Gravure Printing of Graphite-Based Anodes for Lithium-Ion Printed Batteries
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Søndergaard, R.R.; Hosel, M.; Krebs, F.C. Roll-to-Roll Fabrication of Large Area Functional Organic Materials. J. Polym. Sci. Part B Polym. Phys. 2013, 51, 16–34. [Google Scholar] [CrossRef]
- Khan, S.; Lorenzelli, L.; Dahiya, R.S. Technologies for printing sensors and electronics over large flexible substrates: A review. IEEE Sens. J. 2014, 15, 3164–3185. [Google Scholar] [CrossRef]
- Abbel, R.; Galagan, Y.; Groen, P. Roll-to-Roll Fabrication of Solution Processed Electronics. Adv. Eng. Mater. 2018, 20, 1701190–1701219. [Google Scholar] [CrossRef]
- Montanino, M.; Sico, G.; De Girolamo Del Mauro, A.; Asenbauer, J.; Binder, J.R.; Bresser, D.; Passerini, S. Gravure-Printed Conversion/Alloying Anodes for Lithium-Ion Batteries. Energy Technol. 2021, 9, 2100315. [Google Scholar] [CrossRef]
- Batteries show the difficulties of being greener. Nat. Mater. 2022, 21, 131. [CrossRef] [PubMed]
- Oliveira, J.; Costa, C.M.; Lanceros-Méndez, S. Printed Batteries: An Overview. In Printed Batteries Materials, Technologies and Applications, 1st ed.; Lanceros-Méndez, S., Costa, C.M., Eds.; John Wiley & Sons Ltd.: Chichester, UK, 2018; pp. 1–14. [Google Scholar]
- Costa, C.M.; Gonçalves, R.; Lanceros-Méndez, S. Recent advances and future challenges in printed batteries. Energy Storage Mater. 2020, 28, 216–234. [Google Scholar] [CrossRef]
- Grau, G.; Kitsomboonloha, R.; Subramanian, V. Fabrication of a high-resolution roll for gravure printing of 2 μm features. In Proceedings of the SPIE Organic Photonics + Electronics, San Diego, CA, USA, 9–13 August 2015. [Google Scholar]
- Grau, G.; Subramanian, V. Fully High-Speed Gravure Printed, Low-Variability, High-Performance Organic Polymer Transistors with Sub-5 V Operation. Adv. Electron. Mater. 2016, 2, 1500328. [Google Scholar] [CrossRef]
- Huang, Q.; Zhu, Y. Printing conductive nanomaterials for flexible and stretchable electronics: A review of materials, processes, and applications. Adv. Mater. Technol. 2019, 4, 1800546. [Google Scholar] [CrossRef]
- Sliz, R.; Valikangas, J.; Silva Santos, H.; Vilmi, P.; Rieppo, L.; Hu, T.; Lassi, U.; Fabritius, T. Suitable Cathode NMP Replacement for Efficient Sustainable Printed Li-Ion Batteries. ACS Appl. Energy Mater. 2022, 5, 4047–4058. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zheng, S.; Zhou, F.; Shi, X.; Dong, C.; Das, P.; Ma, J.; Wang, K.; Wu, Z.-S. Multi-Layer Printable Lithium Ion Micro-Batteries with Remarkable Areal Energy Density and Flexibility for Wearable Smart Electronics. Small 2022, 18, 2104506. [Google Scholar] [CrossRef] [PubMed]
- Montanino, M.; Sico, G.; De Girolamo Del Mauro, A.; Moreno, M. LFP-Based Gravure Printed Cathodes for Lithium-Ion Printed Batteries. Membranes 2019, 9, 71. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Yu, H.; Liang, X. Simple approach: Heat treatment to improve the electrochemical performance of commonly used anode electrodes for Lithium-ion batteries. ACS Appl. Mater. Interfaces 2020, 12, 41368–41380. [Google Scholar] [CrossRef] [PubMed]
- Norris, C.; Parmananda, M.; Roberts, S.A.; Mukherjee, P.P. Probing the influence of multiscale heterogeneity on effective properties of graphite electrodes. ACS Appl. Mater. Interfaces 2022, 14, 943–953. [Google Scholar] [CrossRef] [PubMed]
- Sico, G.; Montanino, M.; Prontera, C.T.; De Girolamo Del Mauro, A.; Minarini, C. Gravure printing for thin film ceramics manufacturing from nanoparticles. Ceram. Int. 2018, 44, 19526–19534. [Google Scholar] [CrossRef]
- Shen, F.; Dixit, M.B.; Zaman, W.; Hortance, N.; Rogers, B.; Hatzell, K.B. Composite electrode ink formulation for all solid-state batteries. J. Electrochem. Soc. 2019, 166, A3182–A3188. [Google Scholar] [CrossRef]
- Nam, K.-H.; Jeong, S.; Yu, B.-C.; Choi, J.-H.; Jeon, K.-J.; Park, C.-M. Li-compound anodes: A classification for high-performance Li-ion battery anodes. ACS Nano 2022, 16, 13704–13714. [Google Scholar] [CrossRef] [PubMed]
Layer n. | Ink Dry Content (wt%) | Ball-Milling | Overall Active Material (mg cm−2) | Final Layer Thickness (µm) | Final Layer Density (g cm−3) |
---|---|---|---|---|---|
5 | 25 | no | 0.90 | 27 | 0.33 |
5 | 25 | yes | 1.10 | 21 | 0.52 |
6 | 18 | yes | 0.85 | 18 | 0.47 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Montanino, M.; De Girolamo Del Mauro, A.; Paoletti, C.; Sico, G. Gravure Printing of Graphite-Based Anodes for Lithium-Ion Printed Batteries. Membranes 2022, 12, 999. https://doi.org/10.3390/membranes12100999
Montanino M, De Girolamo Del Mauro A, Paoletti C, Sico G. Gravure Printing of Graphite-Based Anodes for Lithium-Ion Printed Batteries. Membranes. 2022; 12(10):999. https://doi.org/10.3390/membranes12100999
Chicago/Turabian StyleMontanino, Maria, Anna De Girolamo Del Mauro, Claudia Paoletti, and Giuliano Sico. 2022. "Gravure Printing of Graphite-Based Anodes for Lithium-Ion Printed Batteries" Membranes 12, no. 10: 999. https://doi.org/10.3390/membranes12100999
APA StyleMontanino, M., De Girolamo Del Mauro, A., Paoletti, C., & Sico, G. (2022). Gravure Printing of Graphite-Based Anodes for Lithium-Ion Printed Batteries. Membranes, 12(10), 999. https://doi.org/10.3390/membranes12100999