Characteristics of Passive Solute Transport across Primary Rat Alveolar Epithelial Cell Monolayers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Primary Cultured Rat Alveolar Epithelial Cell Monolayers (RAECM)
2.2. Bioelectric Properties of RAECM
2.3. Hydrophilic Solutes
2.4. Measurements of Flux (J) of Hydrophilic Solutes
2.5. Estimation of Apparent Permeability Coefficients (Papp)
2.6. Effects of EGTA
2.7. Unstirred Layer Thickness
2.8. Calculation of Molecular Radius of Solutes
2.9. Equivalent Pore Analysis
2.10. Data Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
Appendix A
(a) Comparison table for Papp for RAECM-I. | |||||||||||
Papp of RAECM-I | Papp of RAECM-I | ||||||||||
Formamide | Acetamide | Ethylene Glycol | Glycine | Arabinose | Mannitol | Sucrose | 5-Carboxy- Fluorescein | Sulfo- Rhodamine B | FITC-4 kDa Dextran | FITC-10 kDa Dextran | |
Formamide | |||||||||||
Acetamide | ** | *** | ** | ** | *** | ** | *** | *** | |||
Ethylene glycol | |||||||||||
Glycine | |||||||||||
Arabinose | |||||||||||
Mannitol | |||||||||||
Sucrose | |||||||||||
5-Carboxyfluorescein | |||||||||||
Sulforhodamine B | |||||||||||
FITC-4 kDa dextran | |||||||||||
FITC-10 kDa dextran | |||||||||||
(b) Comparison table for Papp for RAECM-II. | |||||||||||
Papp of RAECM-II | Papp of RAECM-II | ||||||||||
Formamide | Acetamide | Ethylene glycol | Glycine | Arabinose | Mannitol | Sucrose | 5-Carboxy- Fluorescein | Sulfo- Rhodamine B | FITC-4 kDa Dextran | FITC-10 kDa Dextran | |
Formamide | |||||||||||
Acetamide | **** | **** | **** | **** | *** | *** | **** | **** | |||
Ethylene glycol | * | * | * | * | * | ||||||
Glycine | |||||||||||
Arabinose | |||||||||||
Mannitol | |||||||||||
Sucrose | |||||||||||
5-Carboxyfluorescein | |||||||||||
Sulforhodamine B | |||||||||||
FITC-4 kDa dextran | |||||||||||
FITC-10 kDa dextran | |||||||||||
(c) Comparison table for Papp for RAECM-I with EGTA. | |||||||||||
Papp of RAECM-I with EGTA | Papp of RAECM-I with EGTA | ||||||||||
Formamide | Acetamide | Ethylene glycol | Glycine | Arabinose | Mannitol | Sucrose | 5-Carboxy- Fluorescein | Sulfo- Rhodamine B | FITC-4 kDa Dextran | FITC-10 kDa Dextran | |
Formamide | |||||||||||
Acetamide | ** | * | ** | * | * | * | * | ||||
Ethylene glycol | |||||||||||
Glycine | |||||||||||
Arabinose | |||||||||||
Mannitol | |||||||||||
Sucrose | |||||||||||
5-Carboxyfluorescein | |||||||||||
Sulforhodamine B | |||||||||||
FITC-4 kDa dextran | |||||||||||
FITC-10 kDa dextran | |||||||||||
(d) Comparison table for Papp for RAECM-II with EGTA. | |||||||||||
Papp of RAECM-II with EGTA | Papp of RAECM-II with EGTA | ||||||||||
Formamide | Acetamide | Ethylene glycol | Glycine | Arabinose | Mannitol | Sucrose | 5-Carboxy- Fluorescein | Sulfo- Rhodamine B | FITC-4 kDa Dextran | FITC-10 kDa Dextran | |
Formamide | **** | **** | **** | **** | **** | **** | **** | **** | |||
Acetamide | **** | **** | **** | **** | **** | **** | **** | **** | |||
Ethylene glycol | **** | ** | *** | *** | **** | **** | |||||
Glycine | **** | **** | **** | **** | **** | **** | **** | ||||
Arabinose | |||||||||||
Mannitol | |||||||||||
Sucrose | |||||||||||
5-Carboxyfluorescein | |||||||||||
Sulforhodamine B | |||||||||||
FITC-4 kDa dextran | |||||||||||
FITC-10 kDa dextran |
(a) Comparison table for Papp of RAECM-I vs RAECM-II. | |||||||||||
Papp of RAECM-I | Papp of RAECM-II | ||||||||||
Formamide | Acetamide | Ethylene glycol | Glycine | Arabinose | Mannitol | Sucrose | 5-Carboxy- Fluorescein | Sulfo- Rhodamine B | FITC-4 kDa Dextran | FITC-10 kDa Dextran | |
Formamide | |||||||||||
Acetamide | ** | *** | *** | *** | ** | ** | ** | *** | |||
Ethylene glycol | |||||||||||
Glycine | **** | ||||||||||
Arabinose | **** | * | |||||||||
Mannitol | *** | ||||||||||
Sucrose | *** | ||||||||||
5-Carboxyfluorescein | **** | * | |||||||||
Sulforhodamine B | *** | ||||||||||
FITC-4 kDa dextran | **** | ||||||||||
FITC-10 kDa dextran | **** | * | |||||||||
(b) Comparison table for Papp of RAECM-I vs RAECM-I with EGTA. | |||||||||||
Papp of RAECM-I | Papp of RAECM-I with EGTA | ||||||||||
Formamide | Acetamide | Ethylene glycol | Glycine | Arabinose | Mannitol | Sucrose | 5-Carboxy- Fluorescein | Sulfo- Rhodamine B | FITC-4 kDa Dextran | FITC-10 kDa Dextran | |
