De Novo Ion-Exchange Membranes Based on Nanofibers
Abstract
:1. Introduction
2. Fundamental Aspects and Production Methods of Ion-Exchange Nanofibers
3. Applications of Nanofiber-Based IEMs
3.1. Catalysis
3.2. Membrane Separation
3.3. Membrane Adsorption
3.3.1. Anion-Exchange Nanofiber Membranes
3.3.2. Cation-Exchange Nanofiber Membranes
3.3.3. Hybrid Ion-Exchange Nanofiber Membranes
3.4. Fuel Cells
3.4.1. Nanofiber Composite AEMs
3.4.2. Nanofiber Composite Proton-Exchange Membranes (PEMs)
3.4.3. NF Composite IEMs Containing Acid-Base Pairs
4. Future and Outlook
Author Contributions
Funding
Conflicts of Interest
References
- Tanaka, Y. Ion Exchange Membranes Fundamentals and Applications, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2015. [Google Scholar] [CrossRef]
- Jiang, S.; Sun, H.; Wang, H.; Ladewig, B.; Yao, Z. A comprehensive review on the synthesis and applications of ion exchange membranes. Chemosphere 2021, 282, 130817. [Google Scholar] [CrossRef]
- Ran, J.; Wu, L.; He, Y.; Yang, Z.; Wang, Y.; Jiang, C.; Ge, L.; Bakangura, E.; Xu, T. Ion exchange membranes: New developments and applications. J. Membr. Sci. 2017, 522, 267–291. [Google Scholar] [CrossRef]
- Luo, T.; Abdu, S.; Wessling, M. Selectivity of ion exchange membranes: A review. J. Membr. Sci. 2018, 555, 429–454. [Google Scholar] [CrossRef]
- Kamcev, J.; Paul, D.R.; Manning, G.S.; Freeman, B.D. Predicting salt permeability coefficients in highly swollen, highly charged ion exchange membranes. ACS Appl. Mater. Interfaces 2017, 9, 4044–4056. [Google Scholar] [CrossRef] [PubMed]
- Yarin, A.L.; Pourdehyhim, B.; Ramakrishna, S. Fundamentals and Applications of Micro- and Nanofibers; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar] [CrossRef] [Green Version]
- Lim, C.T. Nanofiber Technology: Current status and emerging developments. Prog. Polym. Sci. 2017, 70, 1–17. [Google Scholar] [CrossRef]
- Matsumoto, H.; Tanioka, A. Functionality in electrospun nanofibrous membranes based on fiber’s size, surface area, and molecular orientation. Membranes 2011, 1, 249–264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, S.; Tanioka, A.; Matsumoto, H. Nanofibers as novel platform for high-functional ion exchangers. J. Chem. Technol. Biotechnol. 2018, 93, 2791–2803. [Google Scholar] [CrossRef]
- Imaizumi, S.; Matsumoto, H.; Ashizawa, M.; Minagawa, M.; Tanioka, A. Nanosize effects of sulfonated carbon nanofiber fabrics for high capacity ion-exchanger. RSC Adv. 2012, 2, 3109–3114. [Google Scholar] [CrossRef]
- Dong, B.; Gwee, L.; Cruz, D.; Winey, K.; Elabd, Y. Super proton conductive high-purity nafion nanofibers. Nano Lett. 2010, 10, 3785–3790. [Google Scholar] [CrossRef] [PubMed]
- Feng, C.; Khulbe, K.; Matsuura, T. Recent progress in the preparation, characterization, and applications of nanofibers and nanofiber membranes via electrospinning/interfacial polymerization. J. Appl. Polym. Sci. 2010, 115, 756–776. [Google Scholar] [CrossRef]
- Seo, H.; Matsumoto, H.; Hara, S.; Minagawa, M.; Tanioka, A.; Yako, H.; Yamagata, Y.; Inoue, K. Preparation of polysaccharide nanofiber fabrics by electrospray deposition: Additive effects of poly(ethylene oxide). Polym. J. 2005, 37, 391–398. [Google Scholar] [CrossRef] [Green Version]
- Ju, Y.; Park, J.; Jung, H.; Lee, W. Electrochemical properties of polypyrroles/ sulfonated SEBS composite nanofibers prepared by electrospinning. Electrochim. Acta 2007, 52, 4841–4847. [Google Scholar] [CrossRef]
- Subramanian, C.; Weiss, R.; Shaw, M. Electrospinning and characterization of highly sulfonated polystyrene fibers. Polymer 2010, 51, 1983–1989. [Google Scholar] [CrossRef]
- Nitanan, T.; Akkaramongkolporn, P.; Rojanarata, T.; Ngawhirunpat, T.; Opanasopit, P. Thermally crosslinkable poly(styrene sulfonic acid-co-maleic acid) (PSSA-MA)/polyvinyl alcohol (PVA) ion-exchange fibers. Polym. Bull. 2013, 70, 1431–1444. [Google Scholar] [CrossRef]
- Xiao, S.; Shen, M.; Ma, H.; Guo, R.; Zhu, M.; Wang, S.; Shi, X. Fabrication of water-stable electrospun polyacrylic acid-based nanofibrous mats for removal of copper (II) ions in aqueous solution. J. Appl. Polym. Sci. 2010, 116, 2409–2417. [Google Scholar] [CrossRef]
- Penchev, H.; Paneva, D.; Manolova, N.; Rashkov, I. Novel electorspun nanofibers composed of polyelectrolyte complexes. Macromol. Rapid Commun. 2008, 29, 677–681. [Google Scholar] [CrossRef]
- Meng, X.; Perry, S.L.; Schiffman, J.D. Complex coacervation: Chemically stable fibers electrospun from aqueous polyelectrolyte solutions. ACS Macro. Lett. 2017, 6, 505–511. [Google Scholar] [CrossRef]
- Huang, W.; Liu, D.; Li, J.; Zhu, L.; Yang, S. Polymer complexation for functional fibers. Sci. China Technol. Sci. 2019, 62, 931–944. [Google Scholar] [CrossRef]
- Penchev, H.; Ublekov, F.; Budurova, D.; Sinigersky, V. Novel electrospun polybenzimidazole fibers and yarns from ethanol potassium hydroxide solution. Mater. Lett. 2017, 187, 89–93. [Google Scholar] [CrossRef]
- An, H.; Shin, C.; Chase, G. Ion exchanger using electrospun polystyrene nanofibers. J. Membr. Sci. 2006, 283, 84–87. [Google Scholar] [CrossRef]
- Matsumoto, H.; Wakamatsu, Y.; Minagawa, M.; Tanioka, A. Preparation of ion-exchange fiber fabrics by electrospray deposition. J. Colloid Interface Sci. 2006, 293, 143–150. [Google Scholar] [CrossRef]
- Nitanan, T.; Akkaramongkolporn, P.; Rojanarata, T.; Ngawhirunpat, T.; Opanasopit, P. Effect of crosslinking time on ion exchange capacity of polystyrene nanofiber ion exchangers. Adv. Mater. Res. 2012, 506, 437–440. [Google Scholar] [CrossRef]
- Jassal, M.; Bhowmick, S.; Sengupta, S.; Patra, P.; Walker, D. Hydrolyzed poly(acrylonitrile) electrospun ion-exchange fibers. Environ. Eng. Sci. 2014, 31, 288–299. [Google Scholar] [CrossRef] [PubMed]
