Improved Hydrolytic and Mechanical Stability of Sulfonated Aromatic Proton Exchange Membranes Reinforced by Electrospun PPSU Fibers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Electrospinning
2.2. Membrane Casting
2.3. Scanning Electron Microscopy
2.4. Mechanical Test
2.5. Hydrolytic Stability
2.6. Impedance Spectroscopy
3. Results and Discussion
3.1. Electrospinning of PPSU and Reinforced Membrane Casting
3.2. Hydrolytic Stability of Membranes
3.2.1. SPEEK Cast from Mixture 50% Ethanol and 50% Water (K-EW)
3.2.2. SPEEK Cast from Mixture 90% Water and 10% Dimethyl Sulfoxide (K-WD)
3.2.3. SPPSU Cast from Ethanol (U-E)
3.2.4. SPPSU Cast from Mixture 90% Water and 10% DMSO (U-WD)
3.2.5. Blend Membranes of 70% SPEEK and 30% SPPSU Cast from Mixture 90% Water and 10% DMSO (7K3U-WD)
3.3. Discussion of Solvent Effects
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Miyake, J.; Watanabe, T.; Shintani, H.; Sugawara, Y.; Uchida, M.; Miyatake, K. Reinforced Polyphenylene Ionomer Membranes Exhibiting High Fuel Cell Performance and Mechanical Durability. ACS Mater. Au 2021, 1, 81–88. [Google Scholar] [CrossRef]
- Zhang, H.; Shen, P.K. Recent development of polymer electrolyte membranes for fuel cells. Chem. Rev. 2012, 112, 2780–2832. [Google Scholar] [CrossRef]
- Jiao, K.; Xuan, J.; Du, Q.; Bao, Z.; Xie, B.; Wang, B.; Zhao, Y.; Fan, L.; Wang, H.; Hou, Z.; et al. Designing the next generation of proton-exchange membrane fuel cells. Nature 2021, 595, 361–369. [Google Scholar] [CrossRef]
- Choi, J.; Lee, K.M.K.; Wycisk, R.; Pintauro, P.N.; Mather, P.T. Nanofiber network ion-exchange membranes. Macromolecules 2008, 41, 4569–4572. [Google Scholar] [CrossRef]
- Alberti, G.; Casciola, M. Composite membranes for medium-temperature pem fuel cells. Annu. Rev. Mater. Res. 2003, 33, 129–154. [Google Scholar] [CrossRef]
- Di Vona, M.L.; Sgreccia, E.; Donnadio, A.; Casciola, M.; Chailan, J.F.; Auer, G.; Knauth, P. Composite polymer electrolytes of sulfonated poly-ether-ether-ketone (SPEEK) with organically functionalized TiO2. J. Memb. Sci. 2011, 369, 536–544. [Google Scholar] [CrossRef]
- Hou, H.; Di Vona, M.L.; Knauth, P. Building bridges: Crosslinking of sulfonated aromatic polymers—A review. J. Memb. Sci. 2012, 423–424, 113–127. [Google Scholar] [CrossRef]
- Di Vona, M.L.; Sgreccia, E.; Licoccia, S.; Khadhraoui, M.; Denoyel, R.; Knauth, P. Composite proton-conducting hybrid polymers: Water sorption isotherms and mechanical properties of blends of sulfonated PEEK and substituted PPSU. Chem. Mater. 2008, 20, 4327–4334. [Google Scholar] [CrossRef]
- Kerres, J.A. Blended and cross-linked ionomer membranes for application in membrane fuel cells. Fuel Cells 2005, 5, 230–247. [Google Scholar] [CrossRef]
- De Bruijn, F.A.; Makkus, R.C.; Mallant, R.K.A.M.; Janssen, G.J.M. Materials for State-of-the-Art PEM Fuel Cells, and Their Suitability for Operation Above 100 °C; Elsevier: Amsterdam, The Netherlands, 2007; pp. 235–336. [Google Scholar] [CrossRef]
- Yandrasits, M.; Hamrock, S. Poly(Perfluorosulfonic acid) membranes. In Polymer Science: A Comprehensive Reference; Elsevier: Amsterdam, The Netherlands, 2012; pp. 601–619. [Google Scholar] [CrossRef]
- Wang, G.; Yu, D.; Kelkar, A.D.; Zhang, L. Electrospun nanofiber: Emerging reinforcing filler in polymer matrix composite materials. Prog. Polym. Sci. 2017, 75, 73–107. [Google Scholar] [CrossRef]
- Giancola, S.; Zatoń, M.; Reyes-Carmona, Á.; Dupont, M.; Donnadio, A.; Cavaliere, S.; Rozière, J.; Jones, D.J. Composite short side chain PFSA membranes for PEM water electrolysis. J. Memb. Sci. 2018, 570–571, 69–76. [Google Scholar] [CrossRef]