Formamide | |||||||||||
Acetamide | |||||||||||
Ethylene glycol | |||||||||||
Glycine | *** | ||||||||||
Arabinose | **** | ||||||||||
Mannitol | *** | ||||||||||
Sucrose | *** | ||||||||||
5-Carboxyfluorescein | **** | ||||||||||
Sulforhodamine B | *** | ||||||||||
FITC-4 kDa dextran | **** | ||||||||||
FITC-10 kDa dextran | **** | ||||||||||
(c) Comparison table for Papp of RAECM-I vs RAECM-II with EGTA. | |||||||||||
Papp of RAECM-I | Papp of RAECM-II with EGTA | ||||||||||
Formamide | Acetamide | Ethylene glycol | Glycine | Arabinose | Mannitol | Sucrose | 5-Carboxy- Fluorescein | Sulfo- Rhodamine B | FITC-4 kDa Dextran | FITC-10 kDa Dextran | |
Formamide | **** | **** | ** | **** | **** | ||||||
Acetamide | **** | **** | **** | ||||||||
Ethylene glycol | **** | **** | ** | **** | |||||||
Glycine | **** | **** | **** | **** | ** | ||||||
Arabinose | **** | **** | **** | ** | * | ||||||
Mannitol | **** | **** | **** | **** | ** | ||||||
Sucrose | **** | **** | **** | **** | ** | ||||||
5-Carboxyfluorescein | **** | **** | **** | ** | * | ||||||
Sulforhodamine B | **** | **** | **** | **** | ** | ||||||
FITC-4 kDa dextran | **** | **** | **** | **** | ** | * | |||||
FITC-10 kDa dextran | **** | **** | **** | **** | ** | * | |||||
(d) Comparison table for Papp of RAECM-II vs RAECM-I with EGTA. | |||||||||||
Papp of RAECM-II | Papp of RAECM-I with EGTA | ||||||||||
Formamide | Acetamide | Ethylene glycol | Glycine | Arabinose | Mannitol | Sucrose | 5-Carboxy- Fluorescein | Sulfo- Rhodamine B | FITC-4 kDa Dextran | FITC-10 kDa Dextran | |
Formamide | |||||||||||
Acetamide | ** | * | ** | * | * | * | * | ||||
Ethylene glycol | |||||||||||
Glycine | *** | ||||||||||
Arabinose | **** | ||||||||||
Mannitol | **** | ||||||||||
Sucrose | **** | ||||||||||
5-Carboxyfluorescein | *** | ||||||||||
Sulforhodamine B | *** | ||||||||||
FITC-4 kDa dextran | *** | ||||||||||
FITC-10 kDa dextran | **** | ||||||||||
(e) Comparison table for Papp of RAECM-II vs RAECM-II with EGTA. | |||||||||||
Papp of RAECM-II | Papp of RAECM-II with EGTA | ||||||||||
Formamide | Acetamide | Ethylene glycol | Glycine | Arabinose | Mannitol | Sucrose | 5-Carboxy- Fluorescein | Sulfo- Rhodamine B | FITC-4 kDa Dextran | FITC-10 kDa Dextran | |
Formamide | **** | **** | * | **** | **** | **** | |||||
Acetamide | **** | **** | **** | ||||||||
Ethylene glycol | **** | **** | * | **** | |||||||
Glycine | **** | **** | **** | **** | ** | ||||||
Arabinose | **** | **** | **** | ** | * | ||||||
Mannitol | **** | **** | **** | **** | ** | * | |||||
Sucrose | **** | **** | **** | ** | * | ||||||
5-Carboxyfluorescein | **** | **** | **** | ** | |||||||
Sulforhodamine B | **** | **** | **** | ** | |||||||
FITC-4 kDa dextran | **** | **** | **** | **** | ** | ||||||
FITC-10 kDa dextran | **** | **** | **** | **** | ** | * | |||||
(f) Comparison table for Papp of RAECM-I with EGTA vs RAECM-II with EGTA. | |||||||||||
Papp of RAECM-I with EGTA | Papp of RAECM-II with EGTA | ||||||||||
Formamide | Acetamide | Ethylene Glycol | Glycine | Arabinose | Mannitol | Sucrose | 5-Carboxy- Fluorescein | Sulfo- Rhodamine B | FITC-4 kDa Dextran | FITC-10 kDa Dextran | |
Formamide | **** | **** | **** | ||||||||
Acetamide | **** | **** | **** | ||||||||
Ethylene glycol | **** | **** | **** | ||||||||
Glycine | **** | **** | **** | **** | |||||||
Arabinose | **** | **** | **** | **** | |||||||
Mannitol | **** | **** | **** | **** | |||||||
Sucrose | **** | **** | **** | **** | |||||||
5-Carboxyfluorescein | **** | **** | **** | **** | |||||||
Sulforhodamine B | **** | **** | **** | **** | |||||||
FITC-4 kDa dextran | **** | **** | **** | **** | |||||||
FITC-10 kDa dextran | **** | **** | **** | **** |
RAECM-I | Estimated Pore Radius (nm) | Standard Error (%) | Estimated Number of Pores | Standard Error (%) | |
---|---|---|---|---|---|
without EGTA | Small pores | 0.32 | 3.7 | 1.01 × 1012 | 46.9 |
Cf. Reference solute radius = 0.35 nm | Large pores | 10.02 | 35.2 | 2.63 × 105 | 90.1 |
with EGTA | Small pores | 0.42 | 25.7 | 7.01 × 1010 | 177.2 |
Cf. Reference solute radius = 0.30 nm | Large pores | 21.61 | 73.5 | 5.98 × 105 | 162.3 |