- Jalal, N.; Jabur, A.; Hamza, M.; Allami, S. Sulfonated electrospun polystyrene as cation exchange membranes for fuel cells. Energy Rep. 2020, 6, 287–298. [Google Scholar] [CrossRef]
- Zhang, S.; Tanioka, A.; Okamoto, M.; Haraoka, Y.; Hayashi, N.; Matsumoto, H. High-quality nanofibrous nonwoven air filters: Additive effect of water-jet nanofibrillated celluloses on their performance. ACS Appl. Polym. Mater. 2020, 2, 2830–2838. [Google Scholar] [CrossRef]
- Jia, C.; Li, L.; Song, J.; Li, Z.; Wu, H. Mass Production of Ultrafine Fibers by a Versatile Solution Blow Spinning Method. Acc. Mater. Res. 2021, 2, 432–446. [Google Scholar] [CrossRef]
- Shinkawa, M.; Motai, K.; Eguchi, K.; Takarada, W.; Ashizawa, M.; Masunaga, H.; Ohta, N.; Hayamizu, Y.; Matsumoto, H. Preparation of perfluorosulfonated ionomer nanofibers by solution blow spinning. Membranes 2021, 11, 389. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Li, X.; Shen, J.; Gao, C.; Bruggen, B. The potential of Kevlar aramid nanofiber composite membranes. J. Mater. Chem. A 2020, 8, 7548–7568. [Google Scholar] [CrossRef]
- Zheng, G.; Jiang, J.; Wang, X.; Li, W.; Liu, J.; Fu, G.; Lin, L. Nanofiber membranes by multi-jet electrospinning arranged as arc-array with sheath gas for electrodialysis applications. Mater. Des. 2020, 189, 108504. [Google Scholar] [CrossRef]
- Zhao, Y.; Mai, Z.; Shen, P.; Ortega, E.; Shen, J.; Gao, C.; Bruggen, B. Nanofiber based organic solvent anion exchange membranes for selective separation of monovalent anions. ACS Appl. Mater. Interfaces 2020, 12, 7539–7547. [Google Scholar] [CrossRef]
- Shen, P.; Liao, J.; Chen, Q.; Ruan, H.; Shen, J. Organic solvent resistant Kevlar nanofiber-based cation exchange membranes for electrodialysis applications. J. Membr. Sci. 2021, 630, 119300. [Google Scholar] [CrossRef]
- Zhao, Y.; Wu, M.; Shen, P.; Uytterhoeven, C.; Mamrol, N.; Shen, J.; Gao, C.; Bruggen, B. Composite anti-scaling membrane made of interpenetrating networks of nanofibers for selective separation of lithium. J. Membr. Sci. 2021, 618, 118668. [Google Scholar] [CrossRef]
- Seino, F.; Konosu, Y.; Ashizawa, M.; Kakihana, Y.; Higa, M.; Matsumoto, H. Polyelectrolyte composite membranes containing electrospun ion exchange nanofibers: Effect of nanofiber surface charges on ionic transport. Langmuir 2018, 34, 13035–13040. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Hsiao, B. Electrospun nanofiber membranes. Curr. Opin. Chem. Eng. 2016, 12, 62–81. [Google Scholar] [CrossRef] [Green Version]
- Chiu, H.; Lin, J.; Cheng, T.; Chou, S. Fabrication of electrospun polyacrylonitrile ion-exchange membranes for application in lysozyme. Polym. Lett. 2011, 5, 308–317. [Google Scholar] [CrossRef] [Green Version]
- Matsumoto, M.; Yako, H.; Minagawa, M.; Tanioka, A. Characterization of chitosan nanofiber fabric by electrospray deposition: Electrokinetic and adsorption behavior. J. Colloid Interface Sci. 2007, 310, 678–681. [Google Scholar] [CrossRef]
- Fu, Q.; Wang, X.; Si, Y.; Liu, L.; Yu, J.; Ding, B. Scalable fabrication of electrospun nanofibrous membranes functionalized with citric acid for high-performance protein adsorption. ACS Appl. Mater. Interfaces 2016, 8, 11819–11829. [Google Scholar] [CrossRef]
- Zeytuncu, B.; Akman, S.; Yucel, O.; Kahraman, M. Synthesis and adsorption application of in situ photo-cross-linked electrospun poly(vinyl alcohol)-based nanofiber membranes. Water Air Soil Pollut. 2015, 226, 173. [Google Scholar] [CrossRef]
- Senoo, M.; Abe, M.; Suzuki, T. Ion-Kokan, Kodo-Bunri Gijutsu no Kiso (Ion Exchange, Foundation of High Separation Technology); Kodansha Scientific: Tokyo, Japan, 1991; pp. 264–267. [Google Scholar]
- Barakat, N.; Yassin, M.; Yasin, A.; Al-Meer, S. Influence of nitrogen doping on the electrocatalytic activity of Ni-incorporated carbon nanofibers toward urea oxidation. Inter. J. Hydrog. Energy 2017, 42, 21741–21750. [Google Scholar] [CrossRef]
- Wilkanowics, S.; Hollingsworth, N.; Saud, K.; Kadiyala, U.; Larson, R. Immobilization of calcium oxide onto polyacrylonitrile (PAN) fibers as a heterogeneous catalyst for biodiesel production. Fuel Process. Technol. 2020, 197, 106214. [Google Scholar] [CrossRef]
- Ji, X.; Su, Z.; Liu, C.; Wang, P.; Zhang, S. Regulation of enzyme activity and stability through positional interaction with polyurethane nanofibers. Biochem. Eng. J. 2017, 121, 147–155. [Google Scholar] [CrossRef]
- Ma, X.; Gu, S.; Xu, Z. Structure and property of PSFA/PES porous catalytic nanofibers. Catal. Today 2016, 276, 133–138. [Google Scholar] [CrossRef]
- Chang, X.; Yang, H.; Xu, Z. Poly(vinyl alcohol)-perfluorinated sulfonic acid nanofiber mats prepared via electrospinning as catalyst. Mater. Lett. 2011, 65, 1719–1722. [Google Scholar] [CrossRef]
- Lu, P.; Xu, Z.; Yang, H.; Wei, Y.; Xu, H. Effects of ethanol and isopropanol on the structures and properties of polyethersulfone/perfluorosulfonic acid nanofibers fabricated via electrospinning. J. Polym. Res. 2012, 19, 9854. [Google Scholar] [CrossRef]
- Lu, P.; Xu, Z.; Yang, H.; Wei, Y. Preparation and characterization of high-performance perfluorosulfonic acid/SiO2 nanofibers with catalytic property via electrospinning. Ind. Eng. Chem. Res. 2012, 51, 11348–11354. [Google Scholar] [CrossRef]
- Lu, P.; Xu, Z.; Yang, H.; Wei, Y. Processing-structure-property correlations of polyethersulfone/perfluorosulfonic acid nanofibers fabricated via electrospinning from polymer-nanoparticle suspensions. ACS Appl. Mater. Interfaces 2012, 4, 1716–1723. [Google Scholar] [CrossRef]
