Occurrence of Antibiotics, Antibiotic Resistance Genes and Viral Genomes in Wastewater Effluents and Their Treatment by a Pilot Scale Nanofiltration Unit
Abstract
:1. Introduction
2. Materials and Methods
2.1. Occurrence Study
2.1.1. Antibiotics
Sampling Campaign
Solid Phase Extraction Procedures
Analysis by Liquid Chromatography with Tandem Mass Spectrometry
2.1.2. Antibiotic Resistance Genes
DNA Extraction
Detection and Quantification of the Target Resistance Genes by TaqMan Multiplex qPCR
2.1.3. Viruses
Concentration of Viral Particles from the Water Samples
Viral DNA and RNA Extraction and cDNA Preparation
Detection and Quantification of the Viral Genomes by TaqMan Multiplex qPCR
2.2. Nanofiltration Experimental Assay
3. Results and Discussion
3.1. Occurrence of the Target Contaminants
3.1.1. Antibiotics
3.1.2. Occurrence of Antibiotic Resistance Genes and Viral Genomes
3.2. Efficiency of Nanofiltration for the Removal of the Target Contaminants
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhang, Y.; Shen, Y. Wastewater irrigation: Past, present, and future. Wires Water 2019, 6, 1234. [Google Scholar] [CrossRef]
- United Nations Interagency Coordinating Group on Antimicrobial Resistance. No Time to Wait: Securing the Future from Drug-Resistant Infections, Report to the Secretary-General of the United Nations; WHO: Geneva, Switzerland, 2019. [Google Scholar]
- Watkinson, A.J.; Murby, E.J.; Kolpin, D.W.; Costanzo, S.D. The occurrence of antibiotics in an urban watershed: From wastewater to drinking water. Sci. Total Environ. 2008, 407, 2711–2723. [Google Scholar] [CrossRef]
- Dinh, Q.; Moreau-guigon, E.; Labadie, P.; Alliot, F.; Teil, M.; Blanchard, M.; Eurin, J.; Chevreuil, M. Fate of antibiotics from hospital and domestic sources in a sewage network. Sci. Total Environ. 2017, 575, 758–766. [Google Scholar] [CrossRef]
- Yewale, V.N. Antimicrobial resistance—A ticking bomb. Indian Pediatr. 2014, 51, 171–172. [Google Scholar] [CrossRef]
- European Comission. A European One Health Action Plan against Antimicrobial Resistance (AMR); European Comission: Brussels, Belgium, COM (2017) 339 Final; Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52017DC0339 (accessed on 23 December 2020).
- Tela, S.H. Occurrence of Antibiotics in Wastewater Effluents and Their Treatment by a Pilot Scale Nanofiltration Unit. Master’s Thesis, Faculdade de Ciências e Tecnologia, Univesidade Nova de Lisboa, Caparica, Portugal, 2020. [Google Scholar]
- Loos, R.; Carvalho, R.; António, D.C.; Comero, S.; Locoro, G.; Tavazzi, S.; Paracchini, B.; Ghiani, M.; Lettieri, T.; Blaha, L.; et al. EU-wide monitoring survey on emerging polar organic contaminants in wastewater treatment plant effluents. Water Res. 2013, 7, 6475–6487. [Google Scholar] [CrossRef] [PubMed]
- Auguet, O.; Pijuan, M.; Borrego, C.M.; Rodriguez-mozaz, S.; Triadó-margarit, X.; Varela, S.; Giustina, D.; Gutierrez, O. Sewers as potential reservoirs of antibiotic resistance. Sci. Total Environ. 2017, 605, 1047–1054. [Google Scholar] [CrossRef] [PubMed]
- Cacace, D.; Fatta-kassinos, D.; Manaia, C.M.; Cytryn, E.; Kreuzinger, N.; Rizzo, L.; Karaolia, P.; Schwartz, T.; Alexander, J.; Merlin, C.; et al. Antibiotic resistance genes in treated wastewater and in the receiving water bodies: A pan-European survey of urban settings. Water Res. 2019, 162, 320–330. [Google Scholar] [CrossRef] [PubMed]
