Modeling and Optimization of Gas Sparging-Assisted Bacterial Cultivation Broth Microfiltration by Response Surface Methodology and Genetic Algorithm
Abstract
1. Introduction
2. Materials and Methods
2.1. Production of Bacillus velezensis Cultivation Broth
2.2. Microfiltration Experimental Setup
2.3. Experimental Data Analysis—Modeling and Optimization
3. Results
3.1. Modeling of Gas Sparging-Assisted Microfiltration of Bacillus velezensis IP22 Cultivation Broth
3.2. Optimization of Gas Sparging-Assisted Microfiltration of Bacillus velezensis IP22 Cultivation Broth
4. Discussion
4.1. The Effects of Operational Conditions on Steady State Permeate Flux during Air Sparging-Assisted Microfiltration of Bacillus velezensis IP22 Cultivation Broth
4.2. The Effects of Operational Conditions on Specific Energy Consumption during Air Sparging-Assisted Microfiltration of Bacillus velezensis Cultivation Broth
4.3. Optimization of Operational Conditions for Air Sparging-Assisted Microfiltration of Bacillus velezensis Cultivation Broth
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cidón, C.F.; Figueiró, P.S.; Schreiber, D. Benefits of organic agriculture under the perspective of the bioeconomy: A systematic review. Sustainability 2021, 13, 6852. [Google Scholar] [CrossRef]
- Seiber, J.N.; Coats, J.; Duke, S.O.; Gross, A.D. Biopesticides: State of the art and future opportunities. J. Agric. Food Chem. 2014, 62, 11613–11619. [Google Scholar] [CrossRef]
- Ruiu, L. Microbial biopesticides in agroecosystems. Agronomy 2018, 8, 235. [Google Scholar] [CrossRef]
- Reganold, J.; Wachter, J. Organic agriculture in the twenty-first century. Nat. Plants 2016, 2, 15221. [Google Scholar] [CrossRef]
- Muller, A.; Schader, C.; El-Hage Scialabba, N.; Brüggemann, J.; Isensee, A.; Erb, K.; Smith, P.; Klocke, P.; Leiber, F.; Stolze, M.; et al. Strategies for feeding the world more sustainably with organic agriculture. Nat. Commun. 2017, 8, 1290. [Google Scholar] [CrossRef]
- Shafi, J.; Tian, H.; Ji, M. Bacillus species as versatile weapons for plant pathogens: A review. Biotechnol. Biotechnol. Equip. 2017, 31, 446–459. [Google Scholar] [CrossRef]
- Fira, Đ.; Dimkić, I.; Berić, T.; Lozo, J.; Stanković, S. Biological control of plant pathogens by Bacillus species. J. Bitechnol. 2018, 285, 44–55. [Google Scholar] [CrossRef]
- Villarreal-Delgado, M.F.; Villa-Rodríguez, E.D.; Cira-Chávez, L.A.; Estrada-Alvarado, M.I.; Parra-Cota, F.I.; de los Santos-Villalobos, S. The genus Bacillus as a biological control agent and its implications in the agricultural biosecurity. Rev. Mex. Fitopatol. 2018, 36, 95–130. [Google Scholar] [CrossRef]
- Rabbee, M.F.; Ali, M.S.; Choi, J.; Hwang, B.S.; Jeong, S.C.; Baek, K.-h. Bacillus velezensis: A valuable member of bioactive molecules within plant microbiomes. Molecules 2019, 24, 1046. [Google Scholar] [CrossRef]
- Ngalimat, M.S.; Yahaya, R.S.R.; Baharudin, M.M.A.-a.; Yaminudin, S.M.; Karim, M.; Ahmad, S.A.; Sabri, S. A review on the biotechnological applications of the operational group Bacillus amyloliquefaciens. Microorganisms 2021, 9, 614. [Google Scholar] [CrossRef] [PubMed]
- Pajčin, I.; Vlajkov, V.; Frohme, M.; Grebinyk, S.; Grahovac, M.; Mojićević, M.; Grahovac, J. Pepper bacterial spot control by Bacillus velezensis: Bioprocess solution. Microorganisms 2020, 8, 1463. [Google Scholar] [CrossRef]
