Electromass Transfer in the System “Cation Exchange Membrane—Ammonium Nitrate Solution”
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ion Exchange Membranes and Aqueous Solutions
2.2. Assessment of the Ion Composition of the Cation Exchange Membrane in Strong and Weak Electrolyte Solutions
2.3. The Electrical Conductivity of Ion Exchange Membranes
2.4. Electrodialysis of Aqueous Solutions of Ammonium and Potassium Nitrate
3. Results
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Tanaka, Y. Ion Exchange Membranes: Fundamentals and Applications, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2015; pp. 321–379. [Google Scholar] [CrossRef]
- Campione, A.; Gurreri, L.; Ciofalo, M.; Micale, G.; Tamburini, A.; Cipollina, A. Electrodialysis for water desalination: A critical assessment of recent developments on process fundamentals, models and applications. Desalination 2018, 434, 121–160. [Google Scholar] [CrossRef]
- Strathmann, H. Electrodialysis, a mature technology with a multitude of new applications. Desalination 2010, 264, 268–288. [Google Scholar] [CrossRef]
- Arsand, D.; Bernardes, A.M. Electrodialysis treatment of phosphate solutions. In Electrodialysis and Water Reuse Novel Approaches; Bernardes, A.M., Rodrigues, M.A.S., Ferreira, J.Z., Eds.; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Rotta, E.H.; Bitencourt, C.S.; Marder, L.; Bernardes, A.M. Evaluation of the electrodialysis process in the treatment of phosphate containing solution, advances in cleaner production. In Proceedings of the 6th International Workshop, São Paulo, Brazil, 24–16 May 2017; pp. 1–8. [Google Scholar]
- Machorro, J.J.; Olvera, J.C.; Larios, А.; Hernández-Hernández, H.M.; Alcantara-Garduño, М.; Orozco, G. Electrodialysis of phosphates in industrial-grade phosphoric acid. ISRN Electrochem. 2013, 2013, 865727. [Google Scholar] [CrossRef] [Green Version]
- Kikuchi, K.; Gotoh, T.; Takahashi, H.; Higashino, S.; Dranoff, J.S. Separation of amino acids by electrodialysis with ion-exchange membranes. J. Chem. Eng. Jap. 1995, 28, 103–109. [Google Scholar] [CrossRef] [Green Version]
- Eliseeva, T.V.; Krisilova, E.V.; Chernikov, M.A. Concentration of basic amino acids by electrodialysis. PET Chem. 2011, 51, 626–633. [Google Scholar] [CrossRef]
- García-García, V.; Montiel, V.; González-García, J.; Exposito, E.; Iniesta, J.; Bonete, P.; Inglés, М. The application of electrodialysis to desalting an amino acid solution. J. Chem. Educ. 2000, 77, 1477–1479. [Google Scholar] [CrossRef]
- Mert, S.O. Application of electrodialysis for recovering sodium carbonate and sodium bicarbonate from Lake Van. Desalination Water Treat. 2016, 57, 3940–3946. [Google Scholar] [CrossRef]
- Pismenskaya, N.; Nikonenko, V.; Volodina, E.; Pourcelly, G. Electrotransport of weak-acid anions through anion-exchange membranes. Desalination 2002, 147, 345–350. [Google Scholar] [CrossRef]
- Nikonenko, V.; Lebedev, K.; Manzanares, J.A.; Pourcelly, G. Modelling the transport of arbonic acid anions through anion-exchange membranes. Electrochim. Acta 2003, 48, 3639–3650. [Google Scholar] [CrossRef]
