Novel Carbon Quantum Dots/Silver Blended Polysulfone Membrane with Improved Properties and Enhanced Performance in Tartrazine Dye Removal
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Carbon Quantum Dots (CQDs)
2.3. Synthesis of Ag/CQDs Nanohybrids and Ag Nanoparticles
2.4. Characterization of Sample Powder
2.5. Fabrication of Composite Membrane
2.6. Characterization of Membrane
2.7. Performance of Composite Membrane
2.8. Membrane Fouling Analysis
3. Results and Discussion
3.1. Characterization of Sample Powder
3.1.1. Structure and Crystallinity Analysis
3.1.2. Functional Group Analysis
3.1.3. Morphology and Elemental Analysis
3.1.4. Surface Charge Analysis
3.2. Characterization of Membranes
3.2.1. Water Contact Angle, Pore Size and Porosity
3.2.2. Functional Group Analysis of Membranes
3.2.3. Structure and Elemental Analysis of Membranes
3.3. Performances of the Membranes
3.3.1. Membrane Permeability
Membrane | Permeability (Lm−2 h−1 bar−1) | Improvement (%) | Reference |
---|---|---|---|
PSF PSF + 2 wt % multi-walled carbon nanotube (MWCNT) | ~71 ~149 | +108 | [48] |
PSF PSF + 5 wt % MWCNT | ~5.5 ~12.5 | +127 | [49] |
PSF PSF + silver/graphene oxide (Ag/GO) | ~16 ~28 | +75 | [8] |
PSF PSF + 1.5 w/wt % sulfonated GO | 78 175.2 | +125 | [50] |
PSF PSF + 0.3 wt % GO QD | 130.54 82.52 | +60 | [17] |
PSF PSF + 0.5 wt % Ag/CQD | 24.06 64.75 | +169 | This study |
3.3.2. Membrane Rejection Test
3.3.3. Fouling Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- SDG. Sustainable Development Goal 6 Synthesis Report 2018 on Water and Sanitation. 2018. Available online: https://www.unwater.org/publication_categories/sdg-6-synthesis-report-2018-on-water-and-sanitation/ (accessed on 10 December 2019).
- Scholz, M.; Yaseen, D.A. Textile dye wastewater characteristics and constituents of synthetic effluents: A critical review. Int. J. Environ. Sci. Technol. 2019, 16, 1193–1226. [Google Scholar]
- Paraschiv, D.; Tudor, C.; Petrariu, R. The textile industry and sustainable development: A holt-winters forecasting investigation for the Eastern European Area. Sustainability 2015, 7, 1280–1291. [Google Scholar] [CrossRef] [Green Version]
- Vaiano, V.; Iervolino, G.; Sannino, D. Photocatalytic removal of tartrazine dye from aqueous samples on LaFeO3/ZnO photocatalysts. Chem. Eng. Trans. 2016, 52, 847–852. [Google Scholar]
- Modirshahla, N.; Abdoli, M.; Behnajady, M.A.; Vahid, B. Decolourization of tartrazine from aqueous solutions by coupling electrocoagulation with ZnO photocatalyst. Environ. Prot. Eng. 2013, 39, 59–73. [Google Scholar]
- Ahmad, A.L.; Abdulkarim, A.A.; Ooi, B.S.; Ismail, S. Recent development in additives modifications of polyethersulfone membrane for flux enhancement. Chem. Eng. J. 2013, 223, 246–267. [Google Scholar] [CrossRef]
- Koe, W.S.; Chong, W.C.; Pang, Y.L.; Koo, C.H.; Mahmoudi, E.; Mohammad, A.W. Novel nitrogen and sulphur co-doped carbon quantum dots/titanium oxide photocatalytic membrane for in-situ degradation and removal of pharmaceutical compound. J. Water Process Eng. 2020, 33, 101068. [Google Scholar] [CrossRef]
- Mahmoudi, E.; Ng, L.Y.; Ba-Abbad, M.M.; Mohammad, A.W. Novel nanohybrid polysulfone membrane embedded with silver nanoparticles on graphene oxide nanoplates. Chem. Eng. J. 2015, 277, 1–10. [Google Scholar] [CrossRef]
