In Situ Raman Characterization of SOFC Materials in Operational Conditions: A Doped Ceria Study
Abstract
:1. Introduction
2. Materials and Methods
- A Linkan High-Temperature Catalyst Stage CCR1000 (Tadworth, UK). This stage allows heating the sample from room temperature (RT) up to 1000 °C, with heating rates from 1 to 130 °C/min and with a temperature stability of 1 °C. This stage also supports pressure up to 5 bar and has a quartz window installed.
- A new in situ Raman cell developed to measure in operando electrochemical cells, whose complete characteristics are explained in the next paragraphs and can operate from RT up to 600 °C with two independent gas chambers and electronic connectors.
3. Results and Discussion
3.1. CeO2−δ, Ce0.9Ln0.1O2−δ (Ln = La, Pr, Eu, Gd, Tb, Yb) and 2%mol Co Doped CeO2−δ and Ce0.9Ln0.1O2−δ Nanoparticles
- Dilation or contraction of the lattice [23]: the frequency shift Δω produced by a change in the lattice parameter Δa can be written in terms of the Grüneisen parameter:
- Particle size effects when it is <100 nm: the F2g mode shifts to progressively lower energies and the line shape gets broader and asymmetric (on the low energy side) as the particle size gets smaller [24]. The increasing lattice constant with decreasing particle size (due to increased concentrations of point defects with decreasing particle size [25] explains satisfactorily this shift. The line width change can be explained by the inhomogeneous strain broadening associated with dispersion in particle size and by phonon confinement. The increase in its asymmetry is attributed to reduction of the phonon lifetime in the nanocrystalline regime [17].
3.2. High-Temperature Raman
- Contribution due to the changes in vibrational amplitude of the atoms (change in occupation of the phonon states), “explicit” shift.
- Contribution due to the change of the interatomic distances when the temperature changes, “implicit” or “volumetric” shift.
3.3. In Situ Raman Characterization of Solid Oxide Fuel Cell (SOFC) Materials at Operational Conditions: A Doped Ceria Study
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Maher, R.C.; Duboviks, V.; Offer, G.J.; Kishimoto, M.; Brandon, N.P.; Cohen, L.F. Raman Spectroscopy of Solid Oxide Fuel Cells: Technique Overview and Application to Carbon Deposition Analysis. Fuel Cells 2013, 13, 455–469. [Google Scholar] [CrossRef]
- Cheng, Z.; Wang, J.H.; Choi, Y.; Yang, L.; Lin, M.C.; Liu, M. From Ni-YSZ to sulfur-tolerant anode materials for SOFCs: electrochemical behavior, in situ characterization, modeling, and future perspective. Energy Environ. Sci. 2011, 4, 1–8. [Google Scholar] [CrossRef]
- Liu, M.; Lynch, M.E.; Blinn, K.; Alamgir, F.M.; Choi, Y. Rational SOFC material design: new advances and tools. Mater. Today 2011, 14, 534–546. [Google Scholar] [CrossRef] [Green Version]
- Maher, R.C.; Shearing, P.R.; Brightman, E.; Brett, D.J.L.; Brandon, N.P.; Cohen, L.F. Reduction Dynamics of Doped Ceria, Nickel Oxide, and Cermet Composites Probed Using In Situ Raman Spectroscopy. Adv. Sci. 2016, 3. [Google Scholar] [CrossRef] [Green Version]