RAECM-I | Pore Area (cm2) | % of Total Pore Area | Fold Change in Pore Area | |||
---|---|---|---|---|---|---|
Small | Large | Small | Large | Small | Large | |
without EGTA | 3.27 × 10−3 | 8.28 × 107 | 99.97 | 0.03 | 1.0 | 1.0 |
with EGTA | 2.34 × 10−5 | 8.77 × 10−6 | 72.76 | 27.24 | 0.7 | 1044.2 |
RAECM-II | Estimated Pore Radius (nm) | Standard Error (%) | Estimated Number of Pores | Standard Error (%) | |
---|---|---|---|---|---|
without EGTA | Small pores | 0.41 | 2.7 | 1.42 × 1012 | 22.9 |
Cf. Reference solute radius = 0.40 nm | Large pores | 8.83 | 8.1 | 2.34 × 106 | 22.0 |
with EGTA | Small pores | 0.92 | 72.7 | 5.33 × 1010 | 257.7 |
Cf. Reference solute radius = 0.35 nm | Large pores | 39.34 | 147.6 | 7.07 × 106 | 311.5 |
RAECM-II | Pore Area (cm2) | % of Total Pore Area | Fold Change in Pore Area | |||
---|---|---|---|---|---|---|
Small | Large | Small | Large | Small | Large | |
without EGTA | 7.346 × 10−3 | 5.730 × 10−6 | 99.92 | 0.08 | 1.0 | 1.0 |
with EGTA | 1.411 × 10−3 | 3.437 × 10−4 | 80.42 | 19.58 | 0.8 | 246.4 |
References
- Berg, M.M.; Kim, K.J.; Lubman, R.L.; Crandall, E.D. Hydrophilic solute transport across rat alveolar epithelium. J. Appl. Physiol. 1989, 66, 2320–2327. [Google Scholar] [CrossRef]
- Crandall, E.D.; Staub, N.C.; Goldberg, H.S.; Effros, R.M. Recent developments in pulmonary edema. Ann. Intern. Med. 1983, 99, 808–822. [Google Scholar] [CrossRef] [PubMed]
- Koval, M. Tight junctions, but not too tight: Fine control of lung permeability by claudins. Am. J. Physiol. Lung Cell Mol. Physiol. 2009, 297, L217–L218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schlingmann, B.; Molina, S.A.; Koval, M. Claudins: Gatekeepers of lung epithelial function. Semin. Cell Dev. Biol. 2015, 42, 47–57. [Google Scholar] [CrossRef] [Green Version]
- Wittekindt, O.H. Tight junctions in pulmonary epithelia during lung inflammation. Pflugers Arch. 2017, 469, 135–147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Itallie, C.M.; Anderson, J.M. The molecular physiology of tight junction pores. Physiology 2004, 19, 331–338. [Google Scholar] [CrossRef]
- Anderson, J.M. Molecular structure of tight junctions and their role in epithelial transport. Physiology 2001, 16, 126–130. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.J.; Crandall, E.D. Heteropore populations of bullfrog alveolar epithelium. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 1983, 54, 140–146. [Google Scholar] [CrossRef] [PubMed]
- Linnankoski, J.; Makela, J.; Palmgren, J.; Mauriala, T.; Vedin, C.; Ungell, A.L.; Lazorova, L.; Artursson, P.; Urtti, A.; Yliperttula, M. Paracellular porosity and pore size of the human intestinal epithelium in tissue and cell culture models. J. Pharm. Sci. 2010, 99, 2166–2175. [Google Scholar] [CrossRef]
- Van Itallie, C.M.; Holmes, J.; Bridges, A.; Gookin, J.L.; Coccaro, M.R.; Proctor, W.; Colegio, O.R.; Anderson, J.M. The density of small tight junction pores varies among cell types and is increased by expression of claudin-2. J. Cell Sci. 2008, 121, 298–305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watson, C.J.; Rowland, M.; Warhurst, G. Functional modeling of tight junctions in intestinal cell monolayers using polyethylene glycol oligomers. Am. J. Physiol. Cell Physiol. 2001, 281, C388–C397. [Google Scholar] [CrossRef]
- Gunzel, D.; Yu, A.S. Claudins and the modulation of tight junction permeability. Physiol. Rev. 2013, 93, 525–569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsukita, S.; Furuse, M.; Itoh, M. Multifunctional strands in tight junctions. Nat. Rev. Mol. Cell Biol 2001, 2, 285–293. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.J.; Borok, Z.; Crandall, E.D. A useful in vitro model for transport studies of alveolar epithelial barrier. Pharm. Res. 2001, 18, 253–255. [Google Scholar] [CrossRef] [PubMed]
- Cheek, J.M.; Evans, M.J.; Crandall, E.D. Type I cell-like morphology in tight alveolar epithelial monolayers. Exp. Cell Res. 1989, 184, 375–387. [Google Scholar] [CrossRef]
- Borok, Z.; Danto, S.I.; Zabski, S.M.; Crandall, E.D. Defined medium for primary culture de novo of adult rat alveolar epithelial cells. In Vitro Cell Dev. Biol. Anim. 1994, 30, 99–104. [Google Scholar] [CrossRef]