- Grahovac, J.; Pajčin, I.; Vlajkov, V.; Rončević, Z.; Dodić, J.; Cvetković, D.; Jokić, A. Xanthomonas campestris biocontrol agent: Selection, medium formulation and bioprocess kinetic analysis. Chem. Ind. Chem. Eng. Q. 2021, in press. [Google Scholar] [CrossRef]
- Prabakaran, G.; Hoti, S.L. Application of different downstream processing methods and their comparison for the large-scale preparation of Bacillus thuringiensis var. israelensis after fermentation for mosquito control. Biologicals 2008, 36, 412–415. [Google Scholar] [CrossRef]
- Brar, S.K.; Verma, M.; Tyagi, R.D.; Valéro, J.R. Recent advances in downstream processing and formulations of Bacillus thuringiensis based biopesticides. Process Biochem. 2006, 41, 323–342. [Google Scholar] [CrossRef]
- Qi, L.; Hu, Y.; Chai, Q.; Wang, Q. Enhanced filtration performance and anti-biofouling properties of antibacterial polyethersulfone membrane for fermentation broth concentration. J. Ind. Eng. Chem. 2019, 72, 346–353. [Google Scholar] [CrossRef]
- Shimizu, Y.; Matsushita, K.; Watanabe, A. Influence of shear breakage of microbial cells on cross-flow microfiltration flux. J. Ferment. Bioeng. 1994, 78, 170–174. [Google Scholar] [CrossRef]
- Jana, A.; Ghosh, S.; Majumdar, S. Energy efficient harvesting of Arthrospira sp. using ceramic membranes: Analyzing the effect of membrane pore size and incorporation of flocculant as fouling control strategy. J. Chem. Technol. Biotechnol. 2018, 93, 1085–1096. [Google Scholar] [CrossRef]
- Aspelund, M.T.; Rozeboom, G.; Heng, M.; Glatz, C.E. Improving permeate flux and product transmission in the microfiltration of a bacterial cell suspension by flocculation with cationic polyelectrolytes. J. Membr. Sci. 2008, 324, 198–208. [Google Scholar] [CrossRef]
- Salama, A. Modeling of flux decline behavior during the filtration of oily-water systems using porous membranes: Effect of pinning of nonpermeating oil droplets. Sep. Purif. Technol. 2018, 207, 240–254. [Google Scholar] [CrossRef]
- Fan, R.; Ebrahimi, M.; Quitmann, H.; Czermak, P. Lactic acid production in a membrane bioreactor system with thermophilic Bacillus coagulans: Fouling analysis of the used ceramic membranes. Sep. Sci. Technol. 2015, 50, 2177–2189. [Google Scholar] [CrossRef]
- Zhang, Y.; Fu, Q. Algal fouling of microfiltration and ultrafiltration membranes and control strategies: A review. Sep. Purif. Technol. 2018, 203, 193–208. [Google Scholar] [CrossRef]
- Chang, Y.-R.; Lee, D.J. Coagulation–membrane filtration of Chlorella vulgaris at different growth phases. Dry. Technol. 2012, 30, 1317–1322. [Google Scholar] [CrossRef]
- Marzban, R.; Saberi, F.; Shirazi, M.M.A. Microfiltration and ultrafiltration of Bacillus thuringiensis fermentation broth: Membrane performance and spore crystal recovery approaches. Braz. J. Chem. Eng. 2016, 33, 783–791. [Google Scholar] [CrossRef][Green Version]
- Jokić, A.; Zavargo, Z.; Šereš, Z.; Tekić, M. The effect of turbulence promoter on cross-flow microfiltration of yeast suspensions: A response surface methodology approach. J. Membr. Sci. 2010, 350, 269–278. [Google Scholar] [CrossRef]
- Jokić, A.; Pajčin, I.; Grahovac, J.; Lukić, N.; Dodić, J.; Rončević, Z.; Šereš, Z. Improving energy efficiency of Bacillus velezensis broth microfiltration in tubular ceramic membrane by air sparging and turbulence promoter. J. Chem. Technol. Biotechnol. 2020, 95, 1110–1115. [Google Scholar] [CrossRef]
