Advances about the Roles of Membranes in Cotton Fiber Development
Abstract
:1. Introduction
2. The Functions of Membrane Lipids in Cotton Fiber Development
3. The Role of Membrane Channels in Cotton Fiber Development
4. The Regulation Mechanism of Membrane Proteins in Cotton Fiber Development
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
SCW | secondary cell wall |
PM | plasma membrane |
PCD | programmed cell death |
PDs | Plasmodesmata |
CESA | cellulose synthase |
PI | phosphatidylinositol |
FAD | fatty acid desaturase |
PIS | phosphatidylinositol synthase |
PIK | phosphatidylinositol kinase |
LCB | long chain base |
LCFA | long chain fatty acid |
FB1 | fumonisin B1 |
Sph | sphinganine |
CS | ceramide synthase |
DEP | differentially expressed protein |
VLCFAs | very-long-chain fatty acids |
ACE | 2-chloro-N-[ethoxymethyl]N-[2-ethyl-6-methyl-phenyl]-acetamide |
ACO | 1-aminocyclopropane-1-carboxylic acid oxidase |
BR | brassinosteroid |
DPA | days past anthesis |
AQP | aquaporin |
PPase | pyrophosphatase |
PIP | plasma membrane intrinsic protein |
TIP | tonoplast intrinsic protein |
NIP | NOD26-like intrinsic protein |
SIP | small basic intrinsic protein |
XIP | X intrinsic protein |
ABC | ATP-binding cassette |
VIN | vacuolar invertase |
SuSy | sucrose synthase |
GA | gibberellin acid |
CSC | cellulose synthase complex |
Ces | cellulose synthase |
Csl | cellulose synthase-like |
NIL | near-isogenic line |
TMs | transmembrane helices |
GT | glycosyltransferase |
RLK | receptor-like kinase |
RLP | receptor-like protein |
DEG | differentially expressed gene |
WAK | wall-associated kinase |
FLA | fasciclin-like arabinogalactan protein |
GPI | glycosylphosphatidylinositol |
PLD | Phospholipase D |
ROS | reactive oxygen species |
NOXs | NADPH oxidases |
Rbohs | respiratory burst oxidase homologues |
References
- Huang, G.; Huang, J.-Q.; Chen, X.-Y.; Zhu, Y.-X. Recent Advances and Future Perspectives in Cotton Research. Annu. Rev. Plant Biol. 2021, 72, 437–462. [Google Scholar] [CrossRef]
- Qin, Y.-M.; Zhu, Y.-X. How cotton fibers elongate: a tale of linear cell-growth mode. Curr. Opin. Plant Biol. 2011, 14, 106–111. [Google Scholar] [CrossRef]
- Kim, H.J.; Triplett, B.A. Cotton Fiber Growth in Planta and in Vitro. Models for Plant Cell Elongation and Cell Wall Biogenesis. Plant Physiol. 2001, 127, 1361–1366. [Google Scholar] [CrossRef]
- Haigler, C.H.; Ebetancur, L.; Stiff, M.R.; Tuttle, J.R. Cotton fiber: a powerful single-cell model for cell wall and cellulose research. Front. Plant Sci. 2012, 3, 104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malinsky, J.; Opekarová, M.; Grossmann, G.; Tanner, W. Membrane Microdomains, Rafts, and Detergent-Resistant Membranes in Plants and Fungi. Annu. Rev. Plant Biol. 2013, 64, 501–529. [Google Scholar] [CrossRef] [Green Version]
- Breslow, D.; Weissman, J.S. Membranes in Balance: Mechanisms of Sphingolipid Homeostasis. Mol. Cell 2010, 40, 267–279. [Google Scholar] [CrossRef] [Green Version]
- Orešič, M. Informatics and computational strategies for the study of lipids. Biochim. Biophys. Acta (BBA) Mol. Cell Biol. Lipids 2011, 1811, 991–999. [Google Scholar] [CrossRef] [PubMed]
- Shevchenko, A.; Simons, K. Lipidomics: coming to grips with lipid diversity. Nat. Rev. Mol. Cell Biol. 2010, 11, 593–598. [Google Scholar] [CrossRef] [PubMed]