- Borok, Z.; Hami, A.; Danto, S.I.; Zabski, S.M.; Crandall, E.D. Rat serum inhibits progression of alveolar epithelial cells toward the type I cell phenotype in vitro. Am. J. Respir. Cell Mol. Biol. 1995, 12, 50–55. [Google Scholar] [CrossRef] [PubMed]
- Borok, Z.; Lubman, R.L.; Danto, S.I.; Zhang, X.L.; Zabski, S.M.; King, L.S.; Lee, D.M.; Agre, P.; Crandall, E.D. Keratinocyte growth factor modulates alveolar epithelial cell phenotype in vitro: Expression of aquaporin 5. Am. J. Respir. Cell Mol. Biol. 1998, 18, 554–561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borok, Z.; Mihyu, S.; Fernandes, V.F.; Zhang, X.L.; Kim, K.J.; Lubman, R.L. KGF prevents hyperoxia-induced reduction of active ion transport in alveolar epithelial cells. Am. J. Physiol. 1999, 276, C1352–C1360. [Google Scholar] [CrossRef]
- Qiao, R.; Yan, W.; Clavijo, C.; Mehrian-Shai, R.; Zhong, Q.; Kim, K.J.; Ann, D.; Crandall, E.D.; Borok, Z. Effects of KGF on alveolar epithelial cell transdifferentiation are mediated by JNK signaling. Am. J. Respir. Cell Mol. Biol. 2008, 38, 239–246. [Google Scholar] [CrossRef] [Green Version]
- Crandall, E.D.; Kim, K.J. Transport of water and solutes across bullfrog alveolar epithelium. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 1981, 50, 1263–1271. [Google Scholar] [CrossRef] [PubMed]
- McLaughlin, G.E.; Kim, K.J.; Berg, M.M.; Agoris, P.; Lubman, R.L.; Crandall, E.D. Measurement of solute fluxes in isolated rat lungs. Respir. Physiol. 1993, 91, 321–334. [Google Scholar] [CrossRef]
- Garner, F.H.; Marchant, P.J.M. Diffusivities of associated compounds in water. Trans. Instn. Chem. Engrs. 1961, 39, 397–408. [Google Scholar]
- Pietras, R.J.; Wright, E.M. The membrane action of antidiuretic hormone (ADH) on toad urinary bladder. J. Membr. Biol. 1975, 22, 107–123. [Google Scholar] [CrossRef] [PubMed]
- Renkin, E.M. Filtration, diffusion, and molecular sieving through porous cellulose membranes. J. Gen. Physiol. 1954, 38, 225–243. [Google Scholar]
- Venturoli, D.; Rippe, B. Ficoll and dextran vs. globular proteins as probes for testing glomerular permselectivity: Effects of molecular size, shape, charge, and deformability. Am. J. Physiol. Ren. Physiol. 2005, 288, F605–F613. [Google Scholar] [CrossRef] [PubMed]
- Gary-Bobo, C.; Weber, H.W. Diffusion of alcohols and amides in water from 4 to 37°. J. Phys. Chem. 1969, 73, 1155–1156. [Google Scholar] [CrossRef]
- Byers, C.H.; King, C.J. Liquid diffusivities in the glycol-water system. J. Phys. Chem. 1966, 70, 2499–2503. [Google Scholar] [CrossRef] [Green Version]
- Longsworth, L.G. Diffusion measurements, at 25°, of aqueous solutions of amino acids, peptides and sugars. J. Am. Chem. Soc. 1953, 75, 5705–5709. [Google Scholar] [CrossRef]
- Mogi, N.; Sugai, E.; Fuse, Y.; Funazukuri, T. Infinite dilution binary diffusion coefficients for six sugars at 0.1 MPa and temperatures from (273.2 to 353.2) K. J. Chem Eng. Data 2007, 52, 40–43. [Google Scholar] [CrossRef]
- Peck, K.D.; Ghanem, A.H.; Higuchi, W.I. Hindered diffusion of polar molecules through and effective pore radii estimates of intact and ethanol treated human epidermal membrane. Pharm. Res. 1994, 11, 1306–1314. [Google Scholar] [CrossRef]
- Wilke, C.R.; Chang, P. Correlation of diffusion coefficients in dilute solutions. AIChE J. 1955, 1, 264–270. [Google Scholar] [CrossRef]
- Deen, W.M.; Bohrer, M.P.; Epstein, N.B. Effects of molecular size and configuration on diffusion in microporous membranes. AIChE J. 1981, 27, 952–959. [Google Scholar] [CrossRef]
- Levitt, D.G. General continuum analysis of transport through pores. I. Proof of Onsager’s reciprocity postulate for uniform pore. Biophys. J. 1975, 15, 533–551. [Google Scholar] [CrossRef] [Green Version]
- Borok, Z.; Danto, S.I.; Dimen, L.L.; Zhang, X.L.; Lubman, R.L. Na+-K+-ATPase expression in alveolar epithelial cells: Upregulation of active ion transport by KGF. Am. J. Physiol. 1998, 274, L149–L158. [Google Scholar] [CrossRef] [PubMed]
- D’Argenio, D.Z.; Schumitzky, A.; Wang, X. ADAPT 5 User’s Guide: Pharmacokinetic/Pharmacodynamic Systems Analysis Software; Biomedical Simulations Resource: Los Angeles, CA, USA, 2009; Available online: https://bmsr.usc.edu/software/adapt/ (accessed on 25 April 2021).
