Novel Orientation-Sensitive Spin Probes for Graphene Oxide Membranes Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Samples Preparation
2.3. EPR Measurements
3. Results and Discussion
3.1. Spin-Hamiltonian Parameters of the Spin Probes
3.2. Orientational Alignment of the Probing Molecules in Graphene Oxide Membrane
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nair, R.R.; Wu, H.A.; Jayaram, P.N.; Grigorieva, I.V.; Geim, A.K. Unimpeded Permeation of Water Through Helium-Leak-Tight Graphene-Based Membranes. Science 2012, 335, 442–444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Song, Z.; Zhang, X.; Huang, Y.; Li, S.; Mao, Y.; Ploehn, H.J.; Bao, Y.; Yu, M. Ultrathin, Molecular-Sieving Graphene Oxide Membranes for Selective Hydrogen Separation. Science 2013, 342, 95–98. [Google Scholar] [CrossRef] [PubMed]
- Joshi, R.K.; Carbone, P.; Wang, F.C.; Kravets, V.G.; Su, Y.; Grigorieva, I.V.; Wu, H.A.; Geim, A.K.; Nair, R.R. Precise and Ultrafast Molecular Sieving Through Graphene Oxide Membranes. Science 2014, 343, 752–754. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, J.; Ping, D.; Dong, X. Recent Developments of Graphene Oxide-Based Membranes: A Review. Membranes 2017, 7, 52. [Google Scholar] [CrossRef] [PubMed]
- Tsou, C.-H.; An, Q.-F.; Lo, S.-C.; De Guzman, M.; Hung, W.-S.; Hu, C.-C.; Lee, K.-R.; Lai, J.-Y. Effect of microstructure of graphene oxide fabricated through different self-assembly techniques on 1-butanol dehydration. J. Membr. Sci. 2015, 477, 93–100. [Google Scholar] [CrossRef]
- Talyzin, A.V.; Hausmaninger, T.; You, S.; Szabó, T. The structure of graphene oxide membranes in liquid water, ethanol and water–ethanol mixtures. Nanoscale 2014, 6, 272–281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Talyzin, A.V.; Klechikov, A.; Korobov, M.; Rebrikova, A.T.; Avramenko, N.V.; Gholami, M.F.; Severin, N.; Rabe, J.P. Delamination of graphite oxide in a liquid upon cooling. Nanoscale 2015, 7, 12625–12630. [Google Scholar] [CrossRef] [PubMed]
- Akbari, A.; Sheath, P.; Martin, S.T.; Shinde, D.B.; Shaibani, M.; Banerjee, P.C.; Tkacz, R.; Bhattacharyya, D.; Majumder, M. Large-area graphene-based nanofiltration membranes by shear alignment of discotic nematic liquid crystals of graphene oxide. Nat. Commun. 2016, 7, 10891. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chumakova, N.A.; Rebrikova, A.T.; Talyzin, A.V.; Paramonov, N.A.; Vorobiev, A.K.; Korobov, M.V. Properties of Graphite Oxide Powders and Membranes as Revealed by Electron Paramagnetic Resonance Spectroscopy. J. Phys. Chem. C 2018, 122, 22750–22759. [Google Scholar] [CrossRef]
- Chumakova, N.A.; Kh, V.A.; Astvatsaturov, D.A.; Yankova, T.S.; Rebrikova, A.T.; Matveev, M.V. Quantitative determination of the orientational ordering of graphene oxide membranes by the spin probe technique. Phys. Chem. Chem. Phys. 2022, 24, 4881–4890. [Google Scholar] [CrossRef]
- Chumakova, N.A.; Vorobiev, A.K. Orientation Distribution of Molecules: Characterization and Experimental Determination by Means of Magnetic Resonance. Appl. Magn. Reson. 2020, 51, 1145–1175. [Google Scholar] [CrossRef]
- Kálai, T.; Balog, M.; Jekö, J.; Hideg, K. Synthesis and Reactions of a Symmetric Paramagnetic Pyrrolidine Diene. Synthesis 1999, 1999, 973–980. [Google Scholar] [CrossRef]
- Isbera, M.; Bognár, B.; Gulyás-Fekete, G.; Kish, K.; Kálai, T. Syntheses of Pyrazine-, Quinoxaline-, and Imidazole-Fused Pyrroline Nitroxides. Synthesis 2019, 51, 4463–4472. [Google Scholar] [CrossRef] [Green Version]
- Hummers, W.S., Jr.; Offeman, R.E. Preparation of Graphitic Oxide. J. Am. Chem. Soc. 1958, 80, 1339. [Google Scholar] [CrossRef]
- Vorobiev, A.K.; Chumakova, N.A. Determination of orientation distribution function of anisotropic paramagnetic species by analysis of ESR spectra angular dependence. J. Magn. Reson. 2005, 175, 146–157. [Google Scholar] [CrossRef] [PubMed]
- Chumakova, N.A.; Yankova, T.S.; Fairfull-Smith, K.E.; Bottle, S.; Vorobiev, A.K. Molecular Orientational Order of Nitroxide Radicals in Liquid Crystalline Media. J. Phys. Chem. B 2014, 118, 5589–5599. [Google Scholar] [CrossRef] [PubMed]
- Vorobiev, A.K.; Chumakova, N.A. Simulation of Rigid-limit and Slow-Motion EPR Spectra for Extraction of Quantitative Dynamic and Orientational Information. In Nitroxides—Theory, Experiment and Applications; InTech: Rijeka, Croatia, 2012; pp. 57–112. [Google Scholar]
- Neese, F. The ORCA program system. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012, 2, 73–78. [Google Scholar] [CrossRