.2 mg·L−1 COD: 20–60 mg·L−1 E. coli: 0 CFU·100 mL−1 Total coliforms: 0 CFU·100 mL−1 | Agriculture irrigation | Meeting WHO guidelines | [77] |
Prefilters +UF (pilot scale) | Synthetic secondary sewage effluent | UF: 1 kDa/0.002 μm (tubular); 25 kDa/0.008 μm (spiral wound) UF modes: cross flow TMP: 1.0–3.3 bar Flow velocity: 0.2 m·s−1 | COD: 18.5–67 mg·L−1 Turbidity: 9.43–46.4 NTU TSS: 13–30 mg·L−1 Color: 41–81 EC: 320–366 μS·cm−1 A(254 nm): 0.25–1.051 pH: 7.7–7.81 | COD: 64.38–80.4% Turbidity: 96.75–99.61% Color: 0–53.49% Absorbance (254 nm): 76.6–91.94% | Non-potable reuse (not detailed) | Meeting WHO guidelines | [78] |
Membrane Process (Scale and Operation Duration) | Feed Wastewater | Operating Conditions | Feed Characteristics | Permeate Quality/Removal Rate | Application for Reuse | Standard Basis | References |
---|---|---|---|---|---|---|---|
GAC+MF (submerged) (lab scale,140 d) | Secondary treated water of the sewage treatment plant in Sung- kyunkwan University | MF: 0.22 μm Flux: 98 L·m−2·h−1 TMP: 0–0.4 bar | pH: 7.62–8.02 Turbidity: 2.2–10.3 NTU TSS: 4–20 mg·L−1 UV260: 0.28–0.32 cm−1 DOC: 6–8 mg·L−1 COD: 10–30 mg·L−1 TN: 30–50 mg·L−1 TP: 15–30 mg·L−1 | Turbidity: 0.1–0.4 NTU, 100% TSS: 100% UV260: 0.26–0.3 cm−1, 60% DOC: 2–4 mg·L−1, 40–46% COD: 8–25 mg·L−1, 53% TN: 20–40 mg·L−1 15% TP: 10–20 mg·L−1, 13% | Not mentioned | WHO guidelines | [100] |
Submerged MF–GAC (Semi-batch, 60 d) | Biologically treated sewage effluent | MF: 0.14 μm, flat sheet NF: 700 Da, flat sheet TMP: ≤ 4 bar Flux: 2.5 L·m−2·h−1 GAC: 10% daily replacement | pH: 6.8–7.6 EC: 520–1120 μS·cm−1 DOC: 3.6–7.7 mg·L−1 | DOC: 2.4 ± 0.2 mg·L−1, 53 ± 5% PPCPs: < 5 ng·L−1 (for each) | Not mentioned | Australian and New Zealand Guidelines for Fresh and Marine Water Quality | [88] |
Coagulation +MF (lab scale, 5 months) | Secondary effluent from WWTP | Coagulant: 10–50 mg·L−1 alumina MF: 0.1, 0.22 μm; TMP: 0.34 bar | Turbidity: 19.7 ± 87.9 NTU TOC: 7.2 ± 6.5 mg·L−1 pH: 7.0 ± 0.2 UV254: 0.040–0.058 cm−1 Alkalinity: 202.8 ± 12.2 mg·L−1 as CaCO3 TSS: 14.4 ± 25.8 mg·L−1 | Turbidity: 0.11–0.13 NTU, >93%; TOC: 1.30–1.56 mg·L−1, 23.5–35.5% UV254: 0.019–0.02 cm−1, 52.5–54.5% | Not mentioned | Not mentioned | [99] |
Coagulation + PAC + UF (lab scale) | Secondary effluent from WWTP | UF: 50 kDa TMP: 1 bar Coagulant: FeCl3 | pH: 7.4 Turbidity: 18 NTU TSS: 35 mg·L−1 BOD5: 30 mg·L−1 COD: 77 mg·L−1 EC: 1350 μS·cm−1 Zeta potential: 4.118 mV | COD: 13.33–21 mg·L−1 Turbidity: 0.5–0.8 NTU Zeta potential: −0.332–0.166 mV | Not mentioned | Not mentioned | [106] |
PAC+UF (lab scale, ~1 h) | Secondary effluent from domestic WWTP | UF: 100 kDa TMP: 1 bar | pH: 7.1–7.6 Turbidity: 0.9–1.5 NTU TOC: 3.3–5.2 mg·L−1 UV254: 0.09–0.12 cm−1 COD: 25–32 mg·L−1 Color: 18–24 CU Coliforms: 300–700 mL−1 | DOC: 22.2–28.8% UV254: 33.7–38.3% | urban reuse, agricultural, landscape and industrial reuse | Not mentioned | [107] |
MF+UF | Secondary effluent from urban WWTP | MF: 0.2 μm, hollow fiber, 0.2–0.8 bar (TMP) UF: 0.05 μm, flat sheet, 0.2–0.6 bar (TMP) | Turbidity: 4–20 NTU TSS: 11–87 mg·L−1 T-UV253.7: 11–41% Nematode eggs: 0–200 Un·L−1 E. coli: 104–106 CFU·100 mL−1 Fecal coliforms: 104–106 CFU·100 mL−1 Coliphages: 103–104 PFU·100 mL−1 | Turbidity: 0–0.9 NTU TSS: 1–7 mg·L−1 T-UV253.7(%): 0 Nematode eggs: 0 E. coli: 0 CFU·100 mL−1 Fecal coliforms: 0–9 CFU·100 mL−1 Coliphages: 0–1 PFU·100 mL−1 | Not mentioned | Water reuse guidelines of US EPA | [108,109] |
Membrane Process (Scale and Operating Duration) | Operating Conditions | Feed Characteristics | Permeate Quality/Removal Rate (in Average) | Application for Reuse | Standard Basis | References |