- Adson, A.; Raub, T.J.; Burton, P.S.; Barsuhn, C.L.; Hilgers, A.R.; Audus, K.L.; Ho, N.F. Quantitative approaches to delineate paracellular diffusion in cultured epithelial cell monolayers. J. Pharm. Sci. 1994, 83, 1529–1536. [Google Scholar] [CrossRef] [PubMed]
- Knipp, G.T.; Ho, N.F.; Barsuhn, C.L.; Borchardt, R.T. Paracellular diffusion in Caco-2 cell monolayers: Effect of perturbation on the transport of hydrophilic compounds that vary in charge and size. J. Pharm. Sci. 1997, 86, 1105–1110. [Google Scholar] [CrossRef]
- Cavanaugh, K.J.; Cohen, T.S.; Margulies, S.S. Stretch increases alveolar epithelial permeability to uncharged micromolecules. Am. J. Physiol. Cell Physiol 2006, 290, C1179–C1188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dodoo, A.N.O.; Bansal, S.S.; Barlow, D.J.; Bennet, F.; Hider, R.C.; Lansley, A.B.; Lawrence, M.J.; Marriott, C. Use of alveolar cell monolayers of varying electrical resistance to measure pulmonary peptide transport. J. Pharm. Sci. 2000, 89, 223–231. [Google Scholar] [CrossRef]
- Dodoo, A.N.; Bansal, S.; Barlow, D.J.; Bennet, F.C.; Hider, R.C.; Lansley, A.B.; Lawrence, M.J.; Marriott, C. Systematic investigations of the influence of molecular structure on the transport of peptides across cultured alveolar cell monolayers. Pharm. Res. 2000, 17, 7–14. [Google Scholar] [CrossRef]
- Smyth, D.H.; Wright, E.M. Streaming potentials in the rat small intestine. J. Physiol. 1966, 182, 591–602. [Google Scholar] [CrossRef]
- Whittembury, G. Action of antidiuretic hormone on the equivalent pore radius at both surfaces of the epithelium of the isolated toad skin. J. Gen. Physiol. 1962, 46, 117–130. [Google Scholar] [CrossRef] [Green Version]
- Wright, E.M.; Pietras, R.J. Routes of nonelectrolyte permeation across epithelial membranes. J. Membr. Biol. 1974, 17, 293–312. [Google Scholar] [CrossRef]
- Matsukawa, Y.; Lee, V.H.; Crandall, E.D.; Kim, K.J. Size-dependent dextran transport across rat alveolar epithelial cell monolayers. J. Pharm. Sci. 1997, 86, 305–309. [Google Scholar] [CrossRef] [PubMed]
- Theodore, J.; Robin, E.D.; Gaudio, R.; Acevedo, J. Transalveolar transport of large polar solutes (sucrose, inulin, and dextran). Am. J. Physiol. 1975, 229, 989–996. [Google Scholar] [CrossRef]
- Bahhady, R.; Kim, K.J.; Borok, Z.; Crandall, E.D.; Shen, W.C. Enhancement of insulin transport across primary rat alveolar epithelial cell monolayers by endogenous cellular factor(s). Pharm. Res. 2007, 24, 1713–1719. [Google Scholar] [CrossRef]
- Conhaim, R.L.; Eaton, A.; Staub, N.C.; Heath, T.D. Equivalent pore estimate for the alveolar-airway barrier in isolated dog lung. J. Appl. Physiol. 1988, 64, 1134–1142. [Google Scholar] [CrossRef] [PubMed]
- Conhaim, R.L.; Watson, K.E.; Lai-Fook, S.J.; Harms, B.A. Transport properties of alveolar epithelium measured by molecular hetastarch absorption in isolated rat lungs. J. Appl. Physiol. 2001, 91, 1730–1740. [Google Scholar] [CrossRef]
- Wang, F.; Daugherty, B.; Keise, L.L.; Wei, Z.; Foley, J.P.; Savani, R.C.; Koval, M. Heterogeneity of claudin expression by alveolar epithelial cells. Am. J. Respir. Cell Mol. Biol. 2003, 29, 62–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, G.; Flodby, P.; Luo, J.; Kage, H.; Sipos, A.; Gao, D.; Ji, Y.; Beard, L.L.; Marconett, C.N.; DeMaio, L.; et al. Knockout mice reveal key roles for claudin 18 in alveolar barrier properties and fluid homeostasis. Am. J. Respir. Cell Mol. Biol. 2014, 51, 210–222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kage, H.; Flodby, P.; Gao, D.; Kim, Y.H.; Marconett, C.N.; DeMaio, L.; Kim, K.J.; Crandall, E.D.; Borok, Z. Claudin 4 knockout mice: Normal physiological phenotype with increased susceptibility to lung injury. Am. J. Physiol. Lung Cell Mol. Physiol. 2014, 307, L524–L536. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, L.A.; Overgaard, C.E.; Ward, C.; Margulies, S.S.; Koval, M. Differential effects of claudin-3 and claudin-4 on alveolar epithelial barrier function. Am. J. Physiol. Lung Cell Mol. Physiol. 2011, 301, L40–L49. [Google Scholar] [CrossRef] [PubMed]