- Belashova, E.D.; Kharchenko, O.A.; Sarapulova, V.V.; Nikonenko, V.V.; Pismenskaya, N.D. Effect of protolysis reactions on the shape of chronopotentiograms of a homogeneous anion-exchange membrane in NaH2PO4 solution. PET Chem. 2017, 57, 1207–1218. [Google Scholar] [CrossRef]
- Vasilieva, V.I.; Eliseeva, T.V. Laser-interferometry study of the barrier effect in the electrodialysis of amino acid solutions. Russ. J. Electrochem. 2000, 36, 30–35. [Google Scholar] [CrossRef]
- Kulintsov, P.I.; Bobreshova, O.V.; Aristov, I.V.; Novikova, I.V.; Khrykina, L.A. Electrotransport mechanisms in the ion-exchange membrane-amino acid solution systems. Russ. J. Electrochem. 2000, 36, 327–329. [Google Scholar] [CrossRef]
- Shaposhnik, V.A.; Eliseeva, T.V.; Tekuchev, A.Y.; Lushchik, I.G. Assisted electromigration of bipolar ions through ion-selective membranes in glycine solutions. Russ. J. Electrochem. 2001, 37, 170–175. [Google Scholar] [CrossRef]
- Eliseeva, T.V.; Shaposhnik, V.A. Effects of circulation and facilitated electromigration of amino acids in electrodialysis with ion-exchange membranes. Russ. J. Electrochem. 2000, 36, 64–67. [Google Scholar] [CrossRef]
- Volkov, A.I.; Zharskii, I.M. Bol’shoi Khimicheskii Spravochnik; Sovremennaya shkola: Minsk, Belorussiya, 2005; p. 608. [Google Scholar]
- Ren, M.; Ning, P.; Xu, J.; Qu, G.; Xie, R. Concentration and treatment of ceric ammonium nitrate wastewater by integrated electrodialysis-vacuum membrane distillation process. Chem. Eng. J. 2018, 351, 721–731. [Google Scholar] [CrossRef]
- Albornoz, L.L.; Marder, L.; Benvenuti, T.; Bernardes, A. Electrodialysis applied to the treatment of an university sewage for water recovery. J. Environ. Chem. Eng. 2019, 7, 102982. [Google Scholar] [CrossRef]
- Gain, E.; Laborie, S.; Viers, P.; Rakib, M.; Durand, G.; Hartmann, D.C. Ammonium nitrate wastewater treatment by coupled membrane electrolysis and electrodialysis. J. Appl. Electrochem. 2002, 32, 969–975. [Google Scholar] [CrossRef]
- Ben Ali, M.A.; Rakib, M.; Laborie, S.; Viers, P.; Durand, G. Coupling of bipolar membrane electrodialysis and ammonia stripping for direct treatment of wastewaters containing ammonium nitrate. J. Membr. Sci. 2004, 244, 89–96. [Google Scholar] [CrossRef]
- Melnikov, S.; Loza, S.; Sharafan, M.; Zabolotskiy, V. Electrodialysis treatment of secondary steam condensate obtained during produc-tion of ammonium nitrate. Technical and economic analysis. Sep. Purif. Technol. 2016, 157, 179–191. [Google Scholar] [CrossRef]
- Reig, M.; Licon, E.; Gibert, О.; Yaroshchuk, A.; Cortina, J.L. Rejection of ammonium and nitrate from sodium chloride solutions by nanofiltration: Effect of dominant-salt concentration on the trace-ion rejection. Chem. Eng. J. 2016, 303, 401–408. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Shi, S.; Cao, H.; Wu, X.; Zhao, Z.; Wang, L. Bipolar membrane electrodialysis for generation of hydrochloric acid and ammo-nia from simulated ammonium chloride wastewater. Water Res. 2015, 89, 201–209. [Google Scholar] [CrossRef] [PubMed]
- Graillon, S.; Persin, F.; Pourcelly, G.; Gavach, C. Development of electrodialysis with bipolar membrane for the treatment of concentrated nitrate effluents. Desalination 1996, 107, 159–169. [Google Scholar] [CrossRef]