- Faneer, K.A.; Rohani, R.; Wahab, A. In fluence of pluronic addition on polyethersulfone membrane for xylitol recovery from biomass fermentation solution. J. Clean. Prod. 2018, 171, 995–1005. [Google Scholar] [CrossRef]
- Zhang, X.; Jiang, M.; Niu, N.; Chen, Z.; Li, S.; Liu, S.; Li, J. Natural-product-derived carbon dots: From natural products to functional materials. ChemSusChem 2018, 11, 11–24. [Google Scholar] [CrossRef]
- Truskewycz, A.; Beker, S.A.; Ball, A.S.; Murdoch, B.; Cole, I. Incorporation of quantum carbon dots into a PVP/ZnO hydrogel for use as an effective hexavalent chromium sensing platform. Anal. Chim. Acta 2020, 1099, 126–135. [Google Scholar] [CrossRef]
- Sim, L.C.; Wong, J.L.; Hak, C.H.; Tai, J.Y.; Leong, K.H.; Saravanan, P. Sugarcane juice derived carbon dot–graphitic carbon nitride composites for bisphenol A degradation under sunlight irradiation. Beilstein J. Nanotechnol. 2018, 9, 353–363. [Google Scholar] [CrossRef] [PubMed]
- Gai, W.; Zhao, D.L.; Chung, T.S. Novel thin film composite hollow fiber membranes incorporated with carbon quantum dots for osmotic power generation. J. Membr. Sci. 2018, 551, 94–102. [Google Scholar] [CrossRef]
- He, Y.; Zhao, D.L.; Chung, T.S. Na+ functionalized carbon quantum dot incorporated thin-film nanocomposite membranes for selenium and arsenic removal. J. Membr. Sci. 2018, 564, 483–491. [Google Scholar] [CrossRef]
- Sun, H.; Wu, P. Tuning the functional groups of carbon quantum dots in thin film nanocomposite membranes for nanofiltration. J. Membr. Sci. 2018, 564, 394–403. [Google Scholar] [CrossRef]
- Koulivand, H.; Shahbazi, A.; Vatanpour, V.; Rahmandoust, M. Development of carbon dot-modified polyethersulfone membranes for enhancement of nanofiltration, permeation and antifouling performance. Sep. Purif. Technol. 2020, 230, 115895. [Google Scholar] [CrossRef]
- Zhao, G.; Hu, R.; Li, J.; Zhu, H. Graphene oxide quantum dots embedded polysulfone membranes with enhanced hydrophilicity, permeability and antifouling performance. Sci. China Mater. 2019, 62, 1177–1187. [Google Scholar] [CrossRef] [Green Version]
- He, M.; Zhang, J.; Wang, H.; Kong, Y.; Xiao, Y.; Xu, W. Material and optical properties of fluorescent carbon quantum dots fabricated from lemon juice via hydrothermal reaction. Nanoscale Res. Lett. 2018, 13, 175. [Google Scholar] [CrossRef]
- Tadesse, A.; Devi, D.R.; Hagos, M.; Battu, G.; Basavaiah, K. Facile green synthesis of fluorescent carbon quantum dots from citrus lemon juice for live cell imaging. Asian J. Nanosci. Mater. 2018, 1, 36–46. [Google Scholar]
- Chakrabarty, B.; Ghoshal, A.K.; Purkait, M.K. Effect of molecular weight of PEG on membrane morphology and transport properties. J. Membr. Sci. 2008, 309, 209–221. [Google Scholar] [CrossRef]
- Li, Y.; Li, S.; Zhang, K. Influence of hydrophilic carbon dots on polyamide thin film nanocomposite reverse osmosis membranes. J. Membr. Sci. 2017, 537, 42–53. [Google Scholar] [CrossRef]
- Wai, K.P.; Koo, C.H.; Chong, W.C.; Lai, S.O.; Pang, Y.L. Improving hydrophilicity of polyethersulfone membrane using silver nanoparticles for humic substances removal. Int. J. Eng. 2018, 31, 1364–1372. [Google Scholar]
- Llamas, N.E.; Garrido, M.; Susana, M.; Nezio, D.; Susana, B.; Band, F. Second order advantage in the determination of amaranth, sunset yellow FCF and tartrazine by UV—Vis and multivariate curve resolution-alternating least squares. Anal. Chim. Acta 2009, 655, 38–42. [Google Scholar] [CrossRef] [PubMed]