- Overgaard, C.E.; Mitchell, L.A.; Koval, M. Roles for claudins in alveolar epithelial barrier function. Ann. N. Y. Acad. Sci. 2012, 1257, 167–174. [Google Scholar] [CrossRef] [PubMed]
- Collares-Buzato, C.B.; McEwan, G.T.; Jepson, M.A.; Simmons, N.L.; Hirst, B.H. Paracellular barrier and junctional protein distribution depend on basolateral extracellular Ca2+ in cultured epithelia. Biochim. Biophys. Acta 1994, 1222, 147–158. [Google Scholar] [CrossRef]
- Gonzalez-Mariscal, L.; Contreras, R.G.; Bolivar, J.J.; Ponce, A.; Chavez De Ramirez, B.; Cereijido, M. Role of calcium in tight junction formation between epithelial cells. Am. J. Physiol. 1990, 259, C978–C986. [Google Scholar] [CrossRef] [PubMed]
- Jovov, B.; Lewis, S.A.; Crowe, W.E.; Berg, J.R.; Wills, N.K. Role of intracellular Ca2+ in modulation of tight junction resistance in A6 cells. Am. J. Physiol. 1994, 266, F775–F784. [Google Scholar] [CrossRef]
- Rothen-Rutishauser, B.; Riesen, F.K.; Braun, A.; Gunthert, M.; Wunderli-Allenspach, H. Dynamics of tight and adherens junctions under EGTA treatment. J. Membr. Biol. 2002, 188, 151–162. [Google Scholar] [CrossRef]
- Schneeberger, E.E.; Lynch, R.D. Structure, function, and regulation of cellular tight junctions. Am. J. Physiol. 1992, 262, L647–L661. [Google Scholar] [CrossRef]
- Stevenson, B.R.; Anderson, J.M.; Goodenough, D.A.; Mooseker, M.S. Tight junction structure and ZO-1 content are identical in two strains of Madin-Darby canine kidney cells which differ in transepithelial resistance. J. Cell Biol. 1988, 107, 2401–2408. [Google Scholar] [CrossRef] [Green Version]
- Martinez-Palomo, A.; Meza, I.; Beaty, G.; Cereijido, M. Experimental modulation of occluding junctions in a cultured transporting epithelium. J. Cell Biol. 1980, 87, 736–745. [Google Scholar] [CrossRef]
- Meldolesi, J.; Castiglioni, G.; Parma, R.; Nassivera, N.; De Camilli, P. Ca++-dependent disassembly and reassembly of occluding junctions in guinea pig pancreatic acinar cells. Effect of drugs. J. Cell Biol. 1978, 79, 156–172. [Google Scholar] [CrossRef] [Green Version]
- Wray, C.; Mao, Y.; Pan, J.; Chandrasena, A.; Piasta, F.; Frank, J.A. Claudin 4 augments alveolar epithelial barrier function and is induced in acute lung injury. Am. J. Physiol. Lung Cell Mol. Physiol. 2009, 297, L219–L227. [Google Scholar] [CrossRef] [Green Version]
- Claude, P.; Goodenough, D.A. Fracture faces of zonulae occludentes from “tight” and “leaky” epithelia. J. Cell Biol. 1973, 58, 390–400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frederiksen, O.; Mollgard, K.; Rostgaard, J. Lack of correlation between transepithelial transport capacity and paracellular pathway ultrastructure in Alcian blue-treated rabbit gallbladders. J. Cell Biol. 1979, 83, 383–393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinez-Palomo, A.; Erlij, D. Structure of tight junctions in epithelia with different permeability. Proc. Natl. Acad. Sci. USA 1975, 72, 4487–4491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mollgard, K.; Milinowska, D.H.; Saunders, N.R. Lack of correlation between tight junction morphology and permeability properties in developing choroid plexus. Nature 1976, 264, 293–294. [Google Scholar] [CrossRef] [PubMed]
- Schneeberger-Keeley, E.E.; Karnovsky, M.J. The ultrastructural basis of alveolar-capillary membrane permeability to peroxidase used as a tracer. J. Cell Biol. 1968, 37, 781–793. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walker, D.C.; MacKenzie, A.L.; Wiggs, B.R.; Montaner, J.G.; Hogg, J.C. Assessment of tight junctions between pulmonary epithelial and endothelial cells. J. Appl. Physiol. 1988, 64, 2348–2356. [Google Scholar] [CrossRef] [PubMed]
- Furuse, M.; Furuse, K.; Sasaki, H.; Tsukita, S. Conversion of zonulae occludentes from tight to leaky strand type by introducing claudin-2 into Madin-Darby canine kidney I cells. J. Cell Biol. 2001, 153, 263–272. [Google Scholar] [CrossRef] [PubMed]