- Cacas, J.-L.; Buré, C.; Grosjean, K.; Gerbeau-Pissot, P.; Lherminier, J.; Rombouts, Y.; Maes, E.; Bossard, C.; Gronnier, J.; Furt, F.; et al. Revisiting Plant Plasma Membrane Lipids in Tobacco: A Focus on Sphingolipids. Plant Physiol. 2016, 170, 367–384. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Bielawski, J.; Mu, J.; Dong, H.; Teng, C.; Zhang, J.; Yang, X.; Tomishige, N.; Hanada, K.; Hannun, Y.A.; et al. Erratum: Involvement of sphingoid bases in mediating reactive oxygen intermediate production and programmed cell death in Arabidopsis. Cell Res. 2008, 18, 324. [Google Scholar] [CrossRef] [Green Version]
- Zienkiewicz, A.; Gömann, J.; König, S.; Herrfurth, C.; Liu, Y.; Meldau, D.; Feussner, I. Disruption of Arabidopsis neutral ceramidases 1 and 2 results in specific sphingolipid imbalances triggering different phytohormone-dependent plant cell death programmes. New Phytol. 2019, 226, 170–188. [Google Scholar] [CrossRef]
- Pantoja, O. Recent Advances in the Physiology of Ion Channels in Plants. Annu. Rev. Plant Biol. 2021, 72, 463–495. [Google Scholar] [CrossRef]
- Tilsner, J.; Nicolas, W.; Rosado, A.; Bayer, E.M. Staying Tight: Plasmodesmal Membrane Contact Sites and the Control of Cell-to-Cell Connectivity in Plants. Annu. Rev. Plant Biol. 2016, 67, 337–364. [Google Scholar] [CrossRef]
- Tang, D.; Wang, G.; Zhou, J.-M. Receptor Kinases in Plant-Pathogen Interactions: More Than Pattern Recognition. Plant Cell 2017, 29, 618–637. [Google Scholar] [CrossRef] [Green Version]
- Manhães, A.M.E.D.A.; Ortiz-Morea, F.A.; He, P.; Shan, L. Plant plasma membrane-resident receptors: Surveillance for infections and coordination for growth and development. J. Integr. Plant Biol. 2021, 63, 79–101. [Google Scholar] [CrossRef]
- Ofoe, R. Signal transduction by plant heterotrimeric G-protein. Plant Biol. 2021, 23, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, E. The Small GTPase Superfamily in Plants: A Conserved Regulatory Module with Novel Functions. Annu. Rev. Plant Biol. 2020, 71, 247–272. [Google Scholar] [CrossRef] [PubMed]
- Anderson, C.T.; Kieber, J.J. Dynamic Construction, Perception, and Remodeling of Plant Cell Walls. Annu. Rev. Plant Biol. 2020, 71, 39–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoffmann, N.; King, S.; Samuels, A.L.; McFarlane, H.E. Subcellular coordination of plant cell wall synthesis. Dev. Cell 2021, 56, 933–948. [Google Scholar] [CrossRef]
- Lim, G.-H.; Singhal, R.; Kachroo, A.; Kachroo, P. Fatty acid– and lipid-mediated signaling in plant defense. Annu. Rev. Phytopathol. 2017, 55, 505–536. [Google Scholar] [CrossRef]
- Gou, J.-Y.; Wang, L.-J.; Chen, S.-P.; Hu, W.-L.; Chen, X.-Y. Gene expression and metabolite profiles of cotton fiber during cell elongation and secondary cell wall synthesis. Cell Res. 2007, 17, 422–434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kargiotidou, A.; Deli, D.; Galanopoulou, D.; Tsaftaris, A.; Farmaki, T. Low temperature and light regulate delta 12 fatty acid desaturases (FAD2) at a transcriptional level in cotton (Gossypium hirsutum). J. Exp. Bot. 2008, 59, 2043–2056. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, G.-J.; Xiao, G.-H.; Liu, N.-J.; Liu, D.; Chen, P.-S.; Qin, Y.-M.; Zhu, Y.-X. Targeted Lipidomics Studies Reveal that Linolenic Acid Promotes Cotton Fiber Elongation by Activating Phosphatidylinositol and Phosphatidylinositol Monophosphate Biosynthesis. Mol. Plant 2015, 8, 911–921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- E Markham, J.; Lynch, D.V.; Napier, J.; Dunn, T.M.; Cahoon, E.B. Plant sphingolipids: function follows form. Curr. Opin. Plant Biol. 2013, 16, 350–357. [Google Scholar] [CrossRef]