- Shi, W.; Li, H.; Zhou, R.; Qin, X.; Zhang, H.; Su, Y.; Du, Q. Preparation and characterization of phosphotungstic acid/PVA nanofiber composite catalytic membranes via electrospinning for biodiesel production. Fuel 2016, 180, 759–766. [Google Scholar] [CrossRef]
- Kumar, B.; Asadi, M.; Pisasale, D.; Sinha-Ray, S.; Rosen, B.; Haasch, R.; Abiade, J.; Yarin, A.; Salehi-Khojin, A. Renewable and metal-free carbon nanofiber catalysts for carbon dioxide reduction. Nat. Commun. 2013, 4, 2819. [Google Scholar] [CrossRef]
- Najafi, M.; Frey, M. Electrospun nanofibers for chemical separation. Nanomateirals 2020, 10, 982. [Google Scholar] [CrossRef] [PubMed]
- Khulbe, K.; Matsuura, T. The advances of electrospun nanofibers in membrane technology. J. Membr. Sci. Res. 2020, 6, 251–268. [Google Scholar] [CrossRef]
- Pan, J.; Ge, L.; Lin, X.; Wu, L.; Wu, B.; Xu, T. Cation exchange membranes from hot-pressed electrospun sulfonated poly(phenylene oxide) nanofibers for alkali recovery. J. Membr. Sci. 2014, 470, 479–485. [Google Scholar] [CrossRef]
- Zhao, Y.; Qiu, Y.; Mai, Z.; Ortega, E.; Shen, J.; Gao, C.; Bruggen, B. Symmetrically recombined nanofibers in a high selectivity membrane for cation separation in high temperature and organic solvent. J. Mater. Chem. A 2019, 7, 20006–20012. [Google Scholar] [CrossRef]
- Wakamatsu, Y.; Matsumoto, H.; Minagawa, M.; Tanioka, A. Effect of ion-exchange nanofiber fabrics on water splitting in bipolar membrane. J. Colloid Interface Sci. 2006, 300, 442–445. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.; Hou, L.; Wang, Q.; He, Y.; Wu, L.; Mondal, A.; Xu, T. Preparation of bipolar membranes by electrospinning. Mater. Chem. Phys. 2017, 186, 484–491. [Google Scholar] [CrossRef]
- Shen, C.; Wycisk, R.; Pintauro, P. High performance electropun bipolar membrane with a 3D junction. Energy Environ. Sci. 2017, 10, 1435–1442. [Google Scholar] [CrossRef]
- Hohenadel, A.; Powers, D.; Wycisk, R.; Adamski, M.; Pintauro, P.; Holdcroft, S. Electrochemical characterization of hydrocarbon bipolar membranes with varying junction morphology. ACS Appl. Energy Mater. 2019, 2, 6817–6824. [Google Scholar] [CrossRef]
- Cheah, W.; Show, P.; Ng, I.; Lin, G.; Chiu, C.; Chang, Y. Antibacterial activity of quaternized chitosan modified nanofiber membrane. Int. J. Biol. Macromol. 2019, 126, 569–577. [Google Scholar] [CrossRef]
- He, J.; Wang, W.; Shi, R.; Zhang, W.; Yang, X.; Shi, W.; Cui, F. High speed water purification and efficient phosphate rejection by active nanofibrous membrane for microbial contamination and regrowth control. Chem. Eng. J. 2018, 337, 428–435. [Google Scholar] [CrossRef]
- Chen, Z.; Du, X.; Liu, Y.; Ju, Y.; Song, S.; Dong, L. A high-efficiency ultrafiltration nanofibreous membrane with remarkable antifouling and antibacterial ability. J. Mater. Chem. A 2018, 6, 15191–15199. [Google Scholar] [CrossRef]
- Reyes-Gallardo, E.; Lucena, R.; Cárdenas, S. Electrospun nanofibers as sorptive phases in microextraction. Trends Analyt. Chem. 2016, 84, 3–11. [Google Scholar] [CrossRef]
- Cseri, L.; Topuz, F.; Abdulhamid, M.; Alammar, A.; Budd, P.; Szekely, G. Electrospun adsorptive nanofibrous membranes from ion exchange polymers to snare textile dyes from wastewater. Adv. Mater. Technol. 2021, 2000955. [Google Scholar] [CrossRef]
- Zhu, F.; Zheng, Y.; Zhang, B.; Dai, Y. A critical review on the electrospun nanofibrous membranes for the adsorption of heavy metals in water treatment. J. Hazard. Mater. 2021, 401, 123608. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Li, F.; Wang, Y.; Zhang, Q.; Ma, W.; Huang, C. Electrospun nanofiber membranes for wastewater treatment applications. Sep. Purif. Technol. 2020, 250, 117116. [Google Scholar] [CrossRef]
- Ligneris, E.; Dumée, L.; Kong, L. Nanofibers for heavy metal ion adsorption: Correlating surface properties to adsorption performance, and strategies for ion selectivity and recovery. Environ. Nanotechnol. Monit. Manag. 2020, 13, 100297. [Google Scholar] [CrossRef]
- Min, L.; Yuan, Z.; Zhong, L.; Liu, Q.; Wu, R.; Zheng, Y. Preparation of chitosan based electrospun nanofiber membrane and its adsorptive removal of arsenate from aqueous solution. Chem. Eng. J. 2015, 267, 132–141. [Google Scholar] [CrossRef]
- Li, L.; Zhang, J.; Li, Y.; Yang, C. Removal of Cr (VI) with a spiral wound chitosan nanofiber membrane module via dead-end filtration. J. Membr. Sci. 2017, 544, 333–341. [Google Scholar] [CrossRef]
- Kakoria, A.; Sinha-Ray, S.; Sinha-Ray, S. Industrially scalable chitosan/Nylon-6 (CS/N) nanofiber-based resuable adsorbent for efficient removal of heavy metal from water. Polymer 2021, 213, 123333. [Google Scholar] [CrossRef]
- Wang, J.; Pan, K.; He, Q.; Cao, B. Polyacrylonitril/polypyrrole core/shell nanofiber mat for th removal of hexavalent chromium from aqueous solution. J. Hazard. Mater. 2013, 244–245, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Pan, K.; Giannelis, E.; Cao, B. Polyacrylonitrile/polyaniline core/shell nanofiber mat for removal of hexavalent chromium from aqueous solution: Mechanism and applications. RSC Adv. 2013, 3, 8978–8987. [Google Scholar] [CrossRef]
- Plíštil, L.; Henke, P.; Kubát, P.; Mosinger, J. Anion exchange nanofiber materials activated by daylight with a dual antibacterial effect. Photochem. Photobiol. Sci. 2014, 13, 1321–1329. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Zhang, B.; Ma, H.; Yu, M.; Li, L.; Li, J. Polyethylenimine nanofibrous adsorbent for highly effective removal of anionic dyes from aqueous solution. Sci. China Mater. 2016, 59, 38–50. [Google Scholar] [CrossRef] [Green Version]
- Song, Y.; Wang, F.; Lu, G.; Zhou, L.; Yang, Q. Preparation of PEI nanofiber membrane based on in situ and solution crosslinking technology and their adsorption properties. J. Appl. Polym. Sci. 2020, 137, 48279. [Google Scholar] [CrossRef]
