Physical and Mechanical Properties of Hollow Fiber Membranes and Technological Parameters of the Gas Separation Process
Abstract
:1. Introduction
2. Background
- The selective layer on the inner or outer surface of the fiber;
- The initial gas mixture which is fed into or outside the fiber;
- Inner diameter = 100 microns;
- Selective layer thickness δ = 100 nm;
- Membrane material: Ultrason E6020P (PES);
- Young’s modulus for the selective layer and the porous substrate layer: , , respectively;
- Poisson’s ratio for both layers equal to 0.35 [25].
3. Results and Discussion
4. Conclusions
- the physico-chemical nature of the membrane polymer;
- physico-chemical properties (morphology, structure, permeability, selectivity) of the skin layer;
- physico-mechanical properties (Young’s modulus, elastic limit, etc.) of membrane layers;
- the porosity of the membrane support layer;
- hollow fiber dimensions—outer and inner diameters, length, and their influence on each other.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
Symbol | Description |
inner fiber diameter | |
outer fiber diameter | |
pressure inside the fiber | |
pressure outside the fiber | |
selective layer thickness | |
radial stress | |
circumferential stress | |
cylinder radius | |
displacement vector | |
integration constant | |
relative elongation (strain) | |
stress | |
Young’s modulus | |
Poisson’s ratio | |
radial strain | |
circumferential strain | |
the density of the porous material | |
density of dense matter | |
cell size | |
the thickness of the cell’s edges | |
Young’s modulus of porous material | |
Young’s modulus of dense matter |
References
- Kim, T.; Koros, W.; Husk, G.; O’Brien, K. Relationship between gas separation properties and chemical structure in a series of aromatic polyimides. J. Membr. Sci. 1988, 37, 45–62. [Google Scholar] [CrossRef]
- Bartenev, G.M.; Zelenev, Y.V. Physics and Mechanics of Polymers; Vysshaya Shkola: Moscow, Russia, 1983. (In Russian) [Google Scholar]
- Bernardo, P.; Drioli, E.; Golemme, G. Membrane gas separation: A review/state of the art. Ind. Eng. Chem. Res. 2009, 48, 4638–4663. [Google Scholar] [CrossRef]
- Clausi, D.T.; McKelvey, S.A.; Koros, W.J. Characterization of substructure resistance in asymmetric gas separation membranes. J. Membr. Sci. 1999, 160, 51–64. [Google Scholar] [CrossRef]
- Kononova, S.V.; Kuznetsov, Y.P.; Romashkova, K.A.; Kudryavtsev, V.V. Relationship between the conditions of formation and structure of asymmetric membranes based on poly-diphenyloxide amido-N-phenylphthalimide. High Mol. Compd. 2006, 9, 1647–1654. (In Russian) [Google Scholar]
- Matveev, D.N.; Vasilevsky, V.P.; Borisov, I.L.; Volkov, V.V.; Volkov, A.V. Influence of the parameters of dry-wet formation on the properties of half-fiber membranes from polysulphone. J. Appl. Chem. 2020, 4, 545–555. (In Russian) [Google Scholar]
- Yeow, M.L.; Liu, Y.T.; Li, K. Morphological study of poly(vinylidene fluoride) asymmetric membranes: Effects of the solvent, additive, and dope temperature. J. Appl. Polym. Sci. 2004, 92, 1782–1789. [Google Scholar] [CrossRef]
- Chen, X.; Kaliaguine, S.; Rodrigue, D. A comparison between several commercial polymer hollow fiber membranes for gas separation. J. Membr. Sep. Technol. 2017, 6, 1–15. [Google Scholar] [CrossRef]
- Chung, T.S.; Xu, Z.L. Asymmetric hollow fiber membranes prepared from miscible polybenzimidazole and polyetherimide blends. J. Membr. Sci. 1998, 1, 35–47. [Google Scholar] [CrossRef]
- Hwang, S.T.; Kammermeyer, K. Membrane Separation Processes; Chemistry: Moscow, Russian, 1981. (In Russian) [Google Scholar]
- Dytnersky, Y.I.; Brykov, V.P.; Kagramanov, G.G. Membrane Separation of Gases; Chemistry: Moscow, Russian, 1991. (In Russian) [Google Scholar]
- Wijmans, J.G.; Baker, R.W. The solution-diffusion model: A review. J. Membr. Sci. 1995, 107, 1–21. [Google Scholar] [CrossRef]
- Kagramanov, G.G.; Farnosova, E.N. Scientific and engineering principles of membrane gas separation systems development. Theor. Found. Chem. Eng. 2017, 51, 38–44. [Google Scholar] [CrossRef]
- Dibrov, G.; Ivanov, M.; Semyashkin, M.; Sudin, V.; Kagramanov, G. High-pressure aging of asymmetric Torlon® hollow fibers for helium separation from natural gas. Fibers 2018, 6, 83. [Google Scholar] [CrossRef] [Green Version]