- Laguna-Bercero, M.A.; Orera, V.M. Micro-spectroscopic study of the degradation of scandia and ceria stabilized zirconia electrolytes in solid oxide electrolysis cells. Int. J. Hydrog. Energy 2011, 36, 13051–13058. [Google Scholar] [CrossRef] [Green Version]
- Brett, D.J.L.; Kucernak, A.R.; Aguiar, B.; Atkins, P.; Brandon, S.C.; Clague, N.P.; Cohen, R.; Hinds, L.F.; Kalyvas, G.; Offer, C.; et al. What Happens Inside a Fuel Cell? Developing an Experimental Functional Map of Fuel Cell Performance. ChemPhysChem 2010, 11, 2714–2731. [Google Scholar] [CrossRef] [PubMed]
- Sheepard, N.J. Recent developments in the vibrational spectroscopies (infrared, Raman, electron energy loss etc.) as applied to the structural analysis of species chemisorbed on metal surfaces. Mol. Struct. 1982, 80, 163–174. [Google Scholar] [CrossRef]
- Balaguer, M.; Solís, C.; Serra, J.M. Structural−Transport Properties Relationships on Ce1−xLnxO2−δ System (Ln = Gd, La, Tb, Pr, Eu, Er, Yb, Nd) and Effect of Cobalt Addition. J. Phys. Chem. C 2012, 116, 7975−7982. [Google Scholar] [CrossRef]
- Mogensen, M.; Sammes, N.M.; Tompsett, G.A. Physical, chemical and electrochemical properties of pure and doped ceria. Solid State Ion. 2000, 129, 63−94. [Google Scholar] [CrossRef]
- Balaguer, M.; García-Fayos, J.; Solís, C.; Serra, J.M. Fast Oxygen Separation Through SO2- and CO2-Stable Dual-Phase Membrane Based on NiFe2O4−Ce0.8Tb0.2O2-δ. Chem. Mater. 2013, 25, 4986−4993. [Google Scholar] [CrossRef]
- Degen, T.; Sadki, M.; Bron, E.; König, U.; Nénert, G. The HighScore suite. Powder Diffr. 2014, 29, 13–18. [Google Scholar] [CrossRef] [Green Version]
- Rietveld, H.M. A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 1969, 2, 65–71. [Google Scholar] [CrossRef]
- Rodríguez-Carvajal, J. Recent advances in magnetic structure determination by neutron powder diffraction. Phys. B Condens. Matter 1993, 192, 55–69. [Google Scholar]
- Scherrer, P. Bestimmung der Grosse und der Inneren Struktur von Kolloidteilchen Mittels Rontgenstrahlen. Nachr. Ges. Wiss. Göttingen 1918, 26, 98–100. [Google Scholar]
- Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A Cryst. Phys. Diffr. Theor. Gen. Crystallogr. 1976, 32, 751−767. [Google Scholar] [CrossRef]
- Taniguchi, T.; Watanabe, T.; Sugiyama, N.; Subramani, A.K.; Wagata, H.; Matsushita, N.; Yoshimura, M.J. Identifying Defects in Ceria-Based Nanocrystals by UV Resonance Raman Spectroscopy. J. Phys. Chem. C 2009, 113, 19789–19793. [Google Scholar] [CrossRef]
- Weber, W.H.; Hass, K.C.; McBride, J.R. Raman study of CeO2: Second-order scattering, lattice dynamics, and particle-size effects. Phys. Rev. B 1993, 48, 178–185. [Google Scholar] [CrossRef]
- Parayanthal, P.; Pollak, F.H. Raman Scattering in Alloy Semiconductors: "Spatial Correlation" Model. Phys. Rev. Lett. 1984, 52, 1822–1825. [Google Scholar] [CrossRef]