- Chong, W.C.; Mahmoudi, E.; Chung, Y.T.; Koo, C.H.; Mohammad, A.W.; Kamarudin, K.F. Improving performance in algal organic matter filtration using polyvinylidene fluoride–graphene oxide nanohybrid membranes. Algal Res. 2017, 27, 32–42. [Google Scholar] [CrossRef]
- Mahmoudi, E.; Ng, L.Y.; Ang, W.L.; Chung, Y.T.; Rohani, R. Enhancing morphology and separation performance of polyamide 6,6 membranes by minimal incorporation of silver decorated graphene oxide nanoparticles. Sci. Rep. 2019, 9, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shameli, K.; Ahmad, M.B.; Zamanian, A.; Sangpour, P. Green biosynthesis of silver nanoparticles using Curcuma longa tuber powder. Int. J. Nanomed. 2012, 7, 5603–5610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rajeswari, R.; Prabu, H.G.; Amutha, D.M. One pot hydrothermal synthesis characterizations of silver nanoparticles on reduced graphene oxide for its enhanced antibacterial and antioxidant properties. IOSR J. Appl. Chem. 2017, 10, 64–69. [Google Scholar] [CrossRef]
- Gharibshahi, L.; Saion, E.; Gharibshahi, E.; Shaari, A.H.; Matori, K.A. Structural and optical properties of Ag nanoparticles synthesized by thermal treatment method. Materials 2017, 10, 402. [Google Scholar] [CrossRef]
- Siddiqui, M.R.H.; Adil, S.F.; Assal, M.E.; Ali, R.; Al-Warthan, A. Synthesis and characterization of silver oxide and silver chloride nanoparticles with high thermal stability. Asian J. Chem. 2013, 6, 3405–3409. [Google Scholar] [CrossRef]
- Bayan, R.; Karak, N. Photo-assisted synthesis of a Pd-Ag@CQD nanohybrid and its catalytic efficiency in promoting the Suzuki-Miyaura cross-coupling reaction under ligand-free and ambient conditions. ACS Omega 2017, 2, 8868–8876. [Google Scholar] [CrossRef] [Green Version]
- Chorkendorff, I. Niemantsverdriet, Concepts of Modern Catalysis and Kinetics, 1st ed.; Wiley: Weinheim, Germany, 2003. [Google Scholar]
- Chong, W.C.; Mahmoudi, E.; Chung, Y.T.; Ba-abbad, M.M. Polyvinylidene fluoride membranes with enhanced antibacterial and low fouling properties by incorporating ZnO/rGO composites. Desalin. Water Treat. 2017, 20742, 12–21. [Google Scholar] [CrossRef]
- Yu, H.; Zhang, H.; Huang, H.; Liu, Y.; Li, H.; Ming, H.; Kang, Z. ZnO/carbon quantum dots nanocomposites: One-step fabrication and superior photocatalytic ability for toxic gas degradation under visible light at room temperature. New J. Chem. 2012, 36, 1031–1035. [Google Scholar] [CrossRef]
- Martins, N.C.T.; Ângelo, J.; Violeta, A.; Trindade, T.; Andrade, L.; Mendes, A. N-doped carbon quantum dots/TiO2 composite with improved photocatalytic activity. Appl. Catal. B Environ. 2016, 193, 67–74. [Google Scholar] [CrossRef]
- Abbaszadegan, A.; Ghahramani, Y.; Gholami, A.; Hemmateenejad, B.; Dorostkar, S.; Nabavizadeh, M.; Sharghi, H. The effect of charge at the surface of silver nanoparticles on antimicrobial activity against gram-positive and gram-negative bacteria: A preliminary study. J. Nanomater. 2014, 2015, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Bi, R.; Zhang, Q.; Zhang, R.; Su, Y.; Jiang, Z. Thin film nanocomposite membranes incorporated with graphene quantum dots for high flux and antifouling property. J. Membr. Sci. 2018, 553, 17–24. [Google Scholar] [CrossRef]