- Chen, W.; Ma, H.; Xing, B. Electrospinning of multifunctional cellulose acetate membrane and its adsorption properties for ionic dyes. Inter. J. Biol. Macromol. 2020, 158, 1342–1351. [Google Scholar] [CrossRef]
- Rajesh, S.; Crandall, C.; Schneiderman, S.; Menkhaus, T. Cellulose-graft-polyethyleneamidoamine anion-exchange nanofiber membranes for simultaneous protein adsorption and virus filtration. ACS Appl. Nano Mater. 2018, 1, 3321–3330. [Google Scholar] [CrossRef]
- Chen, S.; Wickramasinghe, R.; Qian, X. Electrospun weak anion-exchange fibrous membranes for protein purification. Membranes 2020, 10, 39. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Menkhous, T.; Fong, H. Fabrication and bioseparation studies of adsorptive membranes/felts made from electrospun cellulose acetate nanofibers. J. Membr. Sci. 2008, 319, 176–184. [Google Scholar] [CrossRef]
- Turnbull, J.; Wright, B.; Green, N.; Tarrant, R.; Roberts, I.; Hardick, O.; Bracewell, D. Adenovirus 5 recovery using nanofiber ion-exchange adsorbents. Biotechnol. Bioeng. 2019, 116, 1698–1709. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Ooi, C.; Ng, I.; Show, P.; Lin, K.; Chang, Y. Effective purification of lysozyme from chicken egg white by tris(hydroxymethyl)aminomethane affinity nanofiber membrane. Food Chem. 2020, 327, 127038. [Google Scholar] [CrossRef]
- Zhao, J.; Yuan, W.; Xu, A.; Ai, F.; Lu, Y.; Zhang, Y. Perfluorinated sulfonic acid imonomer/poly(N-vinylpyrrolidone) nanofiber membranes: Electrospinning fabrication, water stability, and metal ion removal applications. React. Funct. Polym. 2011, 71, 1102–1109. [Google Scholar] [CrossRef]
- Henke, P.; Lang, K.; Kubát, P.; Sýkora, J.; Šlouf, M.; Mosinger, J. Polystyrene nanofiber materials modified with an externally bound porphyrin photosensitizer. ACS Appl. Mater. Interfaces 2013, 5, 3776–3783. [Google Scholar] [CrossRef]
- Feng, S.; Shen, X.; Ji, Y. Submicron ion-exchange fibers of polystyrene and styrene-butadiene-styrene copolymer blends. J. Macromol. Sci. Phys. 2011, 50, 1673–1681. [Google Scholar] [CrossRef]
- Kwak, N.; Jung, W.; Park, H.; Hwang, T. Electrospun polyethersulfone fibrous mats: Sulfonation, its characterization and solution-phase ammonium sorption behavior. Chem. Eng. J. 2013, 215–216, 375–382. [Google Scholar] [CrossRef]
- Xie, J.; Lv, R.; Peng, H.; Fan, J.; Tao, Q.; Dai, Y.; Zhang, Z.; Cao, X.; Liu, Y. Phosphate functionalized poly(vinyl alcohol)/poly(acrylic acid) (PVA/PAA): An electrospinning nanofiber for uranium separation. J. Radioanal. Nucl. Chem. 2020, 326, 475–486. [Google Scholar] [CrossRef]
- Tian, Y.; Wu, M.; Liu, R.; Li, Y.; Wang, D.; Tan, J.; Wu, R.; Huang, Y. Electrospun membrane of cellulose acetate for heavy metal ion adsorption in water treatment. Carbohydr. Polym. 2011, 83, 743–748. [Google Scholar] [CrossRef]
- Chitpong, N.; Husson, S. Nanofiber ion-exchange membranes for the rapid uptake and recovery of heavy metals from water. Membranes 2016, 6, 59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chitpong, N.; Husson, S. High-capacity, nanofiber-based ion-exchange membranes for the selective recovery of heavy metals from impaired waters. Sep. Purif. Technol. 2017, 179, 94–103. [Google Scholar] [CrossRef] [Green Version]
- Chitpone, N.; Husson, S. Polyacid functionalized cellulose nanofiber membranes for removal of heavy metals from impaired waters. J. Membr. Sci. 2017, 523, 418–429. [Google Scholar] [CrossRef]
- Ullah, S.; Hashmi, M.; Hussain, N.; Ullah, A.; Sarwar, M.; Saito, Y.; Kim, S.; Kim, I. Stabilized nanofibers of polyvinyl alcohol (PVA) crosslinked by unique method for efficient removal of heavy metal ions. J. Water Process. Eng. 2020, 33, 101111. [Google Scholar] [CrossRef]
- Choi, H.; Bae, J.; Hasegawa, Y.; An, S.; Kim, I.; Lee, H.; Kim, M. Thiol-functionalized cellulose nanofiber membranes for the effective adsorption of heavy metal ions in water. Carbohydr. Polym. 2020, 234, 115881. [Google Scholar] [CrossRef]
- Ning, L.; Xu, N.; Wang, R.; Liu, Y. Electrospun fibrous membranes of modified polystyrene and its copolymer with butyl acrylate and their respective adsorption capabilities for cationic blue and copper ions. J. Macromol. Sci. Phys. 2016, 55, 822–838. [Google Scholar] [CrossRef]
- Yin, X.; Zhang, Z.; Ma, H.; Venkateswaran, S.; Hsiao, B. Ultra-fine electrospun nanofibrous membranes for multicomponent wastewater treatment: Filtration and adsorption. Sep. Purif. Technol. 2020, 242, 116794. [Google Scholar] [CrossRef]
- Xu, Y.; Bao, J.; Zhang, X.; Li, W.; Xie, Y.; Sun, S.; Zhao, W.; Zhao, C. Functionalized polyethersulfone nanofibrous membranes with ultra-high adsorption capacity for organic dyes by one-step electrospinning. J. Colloid Interf. Sci. 2019, 533, 526–538. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Ju, J.; Tan, Y.; Hao, L.; Ma, Y.; Wu, Y.; Zhang, H.; Xia, Y.; Sui, K. Controlled synthesis of sodium alginate electrospun nanofiber membranes for multi-occasion adsorption and separation of methylene blue. Carbohydr. Polym. 2019, 205, 125–134. [Google Scholar] [CrossRef]
- Menkhous, T.; Varadaraju, H.; Zhang, L.; Schneiderman, S.; Bjustrom, S.; Liu, L.; Fong, H. Electrospun nanofiber membranes surface functionalized with 3-dimensional nanolayers as an innovative adsorption medium with ultra-high capacity and throughput. Chem. Commun. 2010, 46, 3720–3722. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Fu, Q.; Wang, X.; Si, Y.; Yu, J.; Wang, X.; Ding, B. In-situ cross-linked and highly carboxylated poly(vinyl alcohol) nanofibrous membranes for efficient adsorption of proteins. J. Mater. Chem. B 2015, 3, 7281–7290. [Google Scholar] [CrossRef] [PubMed]