---|---|---|---|---|---|---|
Aerobic MBR (pilot plant, 30 d) | Feed: mixed municipal and industrial wastewater MF: 0.4 μm, flat-sheet Flux: 83 L·m−2·h−1 MLSS: 1600–2300 mg·L−1 HRT: 8 h SRT: 25 days | pH: 7.3 ± 0.62 SS: 223 ± 32 mg·L−1 COD: 250 ± 64 mg·L−1 Al: 250 ± 70 µg·L−1 Fe: 180 ± 80 µg·L−1 Pb: 340 ± 190 µg·L−1 Cu: 610 ± 170 µg·L−1 Ni: 160 ± 90 µg·L−1 Cr: 225 ± 105 µg·L−1 Coliforms: 106 MPN·100 mL−1 | SS: <5 mg·L−1, >98% COD: 41–51 mg·L−1, >75% Al: 81% Fe: 53% Pb: 94% Cu: 91% Ni: 59% Cr: 49% Coliforms: < 140 MPN·100 mL−1, 99.9% | Reused for process water in industries, cleaning, recreational water supplies or discharged to surface waters. | Not mentioned | [148] |
Aerobic MBR+ GAC (water recycle plant, 12 months) | Feed: Primary effluent of municipal wastewater recycling plant UF: 0.04 μm HRT: 3.2 h (MBR) + 0.58 h (GAC) | BOD5: 46.2–262.1 mg·L−1 COD: 142.0–512.0 mg·L−1 SS: 47.5–240 mg·L−1 | BOD5: < 1.9 mg·L−1, >96% COD:< 48.3 mg·L−1, >65.9% SS: < 7.2 mg·L−1, >85% Fecal coliforms: 0.3 CFU·100 mL−1 Phages: 3.9–5.6 log reduction | Non-potable | California Department of Public Health | [116] |
Aerobic submerged MBR (pilot-scale, 50 days) | Feed: black water from household MF: 0.4 μm Flux: 30–40 L·m−2·h−1 HRT: 36 h | pH: 7.6 BOD5: 406 mg·L−1 Total COD: 1218 mg·L−1 Soluble COD: 417 mg·L−1 TN: 188 mg·L−1 NH4+-N: 155 mg·L−1 TP: 21.3 mg·L−1 TSS: 560 mg·L−1 Total coliform: >106 100 mL−1 | BOD5: 8 ± 4 mg·L−1, 98% Total COD: 42 ± 8.81 mg·L−1, 96% TSS: 2 ± 1.19 mg·L−1, 99% TN: 19 ± 4.73 mg·L−1, 89% NH4+-N: 11 ± 3.76 mg·L−1, 92% NOX-N: 8 ± 3.1 mg·L−1 Total coliforms: 0, 100% | Toilet flushing, Cleaning, Irrigation | Water reuse standards of EPA, EU, WHO, Turkey | [114] |
Aerobic submerged MBR (pilot plant, 6 months) | Feed: hotel greywater UF: 0.04 μm, hollow fiber Flux: 20 L·m−2·h−1 | COD: 41–500 mg·L−1 BOD5: 36–295 mg·L−1 TN: 2.6–25 mg·L−1 Ammonia N: 0.3–14 mg·L−1 TP: 0–6.7 mg·L−1 Total count: 1.5 × 107–4.1 × 107 CFU·100 mL−1 Total coliforms: 1.4 × 106–4.1 × 106 CFU·100 mL−1 E. coli: < 1.1 × 106 CFU·100 mL−1 | COD: <36 mg·L−1 TN:<10 mg·L−1 Ammonia N: <8 mg·L−1 Total count: 5.8 × 103–1.6 × 105 CFU·100 mL−1 Total coliforms: 0.27 × 102–2.1×102 CFU·100 mL−1 E. coli: <1.1 × 102 CFU·100 mL−1 Intestinal Enterococci /Nematodes: < 1 CFU·100 mL−1 Legionella spp.: < 1 CFU·100 mL−1 | Non-potable reuse | Spanish water reuse standard | [149] |
Aerobic MBR (External): Pilot plant for 162 days | Feed: urban wastewater UF: 0.02 μm/300 kDa Flux: 75–150 L·m−2·h−1 HRT: 5 d SRT: 5–30 days | COD: 200–800 mg·L−1 SS: 100–600 mg·L−1 NH3-N: 10–30 mg·L−1 Coliform: 105–106·L−1 Turbidity: 50–70 NTU pH: 7.5–8.5 | COD: 9.4 mg·L−1, 97%; SS: nd,100%; NH3-N: 0.2–1.3 mg·L−1, 96.2%; Turbidity: < 2 NTU Coliform: nd pH: 8.2 | Directly for municipal purposes or indirectly for industrial uses after additional treatment | Water reuse standard of China | [117] |
Vertical submerged MBR (pilot scale for 600 days) | Feed: municipal wastewater in Korea UF: 0.45 μm Flux: 6.2 L·m−2·h−1 HRT: 8 h SRT: 60 days | COD: 232 ± 41 mg·L−1 TSS: 220 ± 52 mg·L−1 TN: 42 ± 5 mg·L−1 TP: 3.2 ± 0.4 mg·L−1 Volatile fatty acids: <1.0 mg·L−1 pH: 7.3 ± 0.1 Alkalinity as CaCO3: 145 ± 47 mg·L−1 | COD: 9.0 ± 3.6 mg·L−1, 96% TSS: 220 ± 52 mg·L−1 TN: 10.6 ± 2.6 mg·L−1, 74% TP: 0.7 ± 0.2 mg·L−1, 78% Total colony counts: 24 CFU·mL−1 Turbidity: 0.18 NTU, pH: 7.3 | Urban or rural reuse, such as toilet flushing, sprinkling and car washing | Drinking water standards of Korea and the WHO | [150] |