- Luttgeharm, K.D.; Kimberlin, A.N.; Cahoon, E.B. Plant Sphingolipid Metabolism and Function. Prokaryotic Cytoskelet. 2016, 86, 249–286. [Google Scholar] [CrossRef]
- Luttgeharm, K.D.; Cahoon, E.B.; Markham, J.E. Substrate specificity, kinetic properties and inhibition by fumonisin B1 of ceramide synthase isoforms from Arabidopsis. Biochem. J. 2016, 473, 593–603. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Liu, C.; Liu, Y.; Luo, M. Fumonisin B1-Induced Changes in Cotton Fiber Elongation Revealed by Sphingolipidomics and Proteomics. Biomolecules 2020, 10, 1258. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.-M.; Hu, C.-Y.; Pang, Y.; Kastaniotis, A.; Hiltunen, J.K.; Zhu, Y.-X. Saturated Very-Long-Chain Fatty Acids Promote Cotton Fiber and Arabidopsis Cell Elongation by Activating Ethylene Biosynthesis. Plant Cell 2007, 19, 3692–3704. [Google Scholar] [CrossRef] [Green Version]
- Benveniste, P. Biosynthesis and Accumulation of Sterols. Annu. Rev. Plant Biol. 2004, 55, 429–457. [Google Scholar] [CrossRef]
- Luo, M.; Xiao, Y.; Li, X.; Lu, X.; Deng, W.; Li, D.; Hou, L.; Hu, M.; Li, Y.; Pei, Y. GhDET2, a steroid 5α-reductase, plays an important role in cotton fiber cell initiation and elongation. Plant J. 2007, 51, 419–430. [Google Scholar] [CrossRef]
- Luo, M.; Tan, K.; Xiao, Z.; Hu, M.; Liao, P.; Chen, K. Cloning and expression of two sterol C-24 methyltransferase genes from upland cotton (Gossypium hirsuturm L.). J. Genet. Genom. 2008, 35, 357–363. [Google Scholar] [CrossRef]
- Deng, S.; Wei, T.; Tan, K.; Hu, M.; Li, F.; Zhai, Y.; Ye, S.; Xiao, Y.; Hou, L.; Pei, Y.; et al. Phytosterol content and the campesterol:sitosterol ratio influence cotton fiber development: role of phytosterols in cell elongation. Sci. China Life Sci. 2016, 59, 183–193. [Google Scholar] [CrossRef] [Green Version]
- Niu, Q.; Tan, K.; Zang, Z.; Xiao, Z.; Chen, K.; Hu, M.; Luo, M. Modification of phytosterol composition influences cotton fiber cell elongation and secondary cell wall deposition. BMC Plant Biol. 2019, 19, 208. [Google Scholar] [CrossRef] [PubMed]
- Schrick, K.; DeBolt, S.; Bulone, V. Deciphering the Molecular Functions of Sterols in Cellulose Biosynthesis. Front. Plant Sci. 2012, 3, 84. [Google Scholar] [CrossRef] [Green Version]
- Xu, F.; Suo, X.; Li, F.; Bao, C.; He, S.; Huang, L.; Luo, M. Membrane lipid raft organization during cotton fiber development. J. Cotton Res. 2020, 3, 1–9. [Google Scholar] [CrossRef]
- Smart, L.B.; Vojdani, F.; Maeshima, M.; Wilkins, T.A. Genes Involved in Osmoregulation during Turgor-Driven Cell Expansion of Developing Cotton Fibers Are Differentially Regulated1. Plant Physiol. 1998, 116, 1539–1549. [Google Scholar] [CrossRef] [Green Version]