- Kozaderova, O.A.; Niftaliev, S.I.; Kim, K.B. Ionic transport in electrodialysis of ammonium nitrate. Russ. J. Electrochem. 2018, 54, 363–367. [Google Scholar] [CrossRef]
- Aminov, O.M.; Shaposhnik, V.A.; Guba, A.A.; Kutsenko, A.E. The conjugate transport of ammonium ions c hydrogen and hydroxyl ions in electrodialysis in overlimiting current densities. Sorbtsionnye Khromatograficheskie Protsessy 2013, 13, 816–822. [Google Scholar]
- Egorov, E.N.; Svittsov, A.A.; Dudnik, S.N.; Demkin, V.I. Fractionation of multicomponent solutions by electrodialysis with bipolar membranes. PET Chem. 2012, 52, 583–592. [Google Scholar] [CrossRef]
- Ye, Y.; Ngo, H.H.; Guo, W.; Liu, Y.; Chang, S.W.; Duc, D.; Liang, H.; Wang, J. A critical review on ammonium recovery from wastewater for sustainable wastewater management. Bioresour. Technol. 2018, 268, 749–758. [Google Scholar] [CrossRef]
- Lazarev, S.; Kovalev, S.; Konovalov, D.; Kovalevа, O. Analysis of kinetic characteristics of baromembrane and electrobarmembrane separation of ammonium nitrate solution. ChemChemTech 2020, 63, 28–36. [Google Scholar] [CrossRef]
- Liu, Y.; Qin, M.; Luo, S.; He, Z.; Qiao, R. Understanding Ammonium transport in bioelectrochemical systems towards its recovery. Sci. Rep. 2016, 6, 22547. [Google Scholar] [CrossRef] [Green Version]
- Melnikova, E.D.; Tsygurina, K.A.; Pismenskaya, N.D. Influence of protonation–deprotonation reactions on the diffusion of ammonium chloride through anion-exchange membrane. Membr. Technol. 2021, 3, 324–333. [Google Scholar] [CrossRef]
- Skolotneva, E.; Tsygurina, K.; Mareev, S.; Melnikova, E.; Pismenskaya, N.; Nikonenko, V. High diffusion permeability of anion-exchange membranes for ammonium chloride: Experiment and modeling. Int. J. Mol. Sci. 2022, 23, 5782. [Google Scholar] [CrossRef]
- Eliseeva, T.V.; Shaposhnik, V.A.; Luschik, I.G. Demineralization and separation of amino acids by electrodialysis with ion-exchange membranes. Desalination 2002, 149, 405–409. [Google Scholar] [CrossRef]
- Pismenskaya, N.; Laktionov, E.; Nikonenko, V.; El Attar, A.; Auclair, B.; Pourcelly, G. Dependence of composition of anion-exchange membranes and their electrical conductivity on concentration of sodium salts of carbonic and phosphoric acids. J. Membr. Sci. 2001, 181, 185–197. [Google Scholar] [CrossRef]
- Franck-Lacaze, L.; Sistat, P.; Huguet, P. Determination of the pKa of poly (4-vinylpyridine)-based weak anion exchange membranes for the investigation of the side proton leakage. J. Membr. Sci. 2009, 326, 650–658. [Google Scholar] [CrossRef]
- Available online: http://www.azotom.ru/monopolyarnye-membrany (accessed on 13 September 2022).
- Damaskin, B.B.; Petrii, O.A.; Tsirlina, G.A. Elektrokhimiya; Khimiya: Moscow, Russia, 2001; p. 624. [Google Scholar]
- Frank, M.J.W.; Kuipers, J.A.M.; van Swaaij, W.P.M. Diffusion coefficients and viscosities of CO2+H2O, CO2+CH3OH, NH3+H2O, and NH3 +CH3OH liquid mixtures. J. Chem. Eng. 1996, 41, 297–302. [Google Scholar] [CrossRef] [Green Version]
- NH4+—Selective Electrode of the Volta Series: Instruction Manual; Volta: St. Petersburg, Russia, 2011; p. 6.