- Chiu, H.; Lin, J.; Cheng, T.; Chou, S.; Huang, C. Direct purification of lysozyme from chicken egg white using weak acidic polyacrylonitrile nanofiber-based membranes. J. Appl. Polym. Sci. 2012, 125, E616–E621. [Google Scholar] [CrossRef]
- Lee, S.; Liu, B.; Wu, J.; Chang, Y. Egg white lysozyme purification by a stirred cell contactor equipped with a weak ion-exchange nanofiber membrane: Process development and scale-up. Food Chem. 2021, 338, 128144. [Google Scholar] [CrossRef]
- Chang, J.; Wang, J.; Qu, J.; Li, Y.; Ma, L.; Wang, L.; Wang, X.; Pan, K. Preparation of α-Fe2O3/polyacrylonitrile nanofiber mat as an effective lead adsorbent. Environ. Sci. Nano 2016, 3, 894–901. [Google Scholar] [CrossRef]
- Aijaz, M.; Karim, M.; Albarbi, H.; Alharthi, N.; Al-Mubaddel, F.; Abdo, H. Magnetic/Polyetherimide-Acrylonitrile composite nanofibers for nicle ion removal from aqueous solution. Membranes 2011, 11, 50. [Google Scholar] [CrossRef] [PubMed]
- Torasso, N.; Vergara-Rubio, A.; Rivas-Roja, S.P.; Huck-Iriart, C.; Larrañaga, A.; Fernández-Cirelli, A.; Cerveny, S.; Goyanes, S. Enhancing arsenic adsorption via excellent dispersion of iron oxide nanoparticles inside poly(vinyl alcohol) nanofibers. J. Environ. Chem. Eng. 2021, 9, 104664. [Google Scholar] [CrossRef]
- Li, Z.; Kang, W.; Wei, N.; Qiu, J.; Sun, C.; Cheng, B. Preparation of a polyvinylidene fluoride tree-like nanofiber mat loaded with manganese dioxide for highly efficient lead adsorption. RSC Adv. 2017, 7, 8220–8229. [Google Scholar] [CrossRef] [Green Version]
- Rad, L.; Momeni, A.; Ghazani, B.; Irani, M.; Mahmoudi, M.; Noghreh, B. Removal of Ni2+ and Cd2+ ions from aqueous solutions using electrospun PVA/zeolite nanofibrous adsorbent. Chem. Eng. J. 2014, 256, 119–127. [Google Scholar] [CrossRef]
- Hamad, A.; Hassouna, M.; Shalaby, T.; Elkady, M.; Elkawi, M.; Hamad, H. Electrospun cellulose acetate nanofiber incorporated with hydroxyapatite for removal of heavy metals. Inter. J. Biol. Macromol. 2020, 151, 1299–1313. [Google Scholar] [CrossRef] [PubMed]
- Tran, D.; Marti, A.; Balkus, K. Electrospun zeolite/cellulose acetate fibers for ion exchange of Pb2+. Fibers 2014, 2, 308–317. [Google Scholar] [CrossRef]
- Jin, X.; Wang, H.; Jin, X.; Wang, H.; Chen, L.; Wang, W.; Lin, T.; Zhu, Z. Preparation of keratin/PET nanofiber membrane and its high adsorption performance of Cr (VI). Sci. Total Environ. 2020, 710, 135546. [Google Scholar] [CrossRef] [PubMed]
- Xu, R.; Jia, M.; Zhang, Y.; Li, F. Sorption of malachite green on vinyl-modified mesoporous poly(acrylic acid)/SiO2 composite nanofiber membranes. Micropor. Mesopor. Mater. 2013, 149, 111–118. [Google Scholar] [CrossRef]
- Tan, P.; Zheng, Y.; Hu, Y. Efficient removal of arsenate from water by lanthanum immobilized electrospun chitosan nanofiber. Colloids Surf. A Physicochem. Eng. Asp. 2020, 589, 124417. [Google Scholar] [CrossRef]
- Li, F.; Chen, C.; Wang, Y.; Li, W.; Zhou, G.; Zhang, H.; Zhang, J.; Wang, J. Activated carbon-hybridized and amine-modified polyacrylonitrile nanofibers toward ultrahigh and recyclable metal ion and dye adsorption from wastewater. Front. Chem. Sci. Eng. 2021, 15, 984–997. [Google Scholar] [CrossRef]
- Tanaka, M. Development of ion conductive nanofibers for polymer electrolyte fuel cells. Polym. J. 2016, 48, 51–58. [Google Scholar] [CrossRef]
- Pan, C.; Wu, H.; Wang, C.; Wang, B.; Zhang, L.; Cheng, Z.; Hu, P.; Pan, W.; Zhou, Z.; Yang, X.; et al. Nanowire-based high-performance “micro fuel cells”: One nanowire, one fuel cell. Adv. Mater. 2008, 20, 1644–1648. [Google Scholar] [CrossRef]
- Watanabe, T.; Tanaka, M.; Kawakami, H. Fabrication and electrolyte characterization of uniaxially-aligned anion conductive polymer nanofibers. Nanoscale 2016, 8, 19614–19619. [Google Scholar] [CrossRef]
- Takemori, R.; Kawakami, H. Electrospun nanofibrous blend membranes for fuel cell electrolytes. J. Power Sources 2010, 195, 5957–5961. [Google Scholar] [CrossRef]
- Roddecha, S.; Dong, Z.; Wu, Y.; Anthanmatten, M. Mechanical properties and ionic conductivity of electrospun quaternary ammonium ionomers. J. Membr. Sci. 2012, 389, 478–485. [Google Scholar] [CrossRef]
- Sadrjahani, M.; Gharehaghaji, A.; Javanbakht, M. Aligned electrospun sulfonated poly(ether ether ketone) nanofiber-based proton exchange membranes for fuel cell applications. Polym. Eng. Sci. 2017, 57, 789–796. [Google Scholar] [CrossRef]
- Gong, X.; He, G.; Yan, X.; Wu, Y.; Chen, W.; Wu, X. Electrospun nanofiber enhanced imidazolium-functionalized polysulfone composite anion exchange membranes. RSC Adv. 2015, 5, 95118–95125. [Google Scholar] [CrossRef]
- Takemori, R.; Ito, G.; Tanaka, M.; Kawakami, H. Ultra-high proton conduction in electrospun sulfonated polyimide nanofibers. RSC Adv. 2014, 4, 20005–20009. [Google Scholar] [CrossRef]
- Snyder, J.; Elabd, Y. Nafion® nanofibers and their effect on polymer electrolyte membrane fuel cell performance. J. Power Sources 2009, 186, 385–392. [Google Scholar] [CrossRef]
- Wu, L.; Zhang, Z.; Ran, J.; Zhou, D.; Li, C.; Xu, T. Advances in proton-exchange membranes for fuel cells: An overview on proton conductive channels (PCCs). Phys. Chem. Chem. Phys. 2013, 15, 4870–4887. [Google Scholar] [CrossRef]
- Tamura, T.; Kawakami, H. Aligned electrospun nanofiber composite membranes for fuel cell electrolytes. Nano Lett. 2010, 10, 1324–1328. [Google Scholar] [CrossRef]
- Wang, L.; Dou, L.; Zhang, S. Nanofiber-based poly(aryl ether sulfone) containing guanidinium groups as novel anion-exchange membranes. J. Polym. Res. 2013, 20, 232. [Google Scholar] [CrossRef]