- Fumian, T.M.; Fioretti, J.M.; Lun, J.H.; Ingrid, A.L.; White, P.A.; Miagostovich, M.P. Detection of norovirus epidemic genotypes in raw sewage using next generation sequencing. Environ. Int. 2019, 123, 282–291. [Google Scholar] [CrossRef] [PubMed]
- Gerba, C.P.; Betancourt, W.Q.; Kitajima, M. How much reduction of virus is needed for recycled water: A continuous changing need for assessment? Water Res. 2017, 108, 25–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hellmér, M.; Paxéus, N.; Magnius, L.; Enache, L.; Arnholm, B.; Johansson, A.; Bergström, T. Detection of Pathogenic Viruses in Sewage Provided Early Warnings of Hepatitis A Virus and Norovirus Outbreaks. Appl. Environ. Microbiol. 2014, 80, 6771–6781. [Google Scholar] [CrossRef] [Green Version]
- Symonds, E.M.; Griffin, D.W.; Breitbart, M. Eukaryotic Viruses in Wastewater Samples from the United States. Appl. Environ. Microbiol. 2009, 75, 1402–1409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gerba, C.P. Assessment of Enteric Pathogen Shedding by Bathers during Recreational Activity and its Impact on Water Quality Assessment of Enteric Pathogen Shedding by Bathers during Recreational Activity and its Impact on Water Quality. Quant. Microbiol. 2000, 2, 55–68. [Google Scholar] [CrossRef]
- Corsi, S.R.; Borchardt, M.A.; Spencer, S.K.; Hughes, P.E.; Baldwin, A.K. Human and bovine viruses in the Milwaukee River watershed: Hydrologically relevant representation and relations with environmental variables. Sci. Total Environ. 2014, 490, 849–860. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montazeri, N.; Goettert, D.; Achberger, E.C.; Johnson, C.N.; Prinyawiwatkul, W.; Janes, M.E. Pathogenic Enteric Viruses and Microbial Indicators during Secondary Treatment of Municipal Wastewater. Appl. Environ. Microbiol. 2015, 81, 6436–6445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Urase, T.; Yamamoto, K.; Ohgaki, S. Effect of pore structure of membranes and module configuration on virus retention. J. Membr. Sci. 1996, 115, 21–29. [Google Scholar] [CrossRef]
- Dolar, D.; Vukovi, A.; Asperger, D.; Kosuti, K. Effect of water matrices on removal of veterinary pharmaceuticals by nanofiltration and reverse osmosis membranes. J. Environ. Sci. 2011, 23, 1299–1307. [Google Scholar] [CrossRef]
- Slipko, K.; Reif, D.; Markus, W.; Hufnagl, P.; Krampe, J.; Kreuzinger, N. Removal of extracellular free DNA and antibiotic resistance genes from water and wastewater by membranes ranging from micro filtration to reverse osmosis. Water Res. 2019, 164, 114916. [Google Scholar] [CrossRef]
- Cristóvão, M.B.; Bento-Silva, A.; Bronze, M.R.; Crespo, J.G.; Pereira, V.J. Detection of anticancer drugs in wastewater effluents: Grab versus passive sampling. 2020; submitted manuscript. [Google Scholar]
- Bailly, E.; Levi, Y.; Karolak, S. Calibration and field evaluation of polar organic chemical integrative sampler (POCIS) for monitoring pharmaceuticals in hospital wastewater. Environ. Pollut. 2013, 174, 100–105. [Google Scholar] [CrossRef]
- Ory, J.; Bricheux, G.; Togola, A.; Bonnet, J.L.; Donnadieu-bernard, F.; Nakusi, L.; Forestier, C.; Traore, O. Ciprofloxacin residue and antibiotic-resistant biofilm bacteria in hospital effluent. Environ. Pollut. 2016, 214, 635–645. [Google Scholar] [CrossRef]
- Oliveira, M.; Nunes, M.; Crespo, M.T.B.; Silva, A.F. The environmental contribution to the dissemination of carbapenem and (fluoro) quinolone resistance genes by discharged and reused wastewater effluents: The role of cellular and extracellular DNA. Water Res. 2020, 182, 116011. [Google Scholar] [CrossRef]