Process (Scale and Operation Duration) | Feed Water | Operating Conditions | Feed Characteristics | Final permeate quality (Removal rate) | Application for Reuse | Standard Basis | References |
---|---|---|---|---|---|---|---|
(Biologic methods) + NF (lab scale, 6 h) | Bio-treated municipal wastewater | TMP: 10 bar NF: 150 Da (CA), 200 Da (PTFC), flat sheet | TDS: 3150–3908 mg·L−1 EC: 6303–7815 μS·cm−1 pH: 8.13–8.34 Salinity: 3.51–4.17 g·kg−1 Turbidity: 0.15–0.39 NTU Na+: 1018–1091 mg·L−1 Ca2+: 195–218 mg·L−1 K+: 80.3–96.8 mg·L−1 Mg2+: 134–150 mg·L−1 NH4–N: 0.10–0.11 mg·L−1 HCO3−: 408–440 mg·L−1 SO42−: 261–299 mg·L−1 Cl−: 1834–1848 mg·L−1 PO4–P: 2.10–2.28 mg·L−1 NO3–N: 8.55–8.65 mg·L−1 NO2–N: 0.21–0.22 mg·L−1 Si: 10.5–12.5 mg·L−1 COD: 29.8–30.5 mg·L−1 Color: 21.1–22.3 Hazen TOC: 13.7–16.5 mg·L−1 | TDS: 340–1150 mg·L−1 EC: 690–2300 μS·cm−1 pH: 7.59–7.60 Salinity: 0.34–1.16 g·kg−1 Turbidity: <0.02 NTU Na+: 134–353 mg·L−1 Ca2+: 0.54–7.12 mg·L−1 K+: 14.5–30.7 mg·L−1 Mg2+: 0.41–4.8 mg·L−1 NH4–N: 0.06–0.07 mg·L−1 HCO3−: 31–57.2 mg·L−1 SO42−: <0.05 mg·L−1 Cl−: 206–572 mg·L−1 PO4–P: <0.05 mg·L−1 NO3–N: 3.75–5.63 mg·L−1 NO2–N: 0.06–0.07 mg·L−1 Si: 4.07–4.75 mg·L−1 COD: 4.49–7.18 mg·L−1 Color: 1.85–2.1 Hazen TOC: 1.7–3.34 mg·L−1 | Irrigation | FAO Irrigation and Drainage Paper | [160] |
Submerged MBR+ NF | Municipal wastewater after primary treatment | UF: 200 kDa, hollow fiber NF: 150–300 Da, TMP: 0.1–0.5 bar (UF); 41 bar (NF) | (raw wastewater) EC: 1174 ± 2 μS·cm−1 pH: 7.22 ± 0.11 TSS: 488 ± 48 mg·L−1 Turbidity: 248 ± 11 NTU DOC: 126.6 ± 7.3 mg·L−1 COD: 478 ± 132 mg·L−1 F−: 0.096 ± 0.003 mg·L−1 Cl−: 156.0 ± 2.4 mg·L−1 NO2−: 64.35 mg·L−1 NO3−: 144.53 ± 42.17 mg·L−1 PO43−: 9.631 ± 1.428 mg·L−1 SO42−: 36.33 ± 0.84 mg·L−1 Na+: 71.14 ± 0.48 mg·L−1 K+: 11.85 ± 0.14 mg·L−1 Mg2+: 22.05 ± 0.04 mg·L−1 Ca2+: 110.7 ± 0.2 mg·L−1 SAR: 1.61 ± 0.01 | EC: 397 μS·cm−1 pH: 8.06 TSS: 0 mg·L−1 Turbidity: 0.23 NTU DOC: 0.35 mg·L−1 COD: < 5 mg·L−1F−: n.a. mg·L−1 Cl−: 63.77 mg·L−1 NO2−: 0.3728 mg·L−1 NO3−: 63.1 mg·L−1 PO43−: n.a. mg·L−1 SO42−: 0.464 mg·L−1 Li+: nd Na+: 38.01 mg·L−1 NH4+: nd K+: 5.9 mg·L−1 Mg2+: 3.04 mg·L−-1 Ca2+: 29.9 mg·L−1 SAR: 1.77 | Agricultural Irrigation (50% of MBR effluent and 50% of NF permeate) | WHO and FAO guidelines | [159] |
NF | MBR effluent from domestic wastewater | Lp0: 6.2 L·m−2·h−1·bar−1 TMP: 8 bar | UV254 nm: 0.148–0.155 UV210 nm: 1.579–3.207 TOC: 6.0–8.0 mg·L−1 COD: 12–13 mg·L−1 TSS: <2 mg·L−1 Mg2+: 8.9–9.8 mg·L−1 Ca2+: 25.0–28.4 mg·L−1 EC: 631–894 μS·cm−1 | UV254 nm > 95% UV210 nm: 75–81% TOC: 82–95% EC: 92–94% | Not mentioned | Not mentioned | [166] |
UF+NF | Synthetic municipal wastewater after aerobic activated sludge process | UF: 30 kDa, PES NF: 270 Da, PA TMP: 1–6 bar | COD: 243.34 mg·L−1 TP: 7.53 mg·L−1 NH3–N: 0.67 mg·L−1 NO2-N: 4.32 mg·L−1 NO3–N: 34.43 mg·L−1 | COD: 3.68 mg·L−1 TP: 0.19 mg·L−1 NH3–N: 0.14 mg·L−1 NO2-N: 0.14 mg·L−1 NO3–N: 1.37 mg·L−1 | Inner industrial reuse, Garden irrigation | China municipal water reuse standards | [206] |
Forward osmosis (FO) + NF | Secondary effluent from WWTP | Flux: 2.4 L·m−2·h−1 for FO Flux: 3.3 or 6.6 L·m−2·h−1 for NF | E. coli: 0 CFU·100 mL−1 TSS: < 1 mg·L−1 Turbidity: 0.22 NTU EC: 5.33 dS·m−1 SAR: 10.6 meq·L−1 B: 1.17 mg·L−1 Arsenic: 0.0015 mg·L−1 Chrome: 0.0041 mg·L−1 Copper: 0.002 mg·L−1 Manganese: 0.018 mg·L−1 Molybdenum: 0.002 mg·L−1 Nickel: 0.0016 mg·L−1 Selenium: <0.004 mg·L−1 | Conductivity: 1 mS·cm−1 B: < 0.4 mg·L−1 SAR: 1.98 meq·L−1 | Agricultural irrigation | Spanish water reuse legislation (RD1620/2007) | [197] |