- K+—Selective Electrode of the Volta Series: Instruction Manual; Volta: St. Petersburg, Russia, 2011; p. 6.
- Shaposhnik, V.A.; Vasil’eva, V.I.; Grigorchuk, O.V. Yavleniya perenosa v ionoobmennykh membranakh; MFTI: Moscow, Russia, 2001; p. 200. [Google Scholar]
- Newman, J.S. Electrochemical Systems; Englewood Cliffs: New York, NY, USA, 1973; p. 309. [Google Scholar]
- Zabolotsky, V.I.; Nikonenko, V.V. Ion Transport in Membranes; Nauka: Moscow, Russia, 1996; p. 392. [Google Scholar]
- Pismenskaya, N.D.; Belova, E.I.; Nikonenko, V.V.; Larchet, C. Electrical conductivity of cation-and anion-exchange membranes in ampholyte solutions. Russ. J. Electrochem. 2008, 44, 1285–1291. [Google Scholar] [CrossRef]
- Nevakshenova, E.Е.; Korzhova, E.S.; Pismenskaya, N.D. Electrical conductivity of some anion exchange membranes in the solutions of salts of carbonic, phosphoric and tartaric acids. Sorbtsionnye Khromatograficheskie Protsessy 2012, 12, 893–900. [Google Scholar]
- Belashova, E.D.; Pismenskaya, N.D.; Nikonenko, V.V.; Sistat, P.; Pourcelly, G. Current-voltage characteristic of anion-exchange membrane in monosodium phosphate solution. Modelling and experiment. J. Membr. Sci. 2017, 542, 177–185. [Google Scholar] [CrossRef]
- Sarapulova, V.; Nevakshenova, E.; Pismenskaya, N.; Dammak, L.; Nikonenko, V. Unusual concentration dependence of ionexchange membrane conductivity in ampholyte-containing solutions: Effect of ampholyte nature. J. Membr. Sci. 2015, 479, 28–38. [Google Scholar] [CrossRef]
- Pismenskaya, N.; Sarapulova, V.; Klevtsova, A.; Mikhaylin, S.; Bazinet, L. Adsorption of anthocyanins by cation and anion exchange resins with aromatic and aliphatic polymer matrices. Int. J. Mol. Sci. 2020, 21, 7874. [Google Scholar] [CrossRef]
- Teorell, T. An attempt to formulate a quantitative theory of membrane permeability. Exp. Biol. Med. 1935, 33, 282–285. [Google Scholar] [CrossRef]
- Meyer, K.H.; Sievers, J.-F. La perméabilité des membranes I. Théorie de la perméabilité ionique. Helv. Chim. Acta 1936, 19, 649–664. [Google Scholar] [CrossRef]
- Lakshminarayanaiah, N. Transport Phenomena in Membranes; Academic Press: New York, NY, USA, 1969; p. 517. [Google Scholar] [CrossRef]
- Manzanares, J.; Murphy, W.D.; Mafe, S.; Reiss, H. Numerical simulation of the nonequilibrium diffuse double layer in ion-exchange membranes. J. Phys. Chem. 1993, 97, 8524–8530. [Google Scholar] [CrossRef]
- Zabolotsky, V.I.; Nikonenko, V.V.; Lebedev, K.A.; Lovtsov, E.G.; Manzanares, J.A. Space charge effect on competitive ion transport through ionexchange membranes. Desalination 2002, 147, 387–392. [Google Scholar] [CrossRef]
- Tanaka, Y. Concentration polarization in ion exchange membrane electrodialysis the events arising in a flowing solution in a desalting cell. J. Membr. Sci. 2003. 216, 149–164. [CrossRef]
- Kreuer, K.D. On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells. J. Membr. Sci. 2001, 185, 29–39. [Google Scholar] [CrossRef]