- Cantalupo, P.G.; Calgua, B.; Zhao, G.; Hundesa, A.; Wier, A.D.; Katz, J.P.; Grabe, M.; Hendrix, R.W.; Girones, R.; Wang, D.; et al. Raw Sewage Harbors Diverse Viral Populations. mBio 2011, 2, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cristóvão, M.B.; Bernardo, J.; Bento-Silva, A.; Bronze, M.R.; Crespo, J.G.; Pereira, V.J. Treatment of anticancer drugs in a real wastewater effluent using nanofiltration: A pilot scale study. 2020; submitted manuscript. [Google Scholar]
- Verlicchi, P.; Al Aukidy, M.; Jelic, A.; Petrovi, M.; Barceló, D. Comparison of measured and predicted concentrations of selected pharmaceuticals in wastewater and surface water: A case study of a catchment area in the Po Valley (Italy). Sci. Total Environ. 2014, 471, 844–854. [Google Scholar] [CrossRef] [PubMed]
- Rossmann, J.; Schubert, S.; Gurke, R.; Oertel, R.; Kirch, W. Simultaneous determination of most prescribed antibiotics in multiple urban wastewater by SPE-LC-MS/MS Simultaneous determination of most prescribed antibiotics in multiple urban wastewater by SPE-LC-MS/MS. J. Chromatogr. B 2014, 969, 162–170. [Google Scholar] [CrossRef] [PubMed]
- Pärnänen, K.M.M.; Narciso-da-rocha, C.; Kneis, D.; Berendonk, T.U.; Cacace, D.; Do, T.T.; Elpers, C.; Fatta-kassinos, D.; Henriques, I.; Jaeger, T.; et al. Giustina, Antibiotic resistance in European wastewater treatment plants mirrors the pattern of clinical antibiotic resistance prevalence. Sci. Adv. 2019, 5, 9124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- La Rosa, G.; Pourshaban, M.; Iaconelli, M.; Muscillo, M. Quantitative real-time PCR of enteric viruses in influent and effluent samples from wastewater treatment plants in Italy. Ann. Ist. Super. SanItà 2010, 46, 266–273. [Google Scholar]
- Nascimento, M.S.J.; Pereira, S.S.; Teixeira, J.; Abreu-silva, J. A nationwide serosurvey of hepatitis E virus antibodies in the general population of Portugal. Eur. J. Public Health 2017, 28, 720–724. [Google Scholar] [CrossRef]
- Oliveira, R.; Mesquita, J.R.; Pereira, S.; Abreu-Silva, J.; Teixeira, J.; Nascimento, M.S.J. Seroprevalence of Hepatitis E Virus Antibodies in Portuguese Children. Pediatr. Infect. Dis. J. 2017, 37, 623–626. [Google Scholar] [CrossRef]
- Berto, A.; Backer, J.A.; Mesquita, J.R.; Nascimento, M.S.J.; Banks, M.; Martelli, F.; Ostanello, F.; Angeloni, G.; Di Bartolo, I.; Ruggeri, F.M.; et al. Prevalence and transmission of hepatitis E virus in domestic swine populations in different European countries. BMC Res. Notes 2012, 5, 190. [Google Scholar] [CrossRef]
- Mesquita, J.R.; Oliveira, R.M.S.; Coelho, C.; Nascimento, M.S.J. Hepatitis E Virus in Sylvatic and Captive Wild Boar from Portugal. Transbound. Emerg. Dis. 2016, 63, 574–578. [Google Scholar] [CrossRef]
- Cuevas-ferrando, E.; Randazzo, W.; Pérez-cataluña, A. HEV Occurrence in Waste and Drinking Water Treatment Plants. Front. Microbiol. 2020, 10, 2937. [Google Scholar] [CrossRef]
- Beyer, S.; Szewzyk, R.; Gnirss, R.; Johne, R.; Christoph, H. Detection and Characterization of Hepatitis E Virus Genotype 3 in Wastewater and Urban Surface Waters in Germany. Food Environ. Virol. 2020, 12, 137–147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lan, L.; Kong, X.; Sun, H.; Li, C.; Liu, D. High removal efficiency of antibiotic resistance genes in swine wastewater via nano fi ltration and reverse osmosis processes. J. Environ. Manag. 2019, 231, 439–445. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Zhang, Y.; Wu, J.; Wang, J.; Cai, Y. Fate of antibiotic resistance genes in reclaimed water reuse system with integrated membrane process. J. Hazard. Mater. 2020, 382, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Gros, M.; Marti, E.; Luis, J.; Boy-roura, M.; Busquets, A.; Colón, J.; Sànchez-melsió, A.; Lekunberri, I.; Borrego, C.M.; Ponsá, S.; et al. Fate of pharmaceuticals and antibiotic resistance genes in a full-scale on-farm livestock waste treatment plant. J. Hazard. Mater. 2019, 378, 120716. [Google Scholar] [CrossRef]