- Kosacki, I.; Suzuki, T.; Anderson, H.U.; Colomban, P. Raman scattering and lattice defects in nanocrystalline CeO2 thin films. Solid State Ion. 2002, 149, 99–105. [Google Scholar] [CrossRef]
- McBride, J.R.; Hass, K.C.; Poindexter, B.D.; Weber, W.H. Raman and x-ray studies of Ce1−xRExO2−y, where RE=La, Pr, Nd, Eu, Gd, and Tb. J. Appl. Phys. 1994, 76, 2435–2441. [Google Scholar] [CrossRef]
- Jeyanthi, C.E.; Siddheswaran, R.; Kumard, P.; Shankar, V.S.; Rajarajan, K. Structural and spectroscopic studies of rare earths doped ceria (RELa,Sc,Yb:CeO2) nanopowders. Ceram. Int. 2014, 40, 8599–8605. [Google Scholar] [CrossRef]
- Shirbhate, S.; Nayyar, R.; Ojha, N.P.K.; Yadav, A.K.; Acharya, S. Exploration of Atomic Scale Changes during Oxygen VacancyDissociation Mechanism in Nanostructure Co-Doped Ceria: As Electrolytes for IT-SOFC. J. Electrochem. Soc. 2019, 166, F544–F554. [Google Scholar] [CrossRef]
- Artini, C. Rare-Earth-Doped Ceria Systems and Their Performance as Solid Electrolytes: A Puzzling Tangle of Structural Issues at the Average and Local Scale. Inorg. Chem. 2018, 57, 13047–13062. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spanier, J.E.; Robinson, R.D.; Zhang, F.; Chan, S.-W.; Herman, I.P. Size-dependent properties of CeO2−y nanoparticles as studied by Raman scattering. Phys. Rev. B Condens. Matter 2001, 64. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.; Chan, S.-W.; Spanier, J.E.; Apak, E.; Jin, Q.; Robinson, R.D.; Herman, I.P. Cerium oxide nanoparticles: Size-selective formation and structure analysis. Appl. Phys. Lett. 2002, 80, 127–129. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, T.; Kosacki, I.; Anderson, H.U.; Colomban, P. Electrical Conductivity and Lattice Defects in Nanocrystalline Cerium Oxide Thin Films. J. Am. Ceram. Soc. 2001, 84, 2007–2014. [Google Scholar] [CrossRef]
- Dohcevic-Mitrovic, Z.D.; Scepanovic, M.J.; Grujic-Brojcin, M.U.; Popovic, Z.V.; Boskovic, S.B.; Matovic, B.M.; Zinkevich, M.V.; Aldinger, F. The size and strain effects on the Raman spectra of Ce1−xNdxO2−δ (0≤x≤0.25) nanopowders. Solid State Commun. 2006, 137, 387–390. [Google Scholar] [CrossRef]
- Balaguer, M.; Solís, C.; Serra, J.M. Study of the Transport Properties of the Mixed Ionic Electronic Conductor Ce1-xTbxO2−δ + Co (x = 0.1, 0.2) and Evaluation as Oxygen-Transport Membrane. Chem. Mater. 2011, 23, 2333–2343. [Google Scholar] [CrossRef] [Green Version]
- Balaguer, M.; Solís, C.; Roitsch, S.; Serra, J.M. Engineering microstructure and redox properties in the mixed conductor Ce0.9Pr0.1O2−δ + Co 2 mol%. Dalton Trans. 2014, 43, 4305–4312. [Google Scholar] [CrossRef]
- Acharya, S.A.; Gaikwad, V.M.; Sathe, V.; Kulkarni, S.K. Influence of gadolinium doping on the structure and defects of ceria under fuel cell operating temperature. Appl. Phys. Lett. 2014, 104. [Google Scholar] [CrossRef]
- Zallen, R.; Conwell, E.M. The effect of temperature on libron frequencies in molecular crystals: Implications for TTF-TCNQ. Solid State Commun. 1979, 31, 557–561. [Google Scholar] [CrossRef]
- Hart, T.R.; Aggarwal, R.L.; Lax, B. Temperature Dependence of Raman Scattering in Silicon. Phys. Rev. B 1970, 1, 638–642. [Google Scholar] [CrossRef]