- Jokić, A.; Pajčin, I.; Grahovac, J.; Lukić, N.; Ikonić, B.; Nikolić, N.; Vlajkov, V. Dynamic modeling using artificial neural network of Bacillus Velezensis broth cross-flow microfiltration enhanced by air-sparging and turbulence promoter. Membranes 2020, 10, 372. [Google Scholar] [CrossRef]
- Tanaka, T.; Usui, K.; Kouda, K.; Nakanishi, K. Filtration behaviors of rod-shaped bacterial broths in unsteady-state phase of cross-flow filtration. J. Chem. Eng. Jpn. 1996, 29, 973–981. [Google Scholar] [CrossRef][Green Version]
- Guerra, A.; Jonsson, G.; Rasmussen, A.; Waagner Nielsen, E.; Edelsten, D. Low cross-flow velocity microfiltration of skim milk for removal of bacterial spores. Int. Dairy J. 1997, 7, 849–861. [Google Scholar] [CrossRef]
- Tomasula, P.M.; Mukhopadhyay, S.; Datta, N.; Porto-Fett, A.; Call, J.E.; Luchansky, J.B.; Renye, J.; Tunick, M. Pilot-scale crossflow-microfiltration and pasteurization to remove spores of Bacillus anthracis (Sterne) from milk. J. Dairy Sci. 2011, 94, 4277–4291. [Google Scholar] [CrossRef]
- Kim, S.-H.; Min, C.-S. Fouling reduction using the resonance vibration in membrane separation of whole milk. J. Ind. Eng. Chem. 2019, 75, 123–129. [Google Scholar] [CrossRef]
- Jiang, B.; Hu, B.; Yang, N.; Zhang, L.; Sun, Y.; Xiao, X. Study of turbulence promoters in prolonging membrane life. Membranes 2021, 11, 268. [Google Scholar] [CrossRef]
- Cabassud, C.; Laborie, S.; Durand-Bourlier, L.; Lainé, J.M. Air sparging in ultrafiltration hollow fibers: Relationship between flux enhancement, cake characteristics and hydrodynamic parameters. J. Membr. Sci. 2001, 181, 57–69. [Google Scholar] [CrossRef]
- Hwang, K.-J.; Wu, Y.J. Flux enhancement and cake formation in air-sparged cross-flow microfiltration. Chem. Eng. J. 2008, 139, 296–303. [Google Scholar] [CrossRef]
- Hwang, K.-J.; Hsu, C.-E. Effect of gas–liquid flow pattern on air-sparged cross-flow microfiltration of yeast suspension. Chem. Eng. J. 2009, 151, 160–167. [Google Scholar] [CrossRef]
- Cui, Z.F.; Wright, K.I.T. Flux enhancements with gas sparging in downwards crossflow ultrafiltration: Performances and mechanisms. J. Membr. Sci. 1996, 117, 109–116. [Google Scholar] [CrossRef]
- Mercier, M.; Fonade, C.; Lafforque-Delorme, C. How slug flow can enhance the ultrafiltration flux in mineral tubular membranes. J. Membr. Sci. 1997, 128, 103–113. [Google Scholar] [CrossRef]
- Mercier-Bonin, M.; Lagane, C.; Fonade, C. Influence of a gas/liquid two-phase flow on the ultrafiltration and microfiltration performances: Case of a ceramic flat sheet membrane. J. Membr. Sci. 2000, 180, 93–102. [Google Scholar] [CrossRef]
- Gupta, B.S.; Hasan, S.; Hashim, M.A.; Cui, Z.F. Effects of colloidal fouling and gas sparging on microfiltration of yeast suspension. Bioprocess. Biosyst. Eng. 2005, 27, 407–413. [Google Scholar] [CrossRef]
- Sur, H.W.; Cui, Z.F. Enhancement of microfiltration of yeast suspensions using gas sparging—Effect of feed conditions. Sep. Purif. Technol. 2005, 41, 313–319. [Google Scholar] [CrossRef]
- Hwang, K.-J.; Chen, L. Effect of air-sparging on the cross-flow microfiltration of microbe/protein bio-suspension. J. Taiwan Inst. Chem. Eng. 2010, 41, 564–569. [Google Scholar] [CrossRef]
- Mikulášek, P.; Pospišil, P.; Dolecek, P.; Cakl, J. Gas–liquid two-phase flow in microfiltration mineral tubular membranes: Relationship between flux enhancement and hydrodynamic parameters. Desalination 2002, 146, 103–109. [Google Scholar] [CrossRef]