- Van der Bruggen, B.; Vandecasteele, C. Removal of pollutants from surface water and groundwater by nanofiltration: Overview of possible applications in the drinking water industry. Environ. Pollut. 2003, 122, 435–445. [Google Scholar] [CrossRef]
- Pasalari, H.; Ataei-pirkooh, A.; Aminikhah, M.; Jonidi, A. Assessment of airborne enteric viruses emitted from wastewater treatment plant: Atmospheric dispersion model, quantitative microbial risk assessment, disease burden. Environ. Pollut. 2019, 253, 464–473. [Google Scholar] [CrossRef]
- Wang, H.; Kjellberg, I.; Sikora, P.; Rydberg, H.; Lindh, M. Hepatitis E virus genotype 3 strains and a plethora of other viruses detected in raw and still in tap water. Water Res. 2020, 168, 115141. [Google Scholar] [CrossRef]
Compound | Structure | Molecular Formula | Molecular Weight (Da) | Log Kow a |
---|---|---|---|---|
Ciprofloxacin | C17H18FN3O3 | 331.3 | 0.28 | |
Levofloxacin | C18H20FN3O4 | 361.4 | −0.39 |
Compound. | Ciprofloxacin | Levofloxacin |
---|---|---|
Retention time (min) | 6.72 | 6.49 |
Precursor ion [M + H]+ | 332 | 362 |
Source potential (V) | 50 | 50 |
Collision Energy (eV) | 20 | 20 |
MRM1 transition | 332 > 288 | 362 > 318 |
MRM2 transition | 332 > 314 | 362 > 261 |
Time (min) | 0 | 1 | 7 | 8 | 8.10 | 10 | 10.10 | 20 |
---|---|---|---|---|---|---|---|---|
% A | 100 | 95 | 80 | 80 | 10 | 10 | 100 | 100 |
% B | 0 | 5 | 20 | 20 | 90 | 90 | 0 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cristóvão, M.B.; Tela, S.; Silva, A.F.; Oliveira, M.; Bento-Silva, A.; Bronze, M.R.; Crespo, M.T.B.; Crespo, J.G.; Nunes, M.; Pereira, V.J. Occurrence of Antibiotics, Antibiotic Resistance Genes and Viral Genomes in Wastewater Effluents and Their Treatment by a Pilot Scale Nanofiltration Unit. Membranes 2021, 11, 9. https://doi.org/10.3390/membranes11010009
Cristóvão MB, Tela S, Silva AF, Oliveira M, Bento-Silva A, Bronze MR, Crespo MTB, Crespo JG, Nunes M, Pereira VJ. Occurrence of Antibiotics, Antibiotic Resistance Genes and Viral Genomes in Wastewater Effluents and Their Treatment by a Pilot Scale Nanofiltration Unit. Membranes. 2021; 11(1):9. https://doi.org/10.3390/membranes11010009
Chicago/Turabian StyleCristóvão, Maria Beatriz, Solomon Tela, Andreia Filipa Silva, Micaela Oliveira, Andreia Bento-Silva, Maria Rosário Bronze, Maria Teresa Barreto Crespo, João Goulão Crespo, Mónica Nunes, and Vanessa Jorge Pereira. 2021. "Occurrence of Antibiotics, Antibiotic Resistance Genes and Viral Genomes in Wastewater Effluents and Their Treatment by a Pilot Scale Nanofiltration Unit" Membranes 11, no. 1: 9. https://doi.org/10.3390/membranes11010009
APA StyleCristóvão, M. B., Tela, S., Silva, A. F., Oliveira, M., Bento-Silva, A., Bronze, M. R., Crespo, M. T. B., Crespo, J. G., Nunes, M., & Pereira, V. J. (2021). Occurrence of Antibiotics, Antibiotic Resistance Genes and Viral Genomes in Wastewater Effluents and Their Treatment by a Pilot Scale Nanofiltration Unit. Membranes, 11(1), 9. https://doi.org/10.3390/membranes11010009