- Lai, G.S.; Lau, W.J.; Goh, P.S.; Ismail, A.F.; Tan, Y.H.; Chong, C.Y.; Krause-Rehberg, R.; Awad, S. Tailor-made thin film nanocomposite membrane incorporated with graphene oxide using novel interfacial polymerization technique for enhanced water separation. Chem. Eng. J. 2018, 344, 524–534. [Google Scholar] [CrossRef]
- Faghri, A.; Zhang, Y. Solid–Liquid–Vapor Phenomena and Interfacial Heat and Mass Transfer. In Transport Phenomena in Multiphase Systems; Academic Press: Boston, MA, USA, 2006; pp. 331–420. [Google Scholar]
- Tian, X.; Qiu, Y. 2-Methoxyethylacrylate modified polysulfone membrane and its blood compatibility. Arch. Biochem. Biophys. 2017, 631, 49–57. [Google Scholar] [CrossRef]
- Ahmad, A.L.; Abdulkarim, A.A.; Ismail, S.; Ooi, B.S. Preparation and characterisation of PES-ZnO mixed matrix membranes for humic acid removal. Desalin. Water Treat. 2014, 54, 3257–3268. [Google Scholar] [CrossRef]
- Ngang, H.P.; Ooi, B.S.; Ahmad, A.L.; Lai, S.O. Preparation of PVDF–TiO2 mixed-matrix membrane and its evaluation on dye adsorption and UV-cleaning properties. Chem. Eng. J. 2012, 197, 359–367. [Google Scholar] [CrossRef]
- Li, J.; Shao, X.; Zhou, Q.; Li, M.; Zhang, Q. The double effects of silver nanoparticles on the PVDF membrane: Surface hydrophilicity and antifouling performance. Appl. Surf. Sci. 2013, 265, 663–670. [Google Scholar] [CrossRef]
- Kuvarega, A.T.; Khumalo, N.; Dlamini, D.; Mamba, B.B. Polysulfone/N,Pd co-doped TiO2 composite membranes for photocatalytic dye degradation. Sep. Purif. Technol. 2018, 191, 122–133. [Google Scholar] [CrossRef]
- Aghamali, A.; Khosravi, M.; Hamishehkar, H.; Modirshahla, N.; Behnajady, M.A. Preparation of novel high performance recoverable and natural sunlight-driven nanocomposite photocatalyst of Fe3O4/C/TiO2/N-CQDs. Mater. Sci. Semicond. Process. 2018, 87, 142–154. [Google Scholar] [CrossRef]
- Aminudin, N.N.; Basri, H.; Harun, Z.; Yunos, M.Z.; Sean, G.P. Comparative study on effect of PEG and PVP as additives on polysulfone (PSF) membrane structure and performance. J. Teknol. 2013, 65, 47–51. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Mao, H.; Zheng, J.; Zhang, S. Tight ultrafiltration membrane: Preparation and characterization of thermally resistant carboxylated cardo poly (arylene ether ketone)s (PAEK-COOH) tight ultrafiltration membrane for dye removal. J. Membr. Sci. 2017, 530, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Chung, Y.T.; Ba-Abbad, M.M.; Mohammad, A.W.; Benamor, A. Functionalization of zinc oxide (ZnO) nanoparticles and its effects on polysulfone-ZnO membranes. Desalin. Water Treat. 2015, 57, 7801–7811. [Google Scholar] [CrossRef]
- Wang, Z.; Xu, L.; Qi, C.; Zhao, C. Fabrication of MWCNTs-polysulfone composite membranes and its application in the removal of bisphenol A. Mater. Res. Express. 2018, 5, 065101. [Google Scholar] [CrossRef]
- Benally, C.; Li, M.; El-din, M.G. The effect of carboxyl multiwalled carbon nanotubes content on the structure and performance of polysulfone membranes for oil sands process-affected water treatment. Sep. Purif. Technol. 2018, 199, 170–181. [Google Scholar] [CrossRef]
- Kang, Y.; Obaid, M.; Jang, J.; Ham, M.; Kim, I.S. Novel sulfonated graphene oxide incorporated polysulfone nanocomposite membranes for enhanced-performance in ultrafiltration process. Chemosphere 2018, 207, 581–589. [Google Scholar] [CrossRef]