- Lughi, V.; Clarke, D.R. Temperature Dependence of the Yttria-stabilized Zirconia Raman Spectrum. J. Appl. Phys. 2007, 101. [Google Scholar] [CrossRef]
- Long, R.Q.; Huang, Y.P.; Wan, H.L. Surface Oxygen Species Over Cerium Oxide and Their Reactivities with Methane and Ethane by Means of in situ Confocal Microprobe Raman Spectroscopy. J. Raman Spectrosc. 1997, 28, 29–32. [Google Scholar] [CrossRef]
- Pushkarev, V.V.; Kovalchuk, V.I.; d’Itri, J.L. Probing Defect Sites on the CeO2 Surface with Dioxygen. J. Phys. Chem. B 2004, 108, 5341–5348. [Google Scholar] [CrossRef]
- Weber, A.; Mcginnis, E.A. The Raman spectrum of gaseous oxygen. J. Mol. Spectrosc. 1960, 4, 195–200. [Google Scholar] [CrossRef]
- Hornés, A.; Bera, P.; Fernández-García, M.; Guerrero-Ruiz, A.; Martínez-Arias, A. Catalytic and redox properties of bimetallic Cu–Ni systems combined with CeO2 or Gd-doped CeO2 for methane oxidation and decomposition. Appl. Catal. B Environ. 2012, 111-112, 96–105. [Google Scholar]
- Duboviks, V.; Maher, R.C.; Offer, G.; Cohen, L.F.; Brandon, N.P. In-Operando Raman Spectroscopy Study of Passivation Effects on Ni-CGO Electrodes in CO2 Electrolysis Conditions. ECS Trans. 2013, 57, 3111–3117. [Google Scholar] [CrossRef]
- Duboviks, V.; Maher, R.C.; Kishimoto, M.; Cohen, L.F.; Brandon, N.P.; Offer, G.J. A Raman spectroscopic study of the carbon deposition mechanism on Ni/CGO electrodes during CO/CO2 electrolysis. Phys. Chem. Chem. Phys. 2014, 16, 13063–13068. [Google Scholar] [CrossRef]
CeO2−δ | Ce0.9La0.1O2−δ | Ce0.9Pr0.1O2−δ | Ce0.9Eu0.1O2−δ | Ce0.9Gd0.1O2−δ | Ce0.9Tb0.1O2−δ | Ce0.9Yb0.1O2−δ | |
---|---|---|---|---|---|---|---|
a (Å) | 5.4116(4) | 5.4386(3) | 5.4113(3) | 5.4200(3) | 5.4159(3) | 5.3960(3) | 5.4033(3) |
Size (nm) | 100(3) | 31(2) | 40(2) | 76(2) | 50(2) | 57(4) | 35(1) |
+Co, a (Å) | 5.4080(4) | 5.4404(3) | 5.4103(3) | 5.4193(3) | 5.4159(3) | 5.3983(3) | 5.4045(3) |
Size (nm) | 30(3) | 16(1) | 42(2) | 44(1) | 56(2) | 61(1) | 37(4) |
Ionic radius (Å) | 1.143 * | 1.16 | 1.126 | 1.066 | 1.053 | 1.04 | 0.985 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Solís, C.; Balaguer, M.; Serra, J.M. In Situ Raman Characterization of SOFC Materials in Operational Conditions: A Doped Ceria Study. Membranes 2020, 10, 148. https://doi.org/10.3390/membranes10070148
Solís C, Balaguer M, Serra JM. In Situ Raman Characterization of SOFC Materials in Operational Conditions: A Doped Ceria Study. Membranes. 2020; 10(7):148. https://doi.org/10.3390/membranes10070148
Chicago/Turabian StyleSolís, Cecilia, María Balaguer, and José M. Serra. 2020. "In Situ Raman Characterization of SOFC Materials in Operational Conditions: A Doped Ceria Study" Membranes 10, no. 7: 148. https://doi.org/10.3390/membranes10070148
APA StyleSolís, C., Balaguer, M., & Serra, J. M. (2020). In Situ Raman Characterization of SOFC Materials in Operational Conditions: A Doped Ceria Study. Membranes, 10(7), 148. https://doi.org/10.3390/membranes10070148