- Sokolov, A.P.; Mikhailovsky, K.V.; Shchetinin, V.N.; Sapelkin, A.S.; Presnyakov, V.V. Numerical determination of effective elastic-strength characteristics of composite embedments of gas separation membrane modules. In Proceedings of the XI International Conference on Nonequilibrium Processes in Nozzles and Jets (NPNJ’2016), Alushta, Crimea, 25–31 May 2016; pp. 387–389. (In Russian). [Google Scholar]
- Elele, E.; Shen, Y.; Tang, J.; Lei, Q.; Khusid, B.; Tkacik, G.; Carbrello, C. Mechanical properties of polymeric microfiltration membranes. J. Membr. Sci. 2019, 591, 117351. [Google Scholar] [CrossRef]
- Sgreccia, E.; Chailan, J.F.; Khadhraoui, M.; Di Vona, M.L.; Knauth, P. Mechanical properties of proton-conducting sulfonated aromatic polymer membranes: Stress-strain tests and dynamic analysis. J. Power Sources 2010, 195, 7770–7775. [Google Scholar] [CrossRef] [Green Version]
- Iio, S.; Yonezu, A.; Yamamura, H.; Chen, X. Deformation modeling of polyvinylidenedifluoride (PVDF) symmetrical microfiltration hollow-fiber (HF) membrane. J. Membr. Sci. 2016, 497, 421–429. [Google Scholar] [CrossRef] [Green Version]
- Sokolov, A.P.; Pershin, A.Y.; Kozov, A.V.; Kirillov, N.D. Homogenization of multi-level multicomponent heterogeneous structures for determining the physical and mechanical characteristics of composite materials. Phys. Mesomech. 2018, 21, 90–107. [Google Scholar]
- Rabotnov, Y.N. Strength of Materials; Fizmatgiz: Moscow, Russia, 1963. (In Russian) [Google Scholar]
- Gotsev, D.V.; Perunov, N.S. Mathematical model of the stress-strain state of an elastic cylindrical body with a porous filler. Vestn. Tomsk. Gos. Univ. Mat. Mekhanika 2017, 47, 43–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tager, A.A. Physical Chemistry of Polymers; Ripol Classic: Moscow, Russia, 1978. [Google Scholar]
- Schulte, K.; Friedrich, K.; Horstenkamp, G. Temperature-dependent mechanical behaviour of PI and PES resins used as matrices for short-fibre reinforced laminates. J. Mater. Sci. 1986, 21, 3561–3570. [Google Scholar] [CrossRef]
- Ashby, M.F. The properties of foams and lattices. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2006, 1838, 15–30. [Google Scholar] [CrossRef] [PubMed]
- Sanditov, B.D.; Tsydypov, S.B.; Sanditov, D.S.; Mantatov, V.V. Gruneisen parameter and Poisson’s ratio of glassy organic polymers and inorganic glasses. High Mol. Compd. Ser. B 2006, 7, 173–176. (In Russian) [Google Scholar]
- Ross, C.T.F.; Chilver, A. Strength of Materials and Structures; Elsevier: Amsterdam, The Netherlands, 1999. (In Russian) [Google Scholar]
Materials | Glass Transition Temperature (°C) | Young’s Modulus, (MPa) | Elongation at Break (%) | Tensile Strength (MPa) |
---|---|---|---|---|
Ultem@ 1000 (PEI) | 217 | 3585 | 60 | 105 |
Matrimid@ 5218 (PI) | 319 | 2896 | 49 | 86.9 |
Ultrason E6020P (PES) | 225 | 2650 | 50–100 | 85 |
Membranes (Materials) | Young’s Modulus (MPa) | Elongation at Break (%) | Ultimate Strength (MPa) | Porosity (%) |
---|---|---|---|---|
U305 (Ultem@ 1000 (PEI)) | 132 | 44 | 58.5 | 55.9 |
M264 (Matrimid@ 5218 (PI)) | 121 | 29 | 54.8 | 58.4 |
PES28 (Ultrason E6020P (PES)) | 72 | 85 | 5.2 | 46.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kagramanov, G.; Gurkin, V.; Farnosova, E. Physical and Mechanical Properties of Hollow Fiber Membranes and Technological Parameters of the Gas Separation Process. Membranes 2021, 11, 583. https://doi.org/10.3390/membranes11080583
Kagramanov G, Gurkin V, Farnosova E. Physical and Mechanical Properties of Hollow Fiber Membranes and Technological Parameters of the Gas Separation Process. Membranes. 2021; 11(8):583. https://doi.org/10.3390/membranes11080583
Chicago/Turabian StyleKagramanov, Georgy, Vladimir Gurkin, and Elena Farnosova. 2021. "Physical and Mechanical Properties of Hollow Fiber Membranes and Technological Parameters of the Gas Separation Process" Membranes 11, no. 8: 583. https://doi.org/10.3390/membranes11080583
APA StyleKagramanov, G., Gurkin, V., & Farnosova, E. (2021). Physical and Mechanical Properties of Hollow Fiber Membranes and Technological Parameters of the Gas Separation Process. Membranes, 11(8), 583. https://doi.org/10.3390/membranes11080583