OMBR + RO | Synthetic wastewater | FO: flat sheet, thin-film composite (TFC), 0.5-M NaCl draw solution. RO: flat sheet, TFC, polyamide Flux: 4–8 L·m−2·h−1 | Glucose: 100 mg·L−1 Peptone: 100 mg·L−1 KH2PO4: 17.5 mg·L−1 MgSO4: 17.5 mg·L−1 FeSO4: 10 mg·L−1 CH3COONa: 225 mg·L−1 Urea: 35 mg·L−1 31 TrOCs: 5 μg·L−1 for each TrOC | The system achieved the effective removal of bulk organic matter, nutrients and almost complete removal of all 31 trace organic contaminants investigated | Not mentioned | Not mentioned | [190,207] |
NF and/or RO (Semi-batch, 60 d) | Microfiltered, biologically treated sewage effluent | MF: 0.14 μm, flat sheet NF: 700 Da, flat sheet, 4 bar RO: 100 Da | pH: 6.8–7.6 EC: 520–1120 μS·cm−1 DOC: 3.6–7.7 mg·L−1 SAR: 39 F−: 0.7–1.1 mg·L−1 Cl−: 150–300 mg·L−1 NO3−: 1.0–1.3 mg·L−1 PO43–: 0.74–0.99 mg·L−1 SO42−: 49–51 mg·L−1 Na+: 81–120 mg·L−1 K+: 15–21 mg·L−1 Ca2+: 21–40 mg·L−1 Mg2+: 10–15 mg·L−1 BO33−: 0.04–0.06 mg·L−1 | Blending NF permeate and RO permeate at ratio of 50: 50. DOC: 95 ± 2% (NF), > 99% (RO) SAR: 8 Na+: 57 mg·L−1 Cl−: 109 mg·L−1 Ca2+: 7 mg·L−1 Mg2+: 5 mg·L−1 K+: 6 mg·L−1 S: 0.5 mg·L−1 NO3−: 7 mg·L−1 B: <0.1 mg·L−1 PPCPs (12 types): < 57 ng·L−1 per PPCP with NF; all < 5 ng·L−1 per PPCP with RO, except caffeine 39 ng·L−1 | Irrigation | Australian and New Zealand Guidelines for Fresh and Marine Water Quality | [88] |
RO | MBR effluent from domestic wastewater | TMP: 4–12 bars Initial Permeability: 3.6 L·m−2·d−1·bar−1 | UV254 nm: 0.148–0.155 UV210 nm: 1.579–3.207 TOC: 6.0–8.0 mg·L−1 COD: 12–13 mg·L−1 TSS: < 2 mg·L−1 Mg2+: 8.9–9.8 mg·L−1 Ca2+: 25.0–28.4 mg·L−1 EC: 631–894 μS·cm−1 | UV254 nm > 95% UV210 nm: 90–97% TOC: 91–98% EC: 96–98% | Not mentioned | Not mentioned | [166] |
MBR/MF + RO | Degritted sewage | Flow rate: MBR: 40 m3·d−1; MF: 0.4 μm RO: 19 m3·d−1 | TSS: 201 mg·L−1 BOD5: 198 mg·L−1 COD: 391 mg·L−1 TKN: 43 mg·L−1 Nitrate N: 0.2 mgN·L−1 TDS: 337 mg·L−1 pH: 7.2 Color: 133 Hazen Alkalinity: 179 mg·L−1 Si: 12 mg·L−1 Turbidity: 59 NTU E. coli: 4.1 × 107CFU·100 mL−1 Virus: 6.2x104 PFU·100 mL−1 Total Estrogens: 182 μg·L−1 | TSS: < 2 mg·L−1 BOD5: < 2 mg·L−1 COD: < 2 mg·L−1 TKN: 0.1 mg·L−1 Nitrate N: 0.9 mgN·L−1 TDS: 42 mg·L−1 pH: 5.4 Color: < 1 Hazen Alkalinity: 5.1 mg·L−1 Si: 0.5 mg·L−1 EC: 27 μS·cm−1 E. coli: nd Virus: nd Total Estrogens: 4.7 μg·L−1 | Both for potable and non-potable reuse | USEPA and WHO guidelines | [118] |
MF+RO | Secondary treated effluent from sewage | MF: 26 m3·d−1; 0.4 μm RO: 19 m3·d−1 | TSS: 2 mg·L−1 BOD5: 3 mg·L−1 COD: 23 mg·L−1 TKN: 3.1 mg·L−1 Nitrate N: 4.7 mgN·L−1 TDS: 364 mg·L−1 pH: 7.2 Color: 44 Hazen Alkalinity: 71 mg·L−1 Si: 11.7 mg·L−1 Turbidity: 0.6 NTU E. coli: 2.8 × 105 CFU·100 mL−1 Virus: 97 PFU·100 mL−1 Total Estrogens: 38 μg·L−1 Odor: 2 | TSS: < 2 mg·L−1 BOD5: < 2 mg·L−1 COD: < 2 mg·L−1 TKN: 0.3–0.4 mg·L−1 Nitrate N: 0.71–1.43 mgN·L−1 TDS: 17–24 mg·L−1 pH: 5.3–5.5 Color: < 2.5 Hazen Alkalinity: 2.7–3.3 mg·L−1 Si: 0.3–0.7 mg·L−1 EC: 24–33 μS·cm−1 E. coli: nd Virus: nd Total Estrogens: < 4.4 μg·L−1 Odor: 1 | Both for potable and non-potable reuse | EPA and WHO guidelines | [118] |
MBR+RO (pilot scale, 112 days) | Primary municipal wastewater | UF: 0.04 μm, hollow fiber.TMP: 0.42 bar (UF), 15.2 bar (RO) | TSS: 100–1930 mg·L−1 Turbidity: 7–308 NTU COD: 122–2205 mg·L−1 DOC: 2.12–10.21 mg·L−1 (after MBR) UV254: 0.30–4.00 TN: 12.6–205 mg·L−1 Pb: 1–16 μg·L−1 Ni: 1–33.7 μg·L−1 Cu: 1–1345 μg·L−1 Cr: 1–746 μg·L−1 | TSS: <1 mg·L−1 Turbidity: 0.01–0.13 NTU COD: < 32 mg·L−1 DOC: 1.04–4.1 mg·L−1 UV254: 0.001–0.01 TN: 17–21 mg·L−1 Pb: < 1 μg·L−1 Ni: < 1 μg·L−1 Cu: < 1 μg·L−1 Cr: < 1 μg·L−1 | Not mentioned | Not mentioned | [208] |