- Weber, C.R.; Raleigh, D.R.; Su, L.; Shen, L.; Sullivan, E.A.; Wang, Y.; Turner, J.R. Epithelial myosin light chain kinase activation induces mucosal interleukin-13 expression to alter tight junction ion selectivity. J. Biol. Chem. 2010, 285, 12037–12046. [Google Scholar] [CrossRef] [Green Version]
- Rosenthal, R.; Gunzel, D.; Krug, S.M.; Schulzke, J.D.; Fromm, M.; Yu, A.S. Claudin-2-mediated cation and water transport share a common pore. Acta Physiol. 2017, 219, 521–536. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosenthal, R.; Gunzel, D.; Piontek, J.; Krug, S.M.; Ayala-Torres, C.; Hempel, C.; Theune, D.; Fromm, M. Claudin-15 forms a water channel through the tight junction with distinct function compared to claudin-2. Acta Physiol. 2020, 228, e13334. [Google Scholar] [CrossRef] [PubMed]
- Rosenthal, R.; Milatz, S.; Krug, S.M.; Oelrich, B.; Schulzke, J.D.; Amasheh, S.; Gunzel, D.; Fromm, M. Claudin-2, a component of the tight junction, forms a paracellular water channel. J. Cell Sci. 2010, 123, 1913–1921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ayala-Torres, C.; Krug, S.M.; Schulzke, J.D.; Rosenthal, R.; Fromm, M. Tricellulin effect on paracellular water transport. Int. J. Mol. Sci. 2019, 20, 5700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krug, S.M.; Amasheh, S.; Richter, J.F.; Milatz, S.; Günzel, D.; Westphal, J.K.; Huber, O.; Schulzke, J.D.; Fromm, M. Tricellulin forms a barrier to macromolecules in tricellular tight junctions without affecting ion permeability. Mol. Biol. Cell 2009, 20, 3713–3724. [Google Scholar] [CrossRef] [Green Version]
- Staehelin, L.A. Further observations on the fine structure of freeze-cleaved tight junctions. J. Cell Sci. 1973, 13, 763–786. [Google Scholar] [CrossRef]
Solute | Mw (Daltons) | ρ (g/cm3) | D (cm2/s × 10−5) at 37 °C | re (nm) | r0 (nm) | r (nm) |
---|---|---|---|---|---|---|
Formamide (1-14C) | 45.04 | 1.133 | 2.20 (a) | 0.14 (h) | 0.25 (j) | 0.19 (k) |
Acetamide (1-14C) | 59.07 | 1.160 | 1.75 (a) | 0.17 (h) | 0.27 (j) | 0.22 (k) |
Ethylene glycol (1,2-14C) | 62.1 | 1.113 | 1.59 (b) | 0.19 (h) | 0.28 (j) | 0.23 (k) |
Glycine (1-14C) | 75.1 | 1.161 | 1.38 (c) | 0.22 (h) | 0.29 (j) | 0.25 (k) |
D-Arabinose (1-14C) | 150.1 | 1.625 | 1.06 (d) | 0.29 (h) | 0.33 (j) | 0.31 (k) |
D-Mannitol (1-14C) | 182.2 | 1.520 | 0.91 (e) | 0.35 (h) | 0.36 (j) | 0.36 (k) |
Sucrose (14C(U)) | 342.3 | 1.587 | 0.72 (d) | 0.43 (h) | 0.44 (j) | 0.44 (k) |
5-Carboxyfluorescein | 376.3 | - | 0.64 (f) | 0.49 (h) | - | 0.49 |
Sulforhodamine B | 558.7 | - | 0.46 (f) | 0.68 (h) | - | 0.68 |
FITC-4 kDa dextran | ~4457 | - | 0.157 (g) | 1.61 (i) | - | 1.61 |
FITC-10 kDa dextran | ~9479 | - | 0.106 (g) | 2.29 (i) | - | 2.29 |
RAECM-I | RAECM-II | ||
---|---|---|---|
Papp (cm/s) × 10−5 | δ (cm) | Papp (cm/s) × 10−5 | δ (cm) |
6.51 ± 0.67 | 0.184 ± 0.017 | 6.09 ± 1.03 | 0.199 ± 0.036 |
(a) | ||||||||||||
Solutes | Papp (cm/s) × 10−7 | |||||||||||
RAECM-I | RAECM-II | |||||||||||
Untreated | EGTA Treated | Untreated | EGTA Treated | |||||||||
Mean | SD | n | Mean | SD | n | Mean | SD | n | Mean | SD | n | |
Formamide | 55.039 | 4.094 | 6 | 92.761 | 12.368 | 3 | 68.455 | 11.572 | 8 | 337.655 | 218.957 | 6 |
Acetamide | 91.555 | 12.191 | 8 | 110.919 | 5.068 | 6 | 105.353 | 11.416 | 9 | 387.064 | 92.762 | 3 |
Ethylene glycol | 58.673 | 4.131 | 9 | 74.994 | 29.331 | 6 | 74.961 | 7.031 | 9 | 153.386 | 32.461 | 6 |
Glycine | 4.011 | 0.269 | 7 | 24.168 | 2.581 | 4 | 7.184 | 0.920 | 8 | 358.107 | 79.375 | 2 |
Arabinose | 2.641 | 1.012 | 9 | 15.634 | 4.113 | 6 | 1.322 | 0.398 | 9 | 95.249 | 50.396 | 6 |
Mannitol | 2.086 | 0.256 | 6 | 23.468 | 2.542 | 6 | 2.297 | 0.475 | 9 | 85.370 | 17.206 | 5 |
Sucrose | 0.869 | 0.141 | 6 | 11.156 | 2.341 | 5 | 0.676 | 0.261 | 9 | 37.870 | 2.705 | 3 |
5-Carboxyfluorescein | 0.644 | 0.222 | 8 | 6.120 | 0.361 | 3 | 0.556 | 0.196 | 6 | 37.754 | 4.499 | 5 |
Sulforhodamine B | 0.466 | 0.083 | 6 | 6.088 | 0.447 | 3 | 0.453 | 0.200 | 6 | 37.672 | 9.336 | 5 |
FITC-4 kDa dextran | 0.180 | 0.067 | 9 | 2.541 | 0.112 | 3 | 0.120 | 0.019 | 6 | 9.228 | 1.707 | 3 |