- Ruan, Y.-L.; Llewellyn, D.J.; Furbank, R.T. The Control of Single-Celled Cotton Fiber Elongation by Developmentally Reversible Gating of Plasmodesmata and Coordinated Expression of Sucrose and K+ Transporters and Expansin. Plant Cell 2001, 13, 47–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, G.; Chen, T.; Zhang, Z.; Li, B.; Tian, S. Roles of Aquaporins in Plant-Pathogen Interaction. Plants 2020, 9, 1134. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, Z.; Liu, F.; Sun, L.; Hao, F. Versatile Roles of Aquaporins in Plant Growth and Development. Int. J. Mol. Sci. 2020, 21, 9485. [Google Scholar] [CrossRef]
- Park, W.; E Scheffler, B.; Bauer, P.J.; Campbell, B.T. Identification of the family of aquaporin genes and their expression in upland cotton (Gossypium hirsutum L.). BMC Plant Biol. 2010, 10, 142. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.; Tu, L.; Wang, L.; Li, Y.; Zhu, L.; Zhang, X. Characterization and expression of plasma and tonoplast membrane aquaporins in elongating cotton fibers. Plant Cell Rep. 2008, 27, 1385–1394. [Google Scholar] [CrossRef]
- Li, D.-D.; Ruan, X.-M.; Zhang, J.; Wu, Y.-J.; Wang, X.-L.; Li, X.-B. Cotton plasma membrane intrinsic protein 2s (PIP2s) selectively interact to regulate their water channel activities and are required for fibre development. New Phytol. 2013, 199, 695–707. [Google Scholar] [CrossRef]
- Lefèvre, F.; Boutry, M. Towards identification of the substrates of ATP-binding cassette transporters. Plant Physiol. 2018, 178, 18–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, Y.-Q.; Xu, K.-X.; Luo, B.; Wang, J.-W.; Chen, X.-Y. An ATP-Binding Cassette Transporter GhWBC1 from Elongating Cotton Fibers. Plant Physiol. 2003, 133, 580–588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruan, Y.-L.; Jin, Y.; Yang, Y.-J.; Li, G.-J.; Boyer, J.S. Sugar Input, Metabolism, and Signaling Mediated by Invertase: Roles in Development, Yield Potential, and Response to Drought and Heat. Mol. Plant 2010, 3, 942–955. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Li, X.-R.; Lian, H.; Ni, D.-A.; He, Y.-K.; Chen, X.; Ruan, Y.-L. Evidence That High Activity of Vacuolar Invertase Is Required for Cotton Fiber and Arabidopsis Root Elongation through Osmotic Dependent and Independent Pathways, respectively. Plant Physiol. 2010, 154, 744–756. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Ruan, Y.-L. Unraveling mechanisms of cell expansion linking solute transport, metabolism, plasmodesmtal gating and cell wall dynamics. Plant Signal. Behav. 2010, 5, 1561–1564. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Cook, A.; Patrick, J.W.; Chen, X.; Ruan, Y.-L. Silencing the vacuolar invertase geneGhVIN1blocks cotton fiber initiation from the ovule epidermis, probably by suppressing a cohort of regulatory genes via sugar signaling. Plant J. 2014, 78, 686–696. [Google Scholar] [CrossRef]
- Oelmüller, R. Threat at One End of the Plant: What Travels to Inform the Other Parts? Int. J. Mol. Sci. 2021, 22, 3152. [Google Scholar] [CrossRef]
- Ruan, Y.-L.; Xu, S.-M.; White, R.; Furbank, R. Genotypic and Developmental Evidence for the Role of Plasmodesmatal Regulation in Cotton Fiber Elongation Mediated by Callose Turnover. Plant Physiol. 2004, 136, 4104–4113. [Google Scholar] [CrossRef] [Green Version]