- Kamcev, J.; Doherty, C.M.; Lopez, K.P.; Hill, A.J.; Paul, D.R.; Freeman, B.D. Effect of fixed charge group concentration on salt permeability and diffusion coefficients in ion exchange membranes. J. Membr. Sci. 2018, 566, 307–316. [Google Scholar] [CrossRef]
- Paddison, S.J.; Reginald, P.; Klaus-Dieter, К. Theoretically computed proton diffusion coefficients in hydrated PEEKK membranes. Phys. Chem. Chem. Phys. 2002, 4, 1151–1157. [Google Scholar] [CrossRef]
- Kuldeep; Badenhorst, W.D.; Kauranen, P.; Pajari, H.; Ruismäki, R.; Mannela, P.; Murtomäki, L. Bipolar membrane electrodialysis for sulfate recycling in the metallurgical industries. Membranes 2021, 11, 718. [Google Scholar] [CrossRef]
Membrane | Functional Groups | Binder | Reinforcing Fabric | Thickness, mm | Exchange Capacity, mmol g−1 | Moisture Contents, % | Transport Number | Electrical Resistivity (in 0.6 M NaCl) Ohm⸱cm |
---|---|---|---|---|---|---|---|---|
MK-40 | -SO3H | Polyethylene | Capron | 0.41 ± 0.04 | 2.40 ± 0.22 | 40 ± 5 | >0.80 | 220 |
MK-41 | -PO3H2 | Polyethylene | Capron | 0.50 ± 0.04 | 2.80 ± 0.23 | 35 ± 4 | >0.80 | 350 |
MA-41 | -N+(CH3)3 | Polyethylene | Capron | 0.55 ± 0.05 | 2.00 ± 0.16 | 40 ± 5 | >0.94 | 350 |
Particle | Stokes Radius, nm | Diffusion Coefficient in Solution, Di·109, m2/s |
---|---|---|
H+ | 0.026 | 9.311 |
K+ | 0.125 | 1.957 |
NH4+ | 0.124 | 1.957 |
NO3- | 0.128 | 1.902 |
NH3 | 0.130 | 1.705 |
OH– | 0.046 | 5.273 |
Parameter | Value and Measurement Unit |
---|---|
Thickness of the diffusion layer | 100 μm |
Thickness of the membrane | 500 μm |
Total exchange capacity of the membrane | 2 mole/L |
Diffusion coefficient of H+ in the membrane | 1.4 × 10−10 m2 s−1 |
Diffusion coefficient of OH– in the membrane | 0.8 × 10−10 m2 s−1 |
Diffusion coefficient of NH4+ in the membrane | 5.4 × 10−11 m2 s−1 |
Diffusion coefficient of K+ in the membrane | 5.4 × 10−11 m2 s−1 |
Diffusion coefficient of NO3− in the membrane | 5.4 × 10−11 m2 s−1 |
Diffusion coefficient of NH3 in the membrane | 4.74 × 10−11 m2 s−1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kozaderova, O.; Kozaderov, O.; Niftaliev, S. Electromass Transfer in the System “Cation Exchange Membrane—Ammonium Nitrate Solution”. Membranes 2022, 12, 1144. https://doi.org/10.3390/membranes12111144
Kozaderova O, Kozaderov O, Niftaliev S. Electromass Transfer in the System “Cation Exchange Membrane—Ammonium Nitrate Solution”. Membranes. 2022; 12(11):1144. https://doi.org/10.3390/membranes12111144
Chicago/Turabian StyleKozaderova, Olga, Oleg Kozaderov, and Sabukhi Niftaliev. 2022. "Electromass Transfer in the System “Cation Exchange Membrane—Ammonium Nitrate Solution”" Membranes 12, no. 11: 1144. https://doi.org/10.3390/membranes12111144
APA StyleKozaderova, O., Kozaderov, O., & Niftaliev, S. (2022). Electromass Transfer in the System “Cation Exchange Membrane—Ammonium Nitrate Solution”. Membranes, 12(11), 1144. https://doi.org/10.3390/membranes12111144