AnMBR+RO (lab scale) | Synthetic municipal wastewater | Flux: 20 L·m−2·h−1 | COD: 400 mg·L−1 NH4+-N: 45 mg·L−1 PO43−-P: 5 mg·L−1 NaHCO3: 500 mg·L−1 CaCl2·2H2O: 45 mg·L−1 MgSO4·7H2O: 20 mg·L−1 FeSO4·7H2O: 20 mg·L−1 FeCl3·7H2O: 1.5 mg·L−1 | Ammonium-N: 2.1 mg·L−1 Phosphate–P: 0.03 mg·L−1 TOC: 0.13 mg·L−1 Sodium: 3.2 mg·L−1 Potassium: 0.084 mg·L−1 Calcium: 0.05 mg·L−1 Iron: < 0.005 mg·L−1 Chloride: 4.7 mg·L−1 Sulfate: 0.5 mg·L−1 Conductivity: 47 μS·cm−1 | Discharge to reservoirs for indirectly potable reuse | Guidelines for NEWater in Singapore | [185] |
AnMBR + RO (lab scale) | Simulation of municipal wastewater | UF: 0.02 μm | Sucrose: 210 mg·L−1 Meat extract: 41.7 mg·L−1 Peptone: 60 mg·L−1 NH4Cl: 95.5 mg·L−1 KH2PO4: 22 mg·L−1 CaCl2·2H2O: 10 mg·L−1 FeSO4·7H2O: 10 mg·L−1 MgSO4·7H2O: 10 mg·L−1 NaHCO3: 400 mg·L−1 | TOC: 0.17 ± 0.02 mg·L−1 NH4–N: 0.81 ± 0.09 mg·L−1 Phosphate–P: < 0.01 mg·L−1 Na+: 2.30 ± 0.12 mg·L−1 K+: 0.16 ± 0.01 mg·L−1 Ca2+: 0.04 ± 0.01 mg·L−1 Mg2+: < 0.01 mg·L−1 Iron:< 0.01 mg·L−1 Aluminum:< 0.01 mg·L−1 Chloride: 2.35 ± 0.50 mg·L−1 Sulfate: 0.06 ± 0.01 mg·L−1 EC: 24.19 ± 1.21 μS·cm−1 | NEWater product | Guidelines for NEWater in Singapore | [145] |
NF–MBR+RO | Municipal wastewater | NF: 200–300 Da Flux: 10 L·m−2·h−1 MLSS: 513 ± 96 mg·L−1 | COD: 389.8 ± 169.9 mg·L−1 DOC: 48.3 ± 13.9 mg·L−1 Ca2+: 28.9 ± 3.5 Mg2+: 7.9 ± 1.2 mg·L−1 Na+: 105.2 ± 6.9 mg·L−1 TN: 40.7 ± 6.1 NH4–N: 40.9 ± 4.5 mg·L−1 NH3–N: nd PO43−: 23.6 ± 3.2 mg·L−1 EC: 859.5 ± 18.9 mS·cm−1 | NF permeate: COD: 99.6 ± 0.8% DOC: 0.5–2.5 mg·L−1, 97.5% ± 1.8% Biopolymer: nd Humic substances: 0.1 mg·L−1 | Not mentioned | Not mentioned | [184] |
Disinfection Method | Effectiveness of Inactivation | By Products | Secondary Disinfection * | Stability | ||||
---|---|---|---|---|---|---|---|---|
Bacteria | Viruses | Protozoa | ||||||
Chemical | Chlorination | Chlorine Cl2 | ++++ | ++++ | + | Trihalomethanes, Haloacetic acids, Haloacetonitriles, Haloketones, Chloral hydrate, Chloropicrin, Cyanogen chloride, Chlorate, Chloramines | ++++ | stable |
Sodium hypochlorite (NaClO) | ||||||||
Chloramines | +++ | ++ | + | Dichloramines, Trichloramines, Cyanogen chloride, Chloral hydrate | ++++ | stable | ||
Chlorine dioxide (ClO2) | ++++ | ++++ | +++ | Chlorites, Chlorates, Chlorides | +++ | unstable | ||
Ozonation | ++++ | ++++ | +++ | Bromate Aldehydes Ketones Ketoacids Carboxylic acids Bromoform Brominated acetic acids | – | unstable | ||
Physical | UV | +++ | ++ | ++++ | – | – | unstable |
Process | Feed for Disinfection | Performance of Disinfection | Applications | References |
---|---|---|---|---|
MBR + Chlorination | Secondary effluent of municipal WWTP | Chlorination helps to inactive bacteria and residual viruses from MBR. Compared to the MBR permeate, effluent after chlorination stands out at: complete removal on thermo-tolerant coliforms, E. coli, Enterococci, F-RNA specific bacteriophages and bacteriophages infecting Bacteroides fragilis; Increasing removal efficiency on total coliforms, Fecal coliforms and Somatic coliphages for which LRV are 1, 0.6 and 1.5, respectively, compared to MBR permeate. | urban (e.g., street cleaning, vehicle washing) and agricultural reuse. | [125] |
MBR + UV | Raw Sewage | UV disinfection is proposed to provide an extra barrier for removal of pathogens, ensuring high-quality effluent standards. The hybrid process showed a high removal efficiency (90%) on most trace organic chemical contaminants. | Agriculture reuse | [240] |