- Park, J.; Wycisk, R.; Pintauro, P.; Yarlagadda, V.; Van Nguyen, T. Electrospun Nafion®/Polyphenylsulfone Composite Membranes for Regenerative Hydrogen Bromine Fuel Cells. Materials 2016, 9, 143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boaretti, C.; Pasquini, L.; Sood, R.; Giancola, S.; Donnadio, A.; Roso, M.; Modesti, M.; Cavaliere, S. Mechanically stable nanofibrous sPEEK/Aquivion® composite membranes for fuel cell applications. J. Memb. Sci. 2018, 545, 66–74. [Google Scholar] [CrossRef]
- Dong, B.; Gwee, L.; Salas-De La Cruz, D.; Winey, K.I.; Elabd, Y.A. Super proton conductive high-purity nafion nanofibers. Nano Lett. 2010, 10, 3785–3790. [Google Scholar] [CrossRef]
- Ahmed, F.E.; Lalia, B.S.; Hashaikeh, R. A review on electrospinning for membrane fabrication: Challenges and applications. Desalination 2015, 356, 15–30. [Google Scholar] [CrossRef]
- Cavaliere, S.; Subianto, S.; Savych, I.; Jones, D.J.; Rozière, J. Electrospinning: Designed architectures for energy conversion and storage devices. Energy Environ. Sci. 2011, 4, 4761–4785. [Google Scholar] [CrossRef] [Green Version]
- Subbiah, T.; Bhat, G.S.; Tock, R.W.; Parameswaran, S.; Ramkumar, S.S. Electrospinning of nanofibers. J. Appl. Polym. Sci. 2005, 96, 557–569. [Google Scholar] [CrossRef]
- Ray, S.S.; Chen, S.-S.; Li, C.-W.; Nguyen, N.C.; Nguyen, H.T. A comprehensive review: Electrospinning technique for fabrication and surface modification of membranes for water treatment application. RSC Adv. 2016, 6, 85495–85514. [Google Scholar] [CrossRef]
- Cramariuc, B.; Cramariuc, R.; Scarlet, R.; Manea, L.R.; Lupu, I.G.; Cramariuc, O. Fiber diameter in electrospinning process. J. Electrostat. 2013, 71, 189–198. [Google Scholar] [CrossRef]
- Sood, R.; Cavaliere, S.; Jones, D.J.; Rozière, J. Electrospun nanofibre composite polymer electrolyte fuel cell and electrolysis membranes. Nano Energy 2016, 26, 729–745. [Google Scholar] [CrossRef] [Green Version]
- Mollá, S.; Compañ, V. Nanocomposite SPEEK-based membranes for Direct Methanol Fuel Cells at intermediate temperatures. J. Memb. Sci. 2015, 492, 123–136. [Google Scholar] [CrossRef]
- Wang, S.-H.; Lin, H.-L. Poly (vinylidene fluoride-co-hexafluoropropylene)/polybenzimidazole blend nanofiber supported Nafion membranes for direct methanol fuel cells. J. Power Sources 2014, 257, 254–263. [Google Scholar] [CrossRef]
- Ballengee, J.B.; Pintauro, P.N. Composite fuel cell membranes from dual-nanofiber electrospun mats. Macromolecules 2011, 44, 7307–7314. [Google Scholar] [CrossRef]
- Di Vona, M.L.; Sgreccia, E.; Licocda, S.; Alberti, G.; Tortet, L.; Knauth, P. Analysis of temperature-promoted and solvent-assisted cross-linking in sulfonated poly(ether ether ketone) (SPEEK) proton-conducting membranes. J. Phys. Chem. B 2009, 113, 7505–7512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maranesi, B.; Hou, H.; Polini, R.; Sgreccia, E.; Alberti, G.; Narducci, R.; Knauth, P.; Di Vona, M.L. Cross-Linking of Sulfonated Poly(ether ether ketone) by Thermal Treatment: How Does the Reaction Occur? Fuel Cells 2013, 13, 107–117. [Google Scholar] [CrossRef] [Green Version]
- Knauth, P.; Pasquini, L.; Maranesi, B.; Pelzer, K.; Polini, R.; Di Vona, M.L. Proton mobility in sulfonated polyEtherEtherKetone (SPEEK): Influence of thermal crosslinking and annealing. Fuel Cells 2013, 13, 79–85. [Google Scholar] [CrossRef] [Green Version]
- Sgreccia, E.; Di Vona, M.L.; Knauth, P. Hybrid composite membranes based on SPEEK and functionalized PPSU for PEM fuel cells. Int. J. Hydrog. Energy 2011, 36, 8063–8069. [Google Scholar] [CrossRef]