FITC-10 kDa dextran | 0.057 | 0.020 | 8 | 1.142 | 0.130 | 3 | 0.026 | 0.005 | 9 | 10.183 | 1.709 | 3 |
(b) | ||||||||||||
Source of Variation | % of Total Variation | p Value | ||||||||||
different solutes | 41.250 | <0.0001 | ||||||||||
wo vs. w EGTA | 13.190 | <0.0001 | ||||||||||
RAECM-I vs. RAECM-II | 9.550 | <0.0001 | ||||||||||
different solutes × wo vs. w EGTA | 10.820 | <0.0001 | ||||||||||
different solutes × RAECM-I vs. RAECM-II | 9.542 | <0.0001 | ||||||||||
wo vs. w EGTA × RAECM-I vs. RAECM-II | 8.193 | <0.0001 | ||||||||||
different solutes × wo vs. w EGTA × RAECM-I vs. RAECM-II | 8.303 | <0.0001 | ||||||||||
(c) | ||||||||||||
ANOVA Table | SS (Type III) | DF | MS | F (DFn, DFd) | p Value | |||||||
different solutes | 7.52 × 10−9 | 10 | 7.52 × 10−10 | F (10, 221) = 56.96 | p < 0.0001 | |||||||
wo vs. w EGTA | 2.41 × 10−9 | 1 | 2.41 × 10−9 | F (1, 221) = 182.20 | p < 0.0001 | |||||||
RAECM-I vs. RAECM-II | 1.74 × 10−9 | 1 | 1.74 × 10−9 | F (1, 221) = 131.90 | p < 0.0001 | |||||||
different solutes × wo vs. w EGTA | 1.97 × 10−9 | 10 | 1.97 × 10−9 | F (10, 221) = 14.94 | p < 0.0001 | |||||||
different solutes × RAECM-I vs. RAECM-II | 1.74 × 10−9 | 10 | 1.74 × 10−10 | F (10, 221) = 13.18 | p < 0.0001 | |||||||
wo vs. w EGTA × RAECM-I vs. RAECM-II | 1.49 × 10−9 | 1 | 1.49 × 10−9 | F (1, 221) = 113.10 | p < 0.0001 | |||||||
different solutes × wo vs. w EGTA × RAECM-I vs. RAECM-II | 1.51 × 10−9 | 10 | 1.51 × 10−10 | F (10, 221) = 11.47 | p < 0.0001 | |||||||
Residual | 2.92 × 10−9 | 221 | 1.32 × 10−11 |
RAECM-I | Estimated Pore Radius (nm) | Standard Error (%) | Estimated Number of Pores | Standard Error (%) | |
---|---|---|---|---|---|
without EGTA | Small pores | 0.32 | 1.7 | 9.15 × 1011 | 20.6 |
Cf. Reference solute radius = 0.35 nm | Large pores | 11.56 | 16.7 | 1.88 × 105 | 41.9 |
with EGTA | Small pores | 0.59 | 30.3 | 1.14 × 1010 | 148.2 |
Cf. Reference solute radius = 0.30 nm | Large pores | 18.3 | 33.2 | 8.92 × 105 | 72.9 |
RAECM-I | Pore Area (cm2) | % of Total Pore Area | Fold Change in Pore Area | |||
---|---|---|---|---|---|---|
Small | Large | Small | Large | Small | Large | |
without EGTA | 3.03 × 10−3 | 7.90 × 10−7 | 99.97 | 0.03 | 1.0 | 1.0 |
with EGTA | 1.23 × 10−4 | 9.38 × 10−6 | 92.91 | 7.09 | 0.9 | 271.9 |
RAECM-II | Estimated Pore Radius (nm) | Standard Error (%) | Estimated Number of pores | Standard Error (%) | |
---|---|---|---|---|---|
without EGTA | Small pores | 0.41 | 4.0 | 1.07 × 1011 | 34.0 |
Cf. Reference solute radius = 0.40 nm | Large pores | 9.88 | 14.4 | 1.45 × 105 | 38.2 |
with EGTA | Small pores | 0.78 | 25.1 | 7.85 × 1010 | 94.9 |
Cf. Reference solute radius = 0.45 nm | Large pores | 42.89 | 123.6 | 5.43 × 106 | 261.0 |
RAECM-II | Pore Area (cm2) | % of Total Pore Area | Fold Change in Pore Area | |||
---|---|---|---|---|---|---|
Small | Large | Small | Large | Small | Large | |
without EGTA | 5.588 × 10−4 | 4.445 × 10−7 | 99.92 | 0.08 | 1.0 | 1.0 |
with EGTA | 1.500 × 10−3 | 3.135 × 10−4 | 82.71 | 17.29 | 0.8 | 217.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, Y.H.; Kim, K.-J.; D’Argenio, D.Z.; Crandall, E.D. Characteristics of Passive Solute Transport across Primary Rat Alveolar Epithelial Cell Monolayers. Membranes 2021, 11, 331. https://doi.org/10.3390/membranes11050331
Kim YH, Kim K-J, D’Argenio DZ, Crandall ED. Characteristics of Passive Solute Transport across Primary Rat Alveolar Epithelial Cell Monolayers. Membranes. 2021; 11(5):331. https://doi.org/10.3390/membranes11050331
Chicago/Turabian StyleKim, Yong Ho, Kwang-Jin Kim, David Z. D’Argenio, and Edward D. Crandall. 2021. "Characteristics of Passive Solute Transport across Primary Rat Alveolar Epithelial Cell Monolayers" Membranes 11, no. 5: 331. https://doi.org/10.3390/membranes11050331
APA StyleKim, Y. H., Kim, K. -J., D’Argenio, D. Z., & Crandall, E. D. (2021). Characteristics of Passive Solute Transport across Primary Rat Alveolar Epithelial Cell Monolayers. Membranes, 11(5), 331. https://doi.org/10.3390/membranes11050331