Membrane filtered process + sequential chlorination | Tertiary effluent of municipal WWTP | Sequential chlorination is beneficial to optimize free chlorine (virus and N-nitrosodimethylamine control) and chloramine disinfection (trihalomethane, haloacetic acid and coliform control). The increase of chlorine residual and the contact time also increased the formation of unregulated halogenated DBP classes. | Direct potable reuse | [215] |
MBR + sequential UV/chlorine | Tertiary effluent of municipal WWTP | Sequential UV/chlorine processes with a suitable dose of disinfectants decreased microorganism concentrations below detection limits, including heterotrophic plate count, total bacteria count and total coliforms. The disadvantage is the byproducts produced by disinfection (60.2 ug·L−1 Trihalomethanes). | Reclaimed water | [241] |
Ozonation + MF | Secondary effluent from municipal WWTP | Ozone helps to improve removal efficiency on color, COD, TN and turbidity in wastewater and lower fouling potential on MF, but with less impact on TP removal. Feed water quality:pH: 7.2 ± 0.61; COD: 35.0 ± 8.15 mg·L−1 Turbidity: 1.53 ± 1.82 NTU; SS: 7.1 ± 5.9 mg·L−1; UV254: 0.095 ± 0.021 cm−1; DOC: 6.29 ± 1.53 mg·L−1; Color: 30 ± 4 CU; T–P: 2.98 ± 1.68 mg·L−1; T–N: 11.1 ± 3.4 mg·L−1 Permeate: pH: 7.6; COD: 14–25 mg·L−1; Turbidity: 0.61–0.87 NTU; Color: 2–3 CU; TP: 2.67–2.84 mg·L−1; TN: 6.2–7.9 mg·L−1 | Wastewater reuse proposed by South Korean Ministry of Environment | [242] |
Ozone + biologic activated carbon (BAC) + MF +UF | Secondary effluent from municipal WWTP | The combined O3/BAC/MF/RO train was effective for eliminating N-nitrosamines and the total toxicity-weighted byproduct precursor concentrations | Potable reuse | [243] |
Sedimentation + UV/peracetic acid (PAA) /ozone (O3) | Secondary effluent from municipal WWTP in Italy | All three disinfectants can provide qualified effluent for irrigation, according to WHO, with enough contact time and quantity. Through comparison, UV physical disinfection showed extremely fastest kinetics with contact time <20 sec. | Irrigation proposed by WHO guidelines | [220] |
Process | Feed for Disinfection | Performance of AOPs | Applications | References |
---|---|---|---|---|
UV/S2O82− or UV/H2O2 | RO concentrate in municipal wastewater recycling facilities in California | ◇ Both AOPs were effective in significantly removing four pharmaceuticals with 250 mJ·cm−2 average fluence requirement. Specially, UV/S2O82− provides significantly better performance treatment for some constituents. ◇ In the UV/H2O2 process, effluent organic matter could decrease ~75% of the OH•, reducing ~75% degradation efficiency on the target contaminants. ◇ In UV/S2O82− process, although effluent organic matter decreased ~93% of the SO42−, because daughter radicals Cl− contributed to contaminant degradation, the reduction in contaminant degradation efficiency was only ~75–80%. | Discharge | [244] |
Biologic media filtration + O3 + UV + Chlorination | Secondary treated wastewater | ◇ The whole process showed wide and high removal efficiency on various compounds (Nitrosamines, Endocrine-disrupting chemicals, pharmaceuticals, herbicides, perfluorinated compounds, etc.), which achieved more than 69% of total removal of most compounds (387 specific analytes). ◇ Ozone significantly increased the degradation rate on most contaminants. ◇ However, ozonation caused some contaminant increases (N-nitrosodimethylamine, bisphenol, desisopropyl atrazine) in the effluent and chlorination produced related byproducts (Trihalomethanes, desmethyl atrazine, chloral hydrate). | Reuse for irrigation, dual recirculation and fire fighting | [245] |