- Pasquini, L.; Zhakisheva, B.; Sgreccia, E.; Narducci, R.; Di Vona, M.L.; Knauth, P. Stability of Proton Exchange Membranes in Phosphate Buffer for Enzymatic Fuel Cell Application: Hydration, Conductivity and Mechanical Properties. Polymers 2021, 13, 475. [Google Scholar] [CrossRef]
- Di Vona, M.L.; Alberti, G.; Sgreccia, E.; Casciola, M.; Knauth, P. High performance sulfonated aromatic ionomers by solvothermal macromolecular synthesis. Int. J. Hydrog. Energy 2012, 37, 8672–8680. [Google Scholar] [CrossRef]
- Di Vona, M.L.; Luchetti, L.; Spera, G.P.; Sgreccia, E.; Knauth, P. Synthetic strategies for the preparation of proton-conducting hybrid polymers based on PEEK and PPSU for PEM fuel cells. Comptes Rendus Chim. 2008, 11, 1074–1081. [Google Scholar] [CrossRef]
- Kim, J.D.; Ohira, A.; Nakao, H. Chemically Crosslinked Sulfonated Polyphenylsulfone (CSPPSU) Membranes for PEM Fuel Cells. Membranes 2020, 10, 31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zaidi, S.M.; Mikhailenko, S.; Robertson, G.; Guiver, M.; Kaliaguine, S. Proton conducting composite membranes from polyether ether ketone and heteropolyacids for fuel cell applications. J. Memb. Sci. 2000, 173, 17–34. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Górecki, R.P.; Stamate, E.; Norrman, K.; Aili, D.; Zuo, M.; Guo, W.; Hélix-Nielsen, C.; Zhang, W. Preparation of super-hydrophilic polyphenylsulfone nanofiber membranes for water treatment. RSC Adv. 2019, 9, 278–286. [Google Scholar] [CrossRef] [Green Version]
- De Poulpiquet, A.; Ranava, D.; Monsalve, K.; Giudici-Orticoni, M.-T.; Lojou, E. Biohydrogen for a New Generation of H2/O2 Biofuel Cells: A Sustainable Energy Perspective. ChemElectroChem 2014, 1, 1724–1750. [Google Scholar] [CrossRef]
- Hitaishi, V.P.; Mazurenko, I.; Harb, M.; Clément, R.; Taris, M.; Castano, S.; Duché, D.; Lecomte, S.; Ilbert, M.; De Poulpiquet, A.; et al. Electrostatic-Driven Activity, Loading, Dynamics, and Stability of a Redox Enzyme on Functionalized-Gold Electrodes for Bioelectrocatalysis. ACS Catal. 2018, 8, 12004–12014. [Google Scholar] [CrossRef] [Green Version]
- Narducci, R.; Di Vona, M.L.; Knauth, P. Cation-conducting ionomers made by ion exchange of sulfonated poly-ether-ether-ketone: Hydration, mechanical and thermal properties and ionic conductivity. J. Memb. Sci. 2014, 465, 185–192. [Google Scholar] [CrossRef]
- Di Vona, M.L.; Pasquini, L.; Narducci, R.; Pelzer, K.; Donnadio, A.; Casciola, M.; Knauth, P. Cross-linked sulfonated aromatic ionomers via SO2bridges: Conductivity properties. J. Power Sources 2013, 243, 488–493. [Google Scholar] [CrossRef]
- Knauth, P.; Sgreccia, E.; Donnadio, A.; Casciola, M.; Di Vona, M.L. Water Activity Coefficient and Proton Mobility in Hydrated Acidic Polymers. J. Electrochem. Soc. 2011, 158, B159. [Google Scholar] [CrossRef]
- Wyman, J., Jr.; Ingalls, E.N. The dielectric constant of Deuterium Oxyde. J. Am. Chem. Soc. 1938, 60, 1182–1184. [Google Scholar] [CrossRef]
- Malmberg, C.G.; Maryott, A.A. Dielectric constant of water from 0 to 100 °C. J. Res. Natl. Bur. Stand. (1934) 1956, 56, 1. [Google Scholar] [CrossRef]
- Shcherbakov, V.V.; Artemkina, Y.M.; Akimova, I.A.; Artemkina, I.M. Dielectric characteristics, electrical conductivity and solvation of ions in electrolyte solutions. Materials 2021, 14, 5617. [Google Scholar] [CrossRef] [PubMed]
- Wyman, J., Jr. The dielectric constant of mixtures of ethyl alcohol and water from −5 to 40°. J. Am. Chem. Soc. 1931, 53, 3292–3301. [Google Scholar] [CrossRef]
- CRC Handbook of Chemistry and Physics, 61st ed.; CRC Press: Boca Raton, FL, USA, 1980.