- Ruan, Y.-L.; Llewellyn, D.J.; Furbank, R.T.; Chourey, P.S. The delayed initiation and slow elongation of fuzz-like short fibre cells in relation to altered patterns of sucrose synthase expression and plasmodesmata gating in a lintless mutant of cotton. J. Exp. Bot. 2005, 56, 977–984. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Z.; Ruan, Y.-L.; Zhou, N.; Wang, F.; Guan, X.; Fang, L.; Shang, X.; Guo, W.; Zhu, S.; Zhang, T. Suppressing a Putative Sterol Carrier Gene Reduces Plasmodesmal Permeability and Activates Sucrose Transporter Genes during Cotton Fiber Elongation. Plant Cell 2017, 29, 2027–2046. [Google Scholar] [CrossRef] [Green Version]
- Amor, Y.; Haigler, C.; Johnson, S.; Wainscott, M.; Delmer, D.P. A membrane-associated form of sucrose synthase and its potential role in synthesis of cellulose and callose in plants. Proc. Natl. Acad. Sci. USA 1995, 92, 9353–9357. [Google Scholar] [CrossRef] [Green Version]
- Salnikov, V.V.; Grimson, M.J.; Seagull, R.W.; Haigler, C. Localization of sucrose synthase and callose in freeze-substituted secondary-wall-stage cotton fibers. Protoplasma 2003, 221, 175–184. [Google Scholar] [CrossRef]
- Zou, C.; Lu, C.; Shang, H.; Jing, X.; Cheng, H.; Zhang, Y.; Song, G. Genome-Wide Analysis of the Sus Gene Family in Cotton. J. Integr. Plant Biol. 2013, 55, 643–653. [Google Scholar] [CrossRef]
- Brill, E.; van Thournout, M.; White, R.G.; Llewellyn, D.; Campbell, P.M.; Engelen, S.; Ruan, Y.-L.; Arioli, T.; Furbank, R.T. A Novel Isoform of Sucrose Synthase Is Targeted to the Cell Wall during Secondary Cell Wall Synthesis in Cotton Fiber. Plant Physiol. 2011, 157, 40–54. [Google Scholar] [CrossRef] [Green Version]
- Ruan, Y.-L.; Llewellyn, D.J.; Furbank, R. Suppression of Sucrose Synthase Gene Expression Represses Cotton Fiber Cell Initiation, Elongation, and Seed Development. Plant Cell 2003, 15, 952–964. [Google Scholar] [CrossRef] [Green Version]
- Bai, W.-Q.; Xiao, Y.-H.; Zhao, J.; Song, S.-Q.; Hu, L.; Zeng, J.-Y.; Li, X.-B.; Hou, L.; Luo, M.; Li, D.-M.; et al. Gibberellin Overproduction Promotes Sucrose Synthase Expression and Secondary Cell Wall Deposition in Cotton Fibers. PLoS ONE 2014, 9, e96537. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.; Guo, W.; Zhu, H.; Ruan, Y.-L.; Zhang, T. Overexpression of GhSusA1 increases plant biomass and improves cotton fiber yield and quality. Plant Biotechnol. J. 2011, 10, 301–312. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.-M.; Brill, E.; Llewellyn, D.J.; Furbank, R.; Ruan, Y.-L. Overexpression of a Potato Sucrose Synthase Gene in Cotton Accelerates Leaf Expansion, Reduces Seed Abortion, and Enhances Fiber Production. Mol. Plant 2012, 5, 430–441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmed, M.; Iqbal, A.; Latif, A.; Din, S.U.; Sarwar, M.B.; Wang, X.; Rao, A.Q.; Husnain, T.; Shahid, A.A. Overexpression of a Sucrose Synthase Gene Indirectly Improves Cotton Fiber Quality Through Sucrose Cleavage. Front. Plant Sci. 2020, 11, 476251. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.; Cheek, H.D.; Haigler, C.H. A synthetic auxin (NAA) suppresses secondary wall cellulose synthesis and enhances elongation in cultured cotton fiber. Plant Cell Rep. 2009, 28, 1023–1032. [Google Scholar] [CrossRef]
- Somerville, C.; Coburn, P.S.; Pillar, C.M.; Jett, B.D.; Haas, W.; Gilmore, M.S. Toward a Systems Approach to Understanding Plant Cell Walls. Science 2004, 306, 2206–2211. [Google Scholar] [CrossRef] [Green Version]