MF + RO + UV/H2O2 | Secondary effluent from conventional wastewater treatment facility | ◇ UV/H2O2 process degraded the remaining low-molecular-weight organic compounds and micropollutants. ◇ UV-AOP increased the 6-log of virus removal credits after RO treatment. ◇ The operation MF+RO+UV/H2O2 process accounted for about 70–75% energy demand and 75–80% CO2 emission compared to a UF osmosis MBR system, respectively, with the positive relationship with disposal pressure. | Potable reuse, Recharge to groundwater | [232] |
MF + RO + UV/H2O2 | secondary municipal wastewater | ◇ UV/H2O2 provides good water quality for reuse, which significantly removed over 98% of each tested micropollutant, including N-nitrosodimethylamine, endocrine disrupting compounds, herbicides, pesticide (Metaldehyde)… ◇ MF/RO+ UV/H2O2 was shown to be the most cost-effective process, with around 20% lower operational expenditures than MF- UV/H2O2 without requirement in RO concentrate disposal. | Potable reuse | [233] |
MF + Ozonation | Treated greywater | ◇ The oxidation process improved the removal efficiency of E. coli, total coliform, Salmonella and Staphylococcus, from 30% after MF, to 100% after ozonation. ◇ All pathogenic microorganisms were removed at the contact time range of 0–15 min with O3 | Firefighting, plants irrigation, toilet flushing and car washing | [246] |
Process | Productivity | Membrane Flux | Recovery Rate | Energy Consumption | References |
---|---|---|---|---|---|
GAC + MF | 30 L·m−2·h−1 | 98% | [100] | ||
UF (pilot plant, 2 years) | < 0.7 m3·h−1 | 17–22 L·m−2·h−1 | [81] | ||
UF (pilot plant, two months) | 7.7–9.0 m3·h−1 | 330–380 L·m−2·h−1 | 82.3–96.5% (without chemical cleaning) | [77] | |
UF | 1.0 m3·h−1 | 28.5 L·m−2·h−1 | About 85% (without chemical cleaning) | [109] | |
MBR + disinfection | 21.5 L·m−2·h−1 | <0.5 kWh ·m−3 (with productivity > 15 m3·d−1) | [149] | ||
FO + NF | 0.16 (FO) and 0.187–0.35 (NF) m3·h−1 | FO: 2.4 L·m−2·h−1; NF: 3.3 or 6.6 L·m−2·h−1 | 3.44–4.57 kWh ·m−3 | [197] | |
RO | 0.79 m3·h−1 | 65–75% (RO itself) | [118] | ||
RO | 0.04 m3·h−1 | 50% (RO itself) | [208] | ||
NF–MBR + RO | MBR permeate flux: 10 L·m−2·h−1; RO permeate flux: 20 L·m−2·h−1 | 90% | 0.739 kWh·m−3 | [184] | |
UF–MBR + RO | MBR permeate flux: 10 L·m−2·h−1; RO permeate flux: 20 L·m−2·h−1 | 75% | 0.732 kWh·m−3 | [184] | |
MBR + RO | 0.518 kWh ·m−3 | [145] | |||
AnMBR + RO | AnMBR permeate flux: 10–20 L·m−2·h−1 RO permeate flux: 20 L·m−2·h−1 | RO: 75% (RO itself) | 0.333 kWh ·m−3 (consider energy recovery with methane) | [145] | |
AnMBR + RO + IE | MF permeate flux: 10 L·m−2·h−1 RO: 20 L·m−2·h−1 | RO: 75% (RO itself) | 0.915 kWh·m−3 (total consumption); 0.368 kWh·m−3 (consider energy recovery with methane) | [185] |
Treatment Processes | Reuse Level | Advantages | Disadvantages |
---|---|---|---|
MF/UF-based treatment | Non-potable reuse: toilet flushing, urban uses, irrigation, etc. | • Low-pressure driven process, high flux and high permeability. • Low energy cost • Effective removal of high molecular weight matters, bacteria and viruses. • UF can almost eliminate all the bacteria, protozoa and viruses, compared to MF. • MF/UF membranes pretreated with physical/chemical process results in low fouling potential, long term operation and higher load rate. | • Health risks potential for humans. • Incomplete removal of low molecular weight matters, dissolved organics, salinity and micropollutants, etc. • Fouling potential |