- Mercier-Bonin, M.; Gésan-Guiziou, G.; Fonade, C. Application of gas/liquid two-phase flows during cross flow microfiltration of skimmed milk under constant transmembrane pressure conditions. J. Membr. Sci. 2003, 218, 93–105. [Google Scholar] [CrossRef]
- Fouladitajar, A.; Ashtiani, F.Z.; Rezaei, H.; Haghmoradi, A.; Kargari, A. Gas sparging to enhance permeate flux and reduce fouling resistances in cross flow microfiltration. J. Ind. Eng. Chem. 2014, 20, 624–632. [Google Scholar] [CrossRef]
- Javadi, N.; Ashtiani, F.Z.; Fouladitajar, A.; Zenooz, A.M. Experimental studies and statistical analysis of membrane fouling behavior and performance in microfiltration of microalgae by a gas sparging assisted process. Bioresour. Technol. 2014, 162, 350–357. [Google Scholar] [CrossRef] [PubMed]
- Hyder, M.N.; Huang, R.Y.M.; Chen, P. Pervaporation dehydration of alcohol–water mixtures: Optimization for permeate flux and selectivity by central composite rotatable design. J. Membr. Sci. 2009, 326, 343–353. [Google Scholar] [CrossRef]
- Han, H.; Yu, R.; Li, B.; Zhang, Y.; Wang, W.; Chen, X. Multi-objective optimization of corrugated tube with loose-fit twisted tape using RSM and NSGA-II. Int. J. Heat Mass Transf. 2019, 131, 781–794. [Google Scholar] [CrossRef]
- Mercier, M.; Fonade, C.; Lafforgue-Delorme, C. Influence of the flow regime on the efficiency of a gas-liquid two-phase medium filtration. Biotechnol. Tech. 1995, 9, 853–858. [Google Scholar] [CrossRef]
- Tanaka, T.; Abe, K.-I.; Asakawa, H.; Yoshida, H.; Nakanishi, K. Filtration characteristics and structure of cake in crossflow filtration of bacterial suspension. J. Ferment. Bioeng. 1994, 78, 455–461. [Google Scholar] [CrossRef]
- Huisman, I.H.; Trägårdh, C. Particle transport in crossflow microfiltration—I. Effects of hydrodynamics and diffusion. Chem. Eng. Sci. 1999, 54, 271–280. [Google Scholar] [CrossRef]
- Mota, M.; Teixeira, J.A.; Yelshin, A. Influence of cell-shape on the cake resistance in dead-end and cross-flow filtrations. Sep. Purif. Technol. 2002, 27, 137–144. [Google Scholar] [CrossRef]
- Hwang, K.-J.; Yu, Y.-H.; Lu, W.-M. Cross-flow microfiltration of submicron microbial suspension. J. Membr. Sci. 2001, 194, 229–243. [Google Scholar] [CrossRef]
- Tanaka, T.; Abe, K.-I.; Nakanishi, K. Shear-induced arrangement of cells in cake during crossflow filtration of Escherichia coli cells. Biotechnol. Tech. 1994, 8, 57–60. [Google Scholar] [CrossRef]
- Goel, T.; Vaidyanathan, R.; Haftka, R.T.; Shyy, W.; Queipo, N.V.; Tucker, K. Response surface approximation of Pareto optimal front in multi-objective optimization. Comput. Methods Appl. Mech. Eng. 2007, 196, 879–893. [Google Scholar] [CrossRef]
Experiment | Factors—Independent Variables | Responses—Dependent Variables | |||
---|---|---|---|---|---|
TMP (bar) | VL (m∙s−1) | VG (m∙s−1) | J (L∙m−2·h−1) | E (kW·h·m−3) | |
1 | 0.2 (−1) | 0.43 (−1) | 0.2 (0) | 31.06 | 1.1 |
2 | 1.0 (1) | 0.43 (−1) | 0.2 (0) | 22.95 | 2.3 |
3 | 0.2 (−1) | 1.30 (1) | 0.2 (0) | 55.89 | 4.4 |
4 | 1.0 (1) | 1.30 (1) | 0.2 (0) | 70.00 | 3.9 |
5 | 0.2 (−1) | 0.87 (0) | 0.0 (−1) | 30.57 | 2.4 |
6 | 1.0 (1) | 0.87 (0) | 0.0 (−1) | 29.00 | 4.7 |
7 | 0.2 (−1) | 0.87 (0) | 0.4 (1) | 36.67 | 3.8 |
8 | 1.0 (1) | 0.87 (0) | 0.4 (1) | 41.47 | 2.5 |
9 | 0.6 (0) | 0.43 (−1) | 0.0 (−1) | 17.50 | 2.3 |
10 | 0.6 (0) | 1.30 (1) | 0.0 (−1) | 53.87 | 4.0 |
11 | 0.6 (0) | 0.43 (−1) | 0.4 (1) | 32.64 | 1.1 |