- Watanabe, T.; Tanaka, M.; Kawakami, H. Anion conductive polymer nanofiber composite membrane: Effects of nanofibers on polymer electrolyte characteristics. Polym. Int. 2017, 66, 382–387. [Google Scholar] [CrossRef]
- Abouzari-lotf, E.; Ghassemi, H.; Nasef, M.; Ahmad, A.; Zakeri, M.; Ting, T.; Abbasi, A.; Mehdipour-Ataei, S. Phase separated nanofibrous anion exchange membranes with polycationic side chains. J. Mater. Chem. A 2017, 5, 15326–15341. [Google Scholar] [CrossRef]
- Liu, G.; Tsen, W.; Jang, S.; Hu, F.; Zhong, F.; Zhang, B.; Wang, J.; Liu, H.; Wang, G.; Wen, S.; et al. Composite membranes from quaternized chitosan reinforced with surface-functionalized PVDF electrospun nanofibers for alkaline direct methanol fuel cells. J. Membr. Sci. 2020, 611, 118242. [Google Scholar] [CrossRef]
- Park, A.; Pintauro, P. Alkaline fuel cell membranes from electrospun fiber mats. Electrochem. Solid-State Lett. 2012, 15, B27–B30. [Google Scholar] [CrossRef]
- Park, A.; Turley, F.; Wycisk, R.; Pintauro, P. Electrospun and cross-linked nanofiber composite anion exchange membranes. Macromolecules 2014, 47, 227–235. [Google Scholar] [CrossRef]
- Park, A.; Turley, F.; Wycisk, R.; Pintauro, P. Diol-crosslinked electrospun composite anion exchange membranes. J. Electrochem. Soc. 2015, 162, F560–F566. [Google Scholar] [CrossRef] [Green Version]
- Park, A.; Wycisk, R.; Ren, X.; Turley, F.; Pintauro, P. Crosslinked poly(phenylene oxide)-based nanofiber composite membranes for alkaline fuel cells. J. Mater. Chem. A 2016, 4, 132–141. [Google Scholar] [CrossRef]
- Chen, H.; Snyder, J.; Elabd, Y. Electrospinning and solution properties of nafion and Poly(acrylic acid). Macromolecules 2008, 41, 128–135. [Google Scholar] [CrossRef]
- Choi, J.; Lee, K.; Wycisk, R.; Pintauro, P.; Mather, P.T. Nanofiber composite membranes with low equivalent weight perfluorosulfonic acid polymers. J. Mater. Chem. 2010, 20, 6282–6290. [Google Scholar] [CrossRef]
- Ballengee, J.; Pintauro, P. Composite fuel cell membranes from dual-nanofiber electrospun mats. Macromolecules 2011, 44, 7307–7314. [Google Scholar] [CrossRef]
- Subianto, S.; Cavaliere, S.; Jones, D.; Rozière, J. Effect of side-chain length on the electrospinning of perfluorosulfonic acid ionomers. J. Polym. Sci. Part A Polym. Chem. 2013, 51, 118–128. [Google Scholar] [CrossRef]
- Choi, J.; Wycisk, R.; Zhang, W.; Pintauro, P.; Lee, K.; Mather, P. High conductivity perfluorosulfonic acid nanofiber composite fuel-cell membranes. ChemSusChem 2010, 3, 1245–1248. [Google Scholar] [CrossRef]
- Laforgue, A.; Robitaille, L.; Mokrini, A.; Ajji, A. Fabrication and characterization of ionic conducting nanofibers. Macromol. Mater. Eng. 2007, 292, 1229–1236. [Google Scholar] [CrossRef] [Green Version]
- Tran, C.; Kalra, V. Co-continuous nanoscale assembly of Nafion-polyacrylonitrile blends within nanofibers: A facile route to fabrication of porous nanofibers. Soft Matter. 2013, 9, 846–852. [Google Scholar] [CrossRef]
- Wakiya, T.; Tanaka, M.; Kawakami, H. Fabrication and electrolyte characterizations of nanofiber framework-based polymer composite membranes with continuous proton conductive pathways. Membranes 2021, 11, 90. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Lee, Y.; Lai, J.; Liu, Y. Composite membranes of nafion and poly(styrene sulfonic aicd)-grafted poly(vinylidene fluoride) electrospun nanofiber mats for fuel cells. J. Membr. Sci. 2014, 466, 238–245. [Google Scholar] [CrossRef]
- Xu, X.; Shao, Z.; Shi, L.; Cheng, B.; Yin, X.; Zhuang, X.; Di, Y. Enhancing proton conductivity of proton exchange membrane with SPES nanofibers containing porous organic cage. Polym. Adv. Technol. 2020, 31, 1571–1580. [Google Scholar] [CrossRef]
- Tamura, T.; Takemori, R.; Kawakami, H. Proton conductive properties of composite membranes containing uniaxially aligned ultrafine electrospun polyimide nanofiber. J. Power Sources 2012, 217, 135–141. [Google Scholar] [CrossRef]
- Choi, J.; Lee, K.; Wycisk, R.; Pintauro, P.; Mather, P. Nanofiber network ion-exchange membranes. Macromolecules 2008, 41, 4569–4572. [Google Scholar] [CrossRef]
- Choi, J.; Lee, K.; Wycisk, R.; Pintauro, P.; Mather, P. Sulfonated polysulfone/POSS nanofiber composite membranes for PEM fuel cells. J. Electrochem. Soc. 2010, 157, B914–B919. [Google Scholar] [CrossRef]
- Wu, B.; Pan, J.; Ge, L.; Wu, L.; Wang, H.; Xu, T. Oriented MOF-polymer composite nanofiber membranes for high proton conductivity at high temperature and anhydrous condition. Sci. Rep. 2014, 4, 4334. [Google Scholar] [CrossRef] [Green Version]
- Ibaraki, T.; Tanaka, M.; Kawakami, H. Fast surface proton conduction on acid-doped polymer nanofibers in polymer electrolyte composite membranes. Electrochimica Acta 2019, 296, 1042–1048. [Google Scholar] [CrossRef]
- Sood, R.; Giancola, S.; Donnadio, A.; Zatoń, M.; Donzel, N.; Rozière, J.; Jones, D.; Cavaliere, S. Active electrospun nanofibers as an effective reinforcement for highly conducting and durable proton exchange membranes. J. Membr. Sci. 2021, 622, 119037. [Google Scholar] [CrossRef]
- Wang, L.; Deng, N.; Liang, Y.; Ju, J.; Cheng, B.; Kang, W. Metal-organic framework anchored sulfonated poly(ether sulfone) nanofibers as highly conductive channels for hybrid proton membranes. J. Power Sources 2020, 450, 227592. [Google Scholar] [CrossRef]
- Zhao, G.; Xu, X.; Zhao, H.; Shi, L.; Zhuang, X.; Cheng, B.; Yin, Y. Zeolitic imidazolate framework decorated on 3D nanofiber network towards superior proton conduction for proton exchange membrane. J. Membr. Sci. 2020, 601, 117914. [Google Scholar] [CrossRef]
- Gong, C.; Liu, H.; Zhang, B.; Wang, G.; Cheng, F.; Zheng, G.; Wen, S.; Xue, Z.; Xie, X. High level of solid superacid coated poly(vinylidene fluoride) electrospun nanofiber composite polymer electrolyte membranes. J. Membr. Sci. 2017, 535, 113–121. [Google Scholar] [CrossRef]