MBRs | Non-potable reuse: Toilet flushing, cleaning, process water, urban uses, irrigation, etc. | • Low-pressure driven process, high flux and high permeability. • Low energy cost • Effective removal of organics, TSS, nutrients like N, P, S in various forms, surfactants and micropollutants from various wastewater with biologic process. • Less organic foulants on the membrane, smaller footprint, faster plant activation, no biologic sedimentation units and less sludge production compared to CAS process. • Particularly, AnMBRs hold significant potential to reduce the overall energy demand, together with resource recovery | • Health risks potential for humans. • Incomplete removal of low molecular weight matters, dissolved organics, salinity and micropollutants, etc. • Fouling potential with membrane pore-clogging and sludge cake deposition |
NF/RO-based treatment | Non-potable and potable reuse: agricultural irrigation, groundwater recharge, indirect potable water, etc. | • High removal efficiency of micropollutants, microorganisms and salinity, EC, other dissolved organic and inorganic matters. • Reduce human health concerns • High level of reuse applications | • High-pressure driven process, with low flux and low permeability. • High energy cost. • Pretreatment demand • Biofouling caused by microorganisms. |
FO-based treatment | Non-potable and potable reuse: agricultural irrigation, groundwater recharge, indirect potable water, etc. | • FO: non external pressure driven process • Lower membrane fouling potential than RO due to less formation and compaction of cake layers on FO membranes in the absence of hydraulic pressure • High flux recovery after cleaning and high water recovery using low-grade energy resources • Combination of municipal wastewater treatment with seawater desalination | • FO is a process of dilution, which needs further separation treatment. • High requirements for the selection of draw solution and membrane material |
Disinfection/AOPs combined with membrane process | Non-potable or potable reuse based on the membrane types | • Disinfection can always act as the last step to ensure water quality and disinfection for human health. • Disinfection absolutely eliminates microorganisms. • Long-term effects of disinfectants, such as chlorine. • AOPs absolutely eliminates organic pollutions, micropollutants and microorganisms. • Improvement of water reuse levels when combined with MF/UF/MBRs. | • Formation of harmful byproducts both from disinfection and AOPs. • High chemical cost and unstable storage of chemicals in AOPs |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.; Monnot, M.; Ercolei, L.; Moulin, P. Membrane-Based Processes Used in Municipal Wastewater Treatment for Water Reuse: State-Of-The-Art and Performance Analysis. Membranes 2020, 10, 131. https://doi.org/10.3390/membranes10060131
Yang J, Monnot M, Ercolei L, Moulin P. Membrane-Based Processes Used in Municipal Wastewater Treatment for Water Reuse: State-Of-The-Art and Performance Analysis. Membranes. 2020; 10(6):131. https://doi.org/10.3390/membranes10060131
Chicago/Turabian StyleYang, Jiaqi, Mathias Monnot, Lionel Ercolei, and Philippe Moulin. 2020. "Membrane-Based Processes Used in Municipal Wastewater Treatment for Water Reuse: State-Of-The-Art and Performance Analysis" Membranes 10, no. 6: 131. https://doi.org/10.3390/membranes10060131
APA StyleYang, J., Monnot, M., Ercolei, L., & Moulin, P. (2020). Membrane-Based Processes Used in Municipal Wastewater Treatment for Water Reuse: State-Of-The-Art and Performance Analysis. Membranes, 10(6), 131. https://doi.org/10.3390/membranes10060131