- Zou, X.; Zhen, Z.; Ge, Q.; Fan, S.; Liu, A.; Gong, W.; Li, J.; Gong, J.; Shi, Y.; Wang, Y.; et al. Genome-wide identification and analysis of the evolution and expression patterns of the cellulose synthase gene superfamily in Gossypium species. Gene 2018, 646, 28–38. [Google Scholar] [CrossRef]
- Zhang, S.; Jiang, Z.; Chen, J.; Han, Z.; Chi, J.; Li, X.; Yu, J.; Xing, C.; Song, M.; Wu, J.; et al. The cellulose synthase (CesA) gene family in four Gossypium species: phylogenetics, sequence variation and gene expression in relation to fiber quality in Upland cotton. Mol. Genet. Genom. 2021, 296, 355–368. [Google Scholar] [CrossRef]
- Kim, H.J.; Murai, N.; Fang, D.; Triplett, B.A. Functional analysis of Gossypium hirsutum cellulose synthase catalytic subunit 4 promoter in transgenic Arabidopsis and cotton tissues. Plant Sci. 2011, 180, 323–332. [Google Scholar] [CrossRef]
- Kim, H.J.; Triplett, B.A.; Zhang, H.-B.; Lee, M.-K.; Hinchliffe, D.J.; Li, P.; Fang, D. Cloning and characterization of homeologous cellulose synthase catalytic subunit 2 genes from allotetraploid cotton (Gossypium hirsutum L.). Gene 2012, 494, 181–189. [Google Scholar] [CrossRef] [PubMed]
- Li, A.; Xia, T.; Xu, W.; Chen, T.; Li, X.; Fan, J.; Wang, R.; Feng, S.; Wang, Y.; Wang, B.; et al. An integrative analysis of four CESA isoforms specific for fiber cellulose production between Gossypium hirsutum and Gossypium barbadense. Planta 2013, 237, 1585–1597. [Google Scholar] [CrossRef]
- Hu, H.; Zhang, R.; Tang, Y.; Peng, C.; Wu, L.; Feng, S.; Chen, P.; Wang, Y.; Du, X.; Peng, L. Cotton CSLD3 restores cell elongation and cell wall integrity mainly by enhancing primary cellulose production in the Arabidopsis cesa6 mutant. Plant Mol. Biol. 2019, 101, 389–401. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Xue, Y.; Guan, Z.; Zhou, C.; Nie, Y.; Men, S.; Wang, Q.; Shen, C.; Zhang, D.; Jin, S.; et al. Structural insights into homotrimeric assembly of cellulose synthase CesA7 from Gossypium hirsutum. Plant Biotechnol. J. 2021. [Google Scholar] [CrossRef]
- Andrawis, A.; Solomon, M.; Delmer, D.P. Cotton fiber annexins: a potential role in the regulation of callose synthase. Plant J. 1993, 3, 763–772. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, J.; Zhang, L.; Zuo, K. A Cotton Annexin Protein AnxGb6 Regulates Fiber Elongation through Its Interaction with Actin 1. PLoS ONE 2013, 8, e66160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, B.; Li, D.-D.; Zhang, J.; Xia, H.; Wang, X.-L.; Li, Y.; Li, X.-B. Cotton Ann G h3 Encoding an Annexin Protein is Preferentially Expressed in Fibers and Promotes Initiation and Elongation of Leaf Trichomes in Transgenic Arabidopsis. J. Integr. Plant Biol. 2013, 55, 902–916. [Google Scholar] [CrossRef]
- Huang, Y.; Deng, T.; Zuo, K. Cotton annexin proteins participate in the establishment of fiber cell elongation scaffold. Plant Signal. Behav. 2013, 8, e25601. [Google Scholar] [CrossRef] [Green Version]
- Liang, W.; Fang, L.; Xiang, D.; Hu, Y.; Feng, H.; Chang, L.; Zhang, T. Transcriptome Analysis of Short Fiber Mutant Ligon lintless-1 (Li1) Reveals Critical Genes and Key Pathways in Cotton Fiber Elongation and Leaf Development. PLoS ONE 2015, 10, e0143503. [Google Scholar] [CrossRef] [Green Version]
- Islam, S.; Zeng, L.; Thyssen, G.N.; Delhom, C.D.; Kim, H.J.; Li, P.; Fang, D.D. Mapping by sequencing in cotton (Gossypium hirsutum) line MD52ne identified candidate genes for fiber strength and its related quality attributes. Theor. Appl. Genet. 2016, 129, 1071–1086. [Google Scholar] [CrossRef]