- Banerjee, S.; Chattopadhyaya, M.C. Adsorption characteristics for the removal of a toxic dye, tartrazine from aqueous solutions by a low cost agricultural by-product. Arab. J. Chem. 2017, 10, S1629–S1638. [Google Scholar] [CrossRef] [Green Version]
- Sharma, N.; Purkait, M.K. Enantiomeric and racemic effect of tartaric acid on polysulfone membrane during crystal violet dye removal by MEUF process. J. Water Process Eng. 2016, 10, 104–112. [Google Scholar] [CrossRef]
- Anis, S.F.; Lalia, B.S.; Hashaikeh, R.; Hilal, N. Breaking through the selectivity-permeability tradeOFF using nano zeolite-Y for micellar enhanced ultrafiltration dye rejection application. Sep. Purif. Technol. 2020, 242, 116824. [Google Scholar] [CrossRef]
- Sun, W.; Liu, J.; Chu, H.; Dong, B. Pretreatment and membrane hydrophilic modification to reduce membrane fouling. Membranes 2013, 3, 226–241. [Google Scholar] [CrossRef] [PubMed]
- Chong, W.C.; Mohammad, A.W.; Mahmoudi, E.; Chung, Y.T.; Kamarudin, K.F.; Takriff, M.S. Nanohybrid membrane in algal-membrane photoreactor: Microalgae cultivation and wastewater polishing. Chin. J. Chem. Eng. 2019, 27, 2799–2806. [Google Scholar] [CrossRef]
- Hamid, N.A.A.; Ismail, A.F.; Matsuura, T.; Zularisam, A.W.; Lau, W.J.; Yuliwati, E.; Abdullah, M.S. Morphological and separation performance study of polysulfone/titanium dioxide (PSF/TiO2) ultrafiltration membranes for humic acid removal. Desalination 2011, 273, 85–92. [Google Scholar] [CrossRef]
Set | Ag/CQDs Nanohybrids (wt %) | PSF Polymer (wt %) | PVP Additive (wt %) (Respect to PSF) | NMP Solvent (wt %) |
---|---|---|---|---|
1 | 0 | 17 | 1 | 83.0 |
2 | 0.3 | 17 | 1 | 82.7 |
3 | 0.5 | 17 | 1 | 82.5 |
4 | 0.7 | 17 | 1 | 82.3 |
5 | 1.0 | 17 | 1 | 82.0 |
Loading of Ag/CQD (wt %) | Water Contact Angle (°) | Pore Size, r (nm) | Porosity, ε |
---|---|---|---|
0 (Pure PSF) | 80.6 ± 2.15 | 8.51 | 0.8965 |
0.3 | 73.9 ± 1.04 | 13.34 | 0.8782 |
0.5 | 67.4 ± 1.57 | 20.14 | 0.8239 |
0.7 | 74.0 ± 1.19 | 11.83 | 0.8227 |
1.0 | 72.0 ± 1.06 | 7.16 | 0.7237 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gan, J.Y.; Chong, W.C.; Sim, L.C.; Koo, C.H.; Pang, Y.L.; Mahmoudi, E.; Mohammad, A.W. Novel Carbon Quantum Dots/Silver Blended Polysulfone Membrane with Improved Properties and Enhanced Performance in Tartrazine Dye Removal. Membranes 2020, 10, 175. https://doi.org/10.3390/membranes10080175
Gan JY, Chong WC, Sim LC, Koo CH, Pang YL, Mahmoudi E, Mohammad AW. Novel Carbon Quantum Dots/Silver Blended Polysulfone Membrane with Improved Properties and Enhanced Performance in Tartrazine Dye Removal. Membranes. 2020; 10(8):175. https://doi.org/10.3390/membranes10080175
Chicago/Turabian StyleGan, Jin Yee, Woon Chan Chong, Lan Ching Sim, Chai Hoon Koo, Yean Ling Pang, Ebrahim Mahmoudi, and Abdul Wahab Mohammad. 2020. "Novel Carbon Quantum Dots/Silver Blended Polysulfone Membrane with Improved Properties and Enhanced Performance in Tartrazine Dye Removal" Membranes 10, no. 8: 175. https://doi.org/10.3390/membranes10080175
APA StyleGan, J. Y., Chong, W. C., Sim, L. C., Koo, C. H., Pang, Y. L., Mahmoudi, E., & Mohammad, A. W. (2020). Novel Carbon Quantum Dots/Silver Blended Polysulfone Membrane with Improved Properties and Enhanced Performance in Tartrazine Dye Removal. Membranes, 10(8), 175. https://doi.org/10.3390/membranes10080175