- Zhang, H.; He, Y.; Zhang, J.; Ma, L.; Li, Y.; Wang, J. Constructing dual-interfacial proton-conducting pathways in nanofibrous composite membrane for efficient proton transfer. J. Membr. Sci. 2016, 505, 108–118. [Google Scholar] [CrossRef]
- Li, P.; Dang, J.; Wu, W.; Lin, J.; Zhou, Z.; Zhang, J.; Wang, J. Nanofiber composite membrane using quantum dot hybridized SPEEK nanofiber for efficient through-plane proton conduction. J. Membr. Sci. 2020, 609, 118198. [Google Scholar] [CrossRef]
- Zhao, G.; Xu, X.; Shi, L.; Cheng, B.; Zhuang, X. Bio-analogue L-lysine lined arrangement on nanofibers with superior proton-conduction for proton exchange membrane. Solid State Ionics 2020, 348, 115289. [Google Scholar] [CrossRef]
- Wang, H.; Zhuang, X.; Wang, X.; Li, C.; Li, Z.; Kang, W.; Yin, Y.; Guiver, M.; Cheng, B. Proton-conducting poly-γ-glutamic acid nanofiber embedded sulfonated poly(ether sulfone) for proton exchange membranes. ACS Appl. Mater. Interfaces 2019, 11, 21865–21873. [Google Scholar] [CrossRef]
- Zhao, G.; Xu, X.; Shi, L.; Cheng, B.; Zhuang, X.; Yin, Y. Biofunctionalized nanofiber hybrid proton exchange membrane based on acid-base ion-nanochannels with superior proton conductivity. J. Power Sources 2020, 452, 227839. [Google Scholar] [CrossRef]
- Wang, H.; Li, X.; Zhuang, X.; Cheng, O.; Wang, W.; Kang, W.; Shi, L.; Li, H. Modification of Nafion membrane with biofunctional SiO2 nanofiber for proton exchange membrane fuel cells. J. Power Sources 2017, 340, 201–209. [Google Scholar] [CrossRef]
- Wang, H.; Ma, Y.; Cheng, B.; Kang, W.; Li, X.; Shi, L.; Cai, Z.; Zhuang, X. Solution blown biofunctionalized poly(vinylidene fluoride) nanofibers for application in proton exchange membrane fuel cells. Electrochim. Acta 2017, 258, 24–33. [Google Scholar] [CrossRef]
- Zuo, K.; Wang, K.; DuChanois, R.M.; Fang, Q.; Deemer, E.M.; Huang, X.; Xin, R.; Said, I.A.; He, Z.; Feng, Y.; et al. Selective membranes in water and wastewater treatment: Role of advanced materials. Mater. Today 2021, in press. [Google Scholar] [CrossRef]
- Huang, Y.; Song, J.; Yang, C.; Long, Y.; Wu, H. Scalable manufacturing and applications of nanofibers. Mater. Today 2019, 28, 98–113. [Google Scholar] [CrossRef]
- Hou, L.; Pan, J.; Yu, D.; Wu, B.; Mondal, A.; Li, Q.; Ge, L.; Xu, T. Nanofibrous composite membranes (NFCMs) for mono/divalent cations separation. J. Membr. Sci. 2017, 528, 243–250. [Google Scholar] [CrossRef]
- Tanioka, A.; Matsumoto, H. Membrane potential as a function of dielectric constant (Chapter 59). In Encyclopedia of Biocolloid and Biointerface Science; Ohshima, H., Ed.; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2016; pp. 721–736. [Google Scholar] [CrossRef]
- Shehzad, M.A.; Yasmin, A.; Ge, X.; Wu, L.; Xu, T. A review of nanostructured ion-exchange membranes. Adv. Mater. Technol. 2021, 2001171. [Google Scholar] [CrossRef]
Traditional IEMs | IEX-NF Non-Woven Membranes | |
---|---|---|
Membrane structure | dense | highly porous (typically ≥ 80%) [36] |
Ion-exchange capacity [mmol·g−1] | 0.6–3.5 * | 0.44 [37]–5.4 [38] |
Surface area [m2·g−1] | <0.01 | 2.5 [39]–228 [40] |
Permeability | medium~high (e.g., area resistance of 1.2~12 Ω·cm2 *) | very high |
Selectivity | high (e.g., transport number of 0.92 ~>0.99 *) | low as a membrane high as an adsorbent |
Ref. | Material | IEX Group | NF Diameter [nm] | IECa [mmol·g−1] /SSAb [m2·g−1] | Adsorbent (@pH) | Adsorption Capacity [mg·g−1] |
---|---|---|---|---|---|---|
Heavy metals | ||||||
[40] | PVA/MA/ATM | -NH2, -NHR | 115–140 | 228.4 b | Pd2+, Pt4+ (pH 1.1) | 69 (Pd2+) 112 (Pt4+) |
[68] | chitosan | -NH2 | 129 | 13.2 b | As5+ (pH 3.4) | 30.8 |
[69] | chitosan | -NH2 | 75 | - | Cr6+ (pH 6) | 20.5 |
[70] | chitosan/nylon-6 | -NH2 | 301 | - | Cu2+ (pH 4) | 240 |
[71] | PAN/polypyrrole | pyrrole | 258 | - | Cr6+ (pH 2) | 61.80 |
[72] | PAN/polyaniline | aniline | 301–420 | - | Cr6+ (pH 2) | 71.28 |
[75] | PEI/EPI/PAN | -NH2, -NHR, -NR2 | 831 | - | Cu2+, Pb2+ (-) | 350 (Cu2+) 290 (Pb2+) |
Dyes | ||||||
[74] | m-PEI/PVDF | -NH2, -NHR, -NR2 | 50–200 | - | MO (pH 7) | 633 |
[75] | PEI/EPI/PAN | -NH2, -NHR, -NR2 | 831 | - | MO (-) | 637 |
[76] | PDA/DCA-COOH | -NH2 | - | - | MB, CR (pH 11) | 69.9 (MB) 67.30 (CR) |
Proteins | ||||||
[38] | chitosan | -NH2 | ~100 | 5.4 a/25.9 b | DNA (pH 4) | 600 |
[77] | cellulose/PEAA | -NH2, -NHR | 550 | - | BSA (pH 8) | 239 |
[78] | PAN-GMA-DEA PSf-GMA-DEA | -NR2 | ~400 ~2500 | - | BSA (pH 7) | ~100 mg/mL ~200 mg/mL |
[79] | cellulose/diethylaminoethyl ligand | -NR2 | Tens of nanometers to microns | - | BSA (pH 8) | 40.0 |
[81] | PAN/Tris | -NH2 | - | - | Lys (pH 7) | 1362 |
Ref. | Material | IEX Group | NF Diameter [nm] | IECa [mmol·g−1] /SSAb [m2·g−1] | Adsorbent (@pH) | Adsorption Capacity [mg·g−1] |
---|---|---|---|---|---|---|
Heavy metals | ||||||
[82] | PFSA/PVP | -SO3H | 377 | 1.07 a | Cu2+, Ca2+ (pH 5) | 43.10 (Cu2+) 22.37 (Ca2+) |
[84] | PS/SBS | -SO3H | 1000 | 3.08 a | Cu2+ (pH 4) | 3.08 mmol·g−1 |
[85] | sPES | -SO3H | 1170 | 1.6 a | NH4+ (pH 7) | 14.08 |
[86] | PVA/PAA-PO4 | -H2PO4 | 278 | - | Uranium | 277.78 |
[89] | cellulose/PIA | -COOH | 200–500 | Cd2+ (-) | 222 | |
[92] | cellulose/thiol | -SH | 418 | - | Cu2+, Cd2+, Pb2+ (pH 4) | Cu2+(49.0), Cd2+(45.9), Pb2+(22.0) |
Dyes | ||||||
[94] | sPES | -SO3H | 62 | - | MB (pH 6.8) | 6.6 |
[95] | PES/P(AA-MMA) | -COOH | 503 | - | MB (pH 9) | 2258 |
[96] | SA/CaCl2 | -COOH | 155 | 13.56 | MB (pH 6) | 2230 |
Proteins | ||||||
[37] | PAN | -COOH | 200–250 | 0.44 a/6.18 b | Lys (pH 9) | 83.2 |
[39] | EvOH/CCA | -COOH | 562 | 2.52 b | Lys (pH 6) | 284 |
[97] | cellulose/PAA | -COOH | ~500 | - | Lys (pH 7) | 2.6 |