- Sun, R.; Wang, S.; Ma, D.; Liu, C. Genome-Wide Analysis of LRR-RLK Gene Family in Four Gossypium Species and Expression Analysis during Cotton Development and Stress Responses. Genes 2018, 9, 592. [Google Scholar] [CrossRef] [Green Version]
- Dou, L.; Li, Z.; Shen, Q.; Shi, H.; Li, H.; Wang, W.; Zou, C.; Shang, H.; Li, H.; Xiao, G. Genome-wide characterization of the WAK gene family and expression analysis under plant hormone treatment in cotton. BMC Genom. 2021, 22, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.-L.; Sun, J.; Xia, G.-X. Cloning and characterization of a gene for an LRR receptor-like protein kinase associated with cotton fiber development. Mol. Genet. Genom. 2005, 273, 217–224. [Google Scholar] [CrossRef] [PubMed]
- Seifert, G.J.; Roberts, K. The Biology of Arabinogalactan Proteins. Annu. Rev. Plant Biol. 2007, 58, 137–161. [Google Scholar] [CrossRef]
- Huang, G.-Q.; Xu, W.-L.; Gong, S.-Y.; Li, B.; Wang, X.-L.; Xu, D.; Li, X.-B. Characterization of 19 novel cottonFLAgenes and their expression profiling in fiber development and in response to phytohormones and salt stress. Physiol. Plant. 2008, 134, 348–359. [Google Scholar] [CrossRef] [PubMed]
- Deng, T.; Yao, H.; Wang, J.; Wang, J.; Xue, H.; Zuo, K. GhLTPG1, a cotton GPI-anchored lipid transfer protein, regulates the transport of phosphatidylinositol monophosphates and cotton fiber elongation. Sci. Rep. 2016, 6, 26829. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Canonne, J.; Froidure-Nicolas, S.; Rivas, S. Phospholipases in action during plant defense signaling. Plant Signal. Behav. 2011, 6, 13–18. [Google Scholar] [CrossRef] [Green Version]
- Tang, K.; Liu, J.-Y. Molecular characterization of GhPLDα1 and its relationship with secondary cell wall thickening in cotton fibers. Acta Biochim. Biophys. Sin. 2016, 49, 33–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allen, R.D. Opportunities for Engineering Abiotic Stress Tolerance in Cotton Plants. In Biotechnology in Agriculture and Forestry; Springer: Berlin/Heidelberg, Germany, 2009; Volume 65, pp. 127–160. [Google Scholar]
- Zhang, G.; Yue, C.; Lu, T.; Sun, L.; Hao, F. Genome-wide identification and expression analysis of NADPH oxidase genes in response to ABA and abiotic stresses, and in fibre formation in Gossypium. Peer J 2020, 8, e8404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, Q.-S.; Wang, H.-Y.; Gao, P.; Wang, G.-Y.; Xia, G.-X. Cloning and characterization of a calcium dependent protein kinase gene associated with cotton fiber development. Plant Cell Rep. 2008, 27, 1869–1875. [Google Scholar] [CrossRef] [PubMed]
Category | Gene/Protein/Reagent | Expression Profile | Function | References |
---|---|---|---|---|
PM lipids | phosphatidylinositol | promote fiber growth | [23] | |
Δ15GhFAD, GhPIS, and GhPIK | preferentially in fiber | suppression result in significantly short fiber | [23] | |
FB1 | severely block fiber elongation | [27] | ||
VLCFAs | act upstream of ethylene to promote fiber cell elongation | [28] | ||
GhDET2 | the initiation stage and rapid elongation stage of fiber | promote fiber number and length | [30] | |
GhSMT2-1 | the rapid elongation stage of fiber | overexpression result in short and thick fiber | [31,33] | |