Code | Polymer | Casting Solvent | Reinforcement | Thermal Treatment |
---|---|---|---|---|
K-EW | SPEEK | 50% ethanol/50% water | ||
K-EW_R | ✓ | |||
K-WD | 90% water/10% DMSO | |||
K-WD_TT | ✓ | |||
K-WD_R | ✓ | |||
K-WD_R_TT | ✓ | ✓ | ||
U-E | SPPSU | Ethanol | ||
U-E_TT | ✓ | |||
U-E_R | ✓ | |||
U-E_R_TT | ✓ | ✓ | ||
U-WD | 90% water/10% DMSO | |||
U-WD_TT | ✓ | |||
U-WD_R | ✓ | |||
U-WD_R_TT | ✓ | ✓ | ||
7K3U-WD | 70% SPEEK/30% SPPSU | 90% water/10% DMSO | ||
7K3U-WD_TT | ✓ | |||
7K3U-WD_R | ✓ | |||
7K3U-WD_R_TT | ✓ | ✓ |
Membrane Code | K-EW | K-EW_R |
---|---|---|
Thickness (μm) | 98 | 78 |
Young’s modulus (MPa) | 1090 ± 5 | 1130 ± 50 |
Ionic conductivity (mS/cm) | 23 | 26 |
Dry density (g/cm3) | 1.4 | 1.1 |
Membrane Code | K-WD | K-WD_TT | K-WD_R | K-WD_R_TT |
---|---|---|---|---|
Thickness (μm) | 54 | 40 | 75 | 73 |
Young’s modulus (MPa) | 1080 ± 40 | 930 ± 120 | 580 ± 40 | 720 ± 6 |
Ionic conductivity (mS/cm) | 16 | 15 | 13 | 9 |
Dry density (g/cm3) | 1.5 | 1.4 | 0.6 | 1 |
Membrane Code | U-E | U-E_TT | U-E_R | U-E_R_TT |
---|---|---|---|---|
Thickness (μm) | 41 * | 63 | 50 * | 57 |
Young’s modulus (MPa) | 500 ± 40 | -- | -- | 860 ± 30 |
Ionic conductivity (mS/cm) | -- | -- | -- | 35 |
Dry density (g/cm3) | 1.3 | 1.3 | -- | 1.1 |
Membrane Code | 7K3U-WD | 7K3U-WD_TT | 7K3U-WD_R | 7K3U-WD_R_TT |
---|---|---|---|---|
Thickness (μm) | 92 | 58 | 66 | 73 |
Young’s modulus (MPa) | 830 ± 120 | -- | 540 ± 10 | 800 ± 40 |
Ionic conductivity (mS/cm) | 29 | 10 | 21 | 17 |
Dry density (g/cm3) | 1.2 | 1.3 | 0.9 | 0.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pasquini, L.; Sauvan, M.; Narducci, R.; Sgreccia, E.; Knauth, P.; Di Vona, M.L. Improved Hydrolytic and Mechanical Stability of Sulfonated Aromatic Proton Exchange Membranes Reinforced by Electrospun PPSU Fibers. Membranes 2022, 12, 1159. https://doi.org/10.3390/membranes12111159
Pasquini L, Sauvan M, Narducci R, Sgreccia E, Knauth P, Di Vona ML. Improved Hydrolytic and Mechanical Stability of Sulfonated Aromatic Proton Exchange Membranes Reinforced by Electrospun PPSU Fibers. Membranes. 2022; 12(11):1159. https://doi.org/10.3390/membranes12111159
Chicago/Turabian StylePasquini, Luca, Maxime Sauvan, Riccardo Narducci, Emanuela Sgreccia, Philippe Knauth, and Maria Luisa Di Vona. 2022. "Improved Hydrolytic and Mechanical Stability of Sulfonated Aromatic Proton Exchange Membranes Reinforced by Electrospun PPSU Fibers" Membranes 12, no. 11: 1159. https://doi.org/10.3390/membranes12111159
APA StylePasquini, L., Sauvan, M., Narducci, R., Sgreccia, E., Knauth, P., & Di Vona, M. L. (2022). Improved Hydrolytic and Mechanical Stability of Sulfonated Aromatic Proton Exchange Membranes Reinforced by Electrospun PPSU Fibers. Membranes, 12(11), 1159. https://doi.org/10.3390/membranes12111159