[98] | PVA/MAH | -COOH | 226 | 3.2 b | Lys (pH 6) | 177 |
Ref. | Material | IEX Site/ IEXgruoup | NF Diameter [nm] | SSA [m2·g−1] | Adsorbent (@pH) | Adsorption Capacity [mg·g−1] |
---|---|---|---|---|---|---|
Heavy metals | ||||||
[101] | PAN/α-Fe2O3 | α-Fe2O3 | ~200 | - | Pb2+ (pH 4.8) | 81.97 |
[102] | PEI-AN/iron oxide | Fe2O3 | 230 | 4.347 | Ni2+ (pH 8) | 102 |
[103] | PVA/iron oxide | Fe3O4 | 120 | - | As5+ (pH 3) | 52 |
[104] | PVDF/TBAC-MnO2 | MnO2 | - | Pb2+ (pH 6) | 318.47 | |
[105] | PVA/zeolite nanoparticle | zeolite | 170 | 212 | Cd2+, Ni2+ (pH 5) | 838.7 (Cd2+) 342.8 (Ni2+) |
[106] | CA/HAp | phosphate | 120 | - | Fe3+, Pb2+ (pH 6) | 45.45 (Fe3+) 49.75 (Pb2+) |
[107] | CA/zeolite nanoparticle | zeolite | 139 | - | Cu2+, Pb2+ (pH 6.6) | 1.22 mmol·g−1 (Cu2+) 1.1 mmol·g−1 (Pb2+) |
[108] | PET/wool keratin | -NH2 | 610 | - | Cr6+ (pH 3) | 75.86 |
[110] | Chitosan/lanthanum | -NH2, La(OH)3 | 130–310 | - | Arsenate (pH 6) | 83.6 |
[111] | APAN/AC | -NHR, -NH2 | 256 | 76.2 | Cr6+ | 284 |
Dyes | ||||||
[109] | PAA/SiO2 | -COOH | 300–700 | 212 | MG | 220.49 |
[111] | APAN/AC | -NHR, -NH2 | 256 | 76.2 | MO (pH 3) | 248 |
Ref. | NF | Matrix | Composite Membrane | ||||||
---|---|---|---|---|---|---|---|---|---|
Material (IEX Group) | Diameter [nm] | IEC [mmol·g−1] | Material (IEX Group) | IEC [mmol·g−1] | Thickness [µm] | NF Content (%) | Water Uptake [%] | Hydroxide Conductivity a [mS·cm−1] (°C) | |
[118] | IM-PSF (imidazolium) | 156 | 1.78 | IM-PSF (imidazolium) | 1.78 | 100 | 58.5 (wt.) | 250 (40.6 b) | 70.2 (60) |
[123] | PES-G-Cl (guanidinim TMA) | 80–100 | - | VBTC/MBA (TMA) | - | - | 20.1 (10.1 b) | 92 (70) | |
[124] | Q-PAES (-N+H3) | 142 | 1.51 | Q-PAES (-N+H3) | 1.51 | - | 20 (wt.) | - | 83 (30) |
[125] | syn-PP nylon-66 (TMA) | 335 (syn-PP) 90 (nylon-66) | 1.9–2.1 | - | 1.7–2.1 | 15 | - | -(32 b) | 132 (80) |
[126] | QSiO2@PVDF (TMA) | - | 0.60 | QCS (-N+H3) | - | - | - | 130–150 | 41 (80) |
[127] | CM-PSF (TMA) | 950 | 2.02–2.47 | PPSU (-) | 1.27–1.56 | - | 63 (wt.) | 93 | 40 (23) |
[128] | diamine crosslinked CM-PSF (TMA) | 700 | 3.1 | PPSU (-) | 2.01 | - | 65 (wt.) | 144 | 65 (23) |
[129] | diol crosslinked CM-PSF (TMA) | 814 | 2.8 | PPSU (-) | 1.99 | - | 65 (wt.) | 136 | 57 (23) |
[130] | BrPPO (TMA) | 400 | 4.0 | PPSU (-) | 1.2–2.8 | 40 | 50 (wt.) | 96 | 66 (23) |
Ref. | NF | Matrix | Cpmposite Membrane | ||||||
---|---|---|---|---|---|---|---|---|---|
Material (IEX Group) | Diameter [nm] | IEC [mmol·g−1] | Material (IEX Group) | IEC [mmol·g−1] | Thickness [µm] | NF Content (%) | Water Uptake [%] | Proton Conductivity [mS·cm−1] (°C,%RH) | |
[132] | PFSA/PEO (-SO3H) | 162 | - | NOA63 (-) | - | 90–120 | 75 (vol.) | 52 | 160 (80, 80) |
[135] | PFSA/sPOSS/PAA (-SO3H) | 275 | 2.4 | NOA63 (-) | - | - | 74 (vol.) | 32 | 21 (120, 20) 107 (120, 50) 498 (120, 90) |
[35] | PVA-b-PSS (-SO3H) | 264 | 0.46 | Nafion (-SO3H) | 1.02 | 23 | 15 (wt.) | 44 | 63(25,-) |
[139] | PSSA-PVDF (-SO3H) | 300 | - | Nafion (-SO3H) | - | 100 | 10 (wt.) | 36 | 106 (95,-) |
[140] | sPES/POC (-SO3H) | 236 | - | Nafion (-SO3H) | 0.90 | 110 | 10 (wt.) | - | 315 (80, 100) |
[115] | sPI (-SO3H) | 208 | 1.5 | sPI (-SO3H) | 2.7 | 50 | 20 (wt.) | 53 | 330 (80, 98) |
[141] | sPI (-SO3H) | 77 | - | sPI (-SO3H) | 1.63 | 30 | 30 (wt.) | 38 | 300 (90, 98) (parallel) |
[142] | sPAES (-SO3H) | 110 | 2.5 | NOA63 (-) | - | 39 | 60 (vol.) | - | 90 (25, -) |
[143] | sPAES/sPOSS (-SO3H) | 491 | 3.2 | NOA63 (-) | - | 70 | 70 (vol.) | - | 94 (30, 80) |
[144] | sPPESK/MOFs (-SO3H) | 200 | - | - | - | 45 | - | - | 82 (160, 0) |
[145] | Phy /PBI (-H2PO4) | 162 | - | sPI (-SO3H) | 3.2 | 32 | 10 (wt) | 19 | 161 (80,100) |
Ref. | NF | Matrix | Compospite Membrane | ||||||
---|---|---|---|---|---|---|---|---|---|
Material (IEX Group) | Diameter [nm] | IEC [mmol·g−1] | Material (IEX Group) | IEC [mmol·g−1] | Thickness [µm] | NF Content (%) | Water Uptake [%] | Proton Conductivity [mS·cm−1] (°C,%RH) | |
[147] | MOF/sPES (-NH2, -SO3H) | 180 | - | Nafion (-SO3H) | 1.1 | 70 | 40 (wt.) | 37 | 270 (80, 100) |
[148] | ZIF/PMIA (imidazole) | 230 | - | Nafion (-SO3H) | 1.13 | 50–70 | 15 (wt.) | - | 258 (80, 100) |
[150] | sPEEK (-SO3H) | 140 | - | CS/SHNTs (-SO3H, -NH2) | 0.75 | 43–58 | - | 70.5 | 117.7 (90, 100) 19.95 (100, 0) |
[151] | sPEEK quantum dots (-NH-, -NH2, -SO3H) | - | 0.60 | Chitosan (-NH2) | 0.47 | - | - | 85 | 456 (90,100) |
[152] | L-lysine/PAN (-NH2, -NHR) | 100–300 | - | Nafion (-SO3H) | 1.13 | 40–70 | 10 (wt.) | 54.4 | 263 (80, 100) |
[153] | γ-PGA/PLA (-COOH, -NHR) | 659 | - | sPES (-SO3H) | - | 200 | 30 (wt.) | - | 261 (80, 100) |
[154] | L-Argnine/PAN (-COOH, -NHR, -NH2) | 100–300 | - | sPSF (-SO3H) | 1.24 | 50–80 | 5 (wt.) | 61 | 216(80, 100) |
[155] | Cysteine/SiO2 (-COOH, -SH, -NHR) | 250–500 | - | Nafion (-SO3H) | - | - | 10 (wt.) | - | 242 (80, 100) |
[156] | Cysteine/PVDF (-COOH, -NHR, -SO3H) | 40–220 | - | Nafion (-SO3H) | 1.31 | 120 | 30 (wt.) | 62.1 | 220 (80, 100) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Tanioka, A.; Matsumoto, H. De Novo Ion-Exchange Membranes Based on Nanofibers. Membranes 2021, 11, 652. https://doi.org/10.3390/membranes11090652
Zhang S, Tanioka A, Matsumoto H. De Novo Ion-Exchange Membranes Based on Nanofibers. Membranes. 2021; 11(9):652. https://doi.org/10.3390/membranes11090652
Chicago/Turabian StyleZhang, Shaoling, Akihiko Tanioka, and Hidetoshi Matsumoto. 2021. "De Novo Ion-Exchange Membranes Based on Nanofibers" Membranes 11, no. 9: 652. https://doi.org/10.3390/membranes11090652
APA StyleZhang, S., Tanioka, A., & Matsumoto, H. (2021). De Novo Ion-Exchange Membranes Based on Nanofibers. Membranes, 11(9), 652. https://doi.org/10.3390/membranes11090652