PM channels | proton-translocating ATPase, vacuole-ATPase, phosphoenolpyruvate carboxylase, and major intrinsic protein | the period of peak expansion of fiber | involved in turgor regulation | [36] |
PPase | constitutively expressed in fiber | |||
GhPIP1-2 and GhcTIP1 | predominantly expressed during cotton fiber elongation | supporting the rapid influx of water into vacuoles | [41] | |
cotton PIP2 groups | down-regulation lead to markedly hindered fiber elongation | [42] | ||
GhWBC1 | highly expressed in developing fiber cells | overexpression result in short siliques in Arabidopsis | [44] | |
GhVIN1 | the rapid elongation stage of fiber | promote fiber number and length | [46,47,48] | |
sucrose and K+ transporter | consistent with the transient closure of the PDs | related to the osmotic and turgor potentials of fibers | [37] | |
GhGluc1 | high in the short fiber genotypes and weak in the long fiber genotypes | related to PDs closure | [50] | |
Sus | consistent with the transient closure of the PDs | related to the short fiber cell phenotype of fls mutant | [51] | |
GhSCP2D | reduces plasmodesmal permeability and activates sucrose transporter genes | [52] | ||
PM proteins | SuSy | development-dependent expression profiles in cotton fiber | cell wall synthesis | [54,55,56,57,58] |
GhSusA1, potato SuSy | improve cotton fiber quality | [59,60,61,62] | ||
GhCesA4 | SCW synthesis stage | cellulose biosynthesis during cotton fiber development | [66] | |
GhCesA2 | [67] | |||
GhCesA1, GhCesA2, GhCesA7, and GhCesA8 | SCW biosynthesis | [68,70] | ||
GhCesA3, GhCesA5, GhCesA6, GhCesA9, and GhCesA10 | primary cell wall formation | |||
GhCSLD3 | primary cell wall synthesis | [69] | ||
AnxGb6 | elongating cotton fibers | [72] | ||
AnnGh3, AnnGh4, and AnnGh5 | preferentially expressed in rapidly elongating fibers | [73] | ||
AnxGb5/6 | stabilized scaffold for Actin1 organization | [74] | ||
WAK | highly expressed in cotton fibers and ovules | [78] | ||
GhRLK1 | SCW synthesis stage | [79] | ||
GhFLA1/2/4 | predominantly expressed in 10 DPA fibers | [81] | ||
GhFLA6/14/15/18 | accumulated at relatively high levels in cotton fibers | |||
GhLTPG1 | elongating cotton fibers and outer integument of the ovules | knockdown result in reduction in fiber length | [82] | |
GhPLDα1 | highest level in fibers at 20 DPA | related to secondary cell wall thickening | [84] | |
GhRbohs | flowers, some expressed in ovules and fibers | [86] | ||
GhCPK1 | the elongating fiber | the calcium signaling associated with fiber elongation | [87] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, F.; Chen, Q.; Huang, L.; Luo, M. Advances about the Roles of Membranes in Cotton Fiber Development. Membranes 2021, 11, 471. https://doi.org/10.3390/membranes11070471
Xu F, Chen Q, Huang L, Luo M. Advances about the Roles of Membranes in Cotton Fiber Development. Membranes. 2021; 11(7):471. https://doi.org/10.3390/membranes11070471
Chicago/Turabian StyleXu, Fan, Qian Chen, Li Huang, and Ming Luo. 2021. "Advances about the Roles of Membranes in Cotton Fiber Development" Membranes 11, no. 7: 471. https://doi.org/10.3390/membranes11070471
APA StyleXu, F., Chen, Q., Huang, L., & Luo, M. (2021). Advances about the Roles of Membranes in Cotton Fiber Development. Membranes, 11(7), 471. https://doi.org/10.3390/membranes11070471