12 | 0.6 (0) | 1.30 (1) | 0.4 (1) | 58.05 | 4.6 |
13 | 0.6 (0) | 0.87 (0) | 0.2 (0) | 43.45 | 2.1 |
14 | 0.6 (0) | 0.87 (0) | 0.2 (0) | 42.80 | 2.1 |
15 | 0.6 (0) | 0.87 (0) | 0.2 (0) | 45.00 | 2.0 |
Effects | Steady State Permeate Flux (L∙m−2·h−1) | Specific Energy Consumption (kW·h·m−3) | ||||
---|---|---|---|---|---|---|
Coefficient | p-Value | Coefficient | p-Value | |||
Actual | Coded | Actual | Coded | |||
Intercept | ||||||
b0 | 20.25 | 43.56 | 0.0141 | 0.78 | 2.05 | 0.0302 |
Linear | ||||||
b1 | −10.54 | 1.12 | 0.1410 | 0.37 | 0.21 | 0.0009 |
b2 | −9.62 | 16.71 | <0.0001 | 0.88 | 1.26 | <0.0001 |
b3 | 107.98 | 4.75 | 0.0007 | −5.40 | −0.18 | 0.0021 |
Quadratic | ||||||
b11 | −15.20 | −2.43 | 0.0017 | 3.78 | 0.60 | 0.0002 |
b22 | 20.34 | 3.85 | 0.0096 | 1.42 | 0.27 | <0.0001 |
b33 | −172.28 | −6.89 | 0.0295 | 16.98 | 0.68 | 0.0001 |
Interaction | ||||||
b12 | 31.90 | 5.55 | 0.0499 | −2.45 | −0.42 | <0.0001 |
b13 | 19.91 | 1.59 | 0.1400 | −11.25 | −0.90 | 0.0018 |
b23 | −31.51 | −2.74 | 0.0008 | 5.17 | 0.45 | <0.0001 |
Source | Response | DF | SS | MS | F-Value | p-Value | R2 |
---|---|---|---|---|---|---|---|
Model | J (L∙m−2·h−1) | 9 | 2845.19 | 316.13 | 95.80 | 0.000046 | 0.984 |
E (kW·h∙m−3) | 9 | 21.06 | 2.34 | 318.23 | 0.000002 | 0.995 | |
Residual | J (L∙m−2·h−1) | 5 | 16.50 | 3.30 | |||
E (kW·h∙m−3) | 5 | 0.04 | 0.01 | ||||
Lack-of-fit | J (L∙m−2·h−1) | 3 | 13.94 | 4.65 | 3.64 | 0.22 | |
E (kW·h∙m−3) | 3 | 0.03 | 0.01 | 3.01 | 0.26 | ||
Pure error | J (L∙m−2·h−1) | 2 | 2.56 | 1.28 | |||
E (kW·h∙m−3) | 2 | 0.01 | 0.00 | ||||
Total | J (L∙m−2·h−1) | 14 | 2861.68 | ||||
E (kW·h∙m−3) | 14 | 21.10 |
Factors—independent variables | Goal | Optimized value |
Transmembrane pressure, TMP (bar) | in range | 0.68 |
Superficial feed velocity, VL (m∙s−1) | in range | 0.96 |
Superficial air velocity, VG (m∙s−1) | in range | 0.25 |
Responses—dependent variables | Goal | Predicted value |
Steady state permeate flux, J (L∙m−2·h−1) | maximize | 48.57 |
Specific energy consumption, E (kW·h∙m−3) | minimize | 2.37 |
Desirability function | 0.62 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jokić, A.; Pajčin, I.; Lukić, N.; Vlajkov, V.; Kiralj, A.; Dmitrović, S.; Grahovac, J. Modeling and Optimization of Gas Sparging-Assisted Bacterial Cultivation Broth Microfiltration by Response Surface Methodology and Genetic Algorithm. Membranes 2021, 11, 681. https://doi.org/10.3390/membranes11090681
Jokić A, Pajčin I, Lukić N, Vlajkov V, Kiralj A, Dmitrović S, Grahovac J. Modeling and Optimization of Gas Sparging-Assisted Bacterial Cultivation Broth Microfiltration by Response Surface Methodology and Genetic Algorithm. Membranes. 2021; 11(9):681. https://doi.org/10.3390/membranes11090681
Chicago/Turabian StyleJokić, Aleksandar, Ivana Pajčin, Nataša Lukić, Vanja Vlajkov, Arpad Kiralj, Selena Dmitrović, and Jovana Grahovac. 2021. "Modeling and Optimization of Gas Sparging-Assisted Bacterial Cultivation Broth Microfiltration by Response Surface Methodology and Genetic Algorithm" Membranes 11, no. 9: 681. https://doi.org/10.3390/membranes11090681
APA StyleJokić, A., Pajčin, I., Lukić, N., Vlajkov, V., Kiralj, A., Dmitrović, S., & Grahovac, J. (2021). Modeling and Optimization of Gas Sparging-Assisted Bacterial Cultivation Broth Microfiltration by Response Surface Methodology and Genetic Algorithm. Membranes, 11(9), 681. https://doi.org/10.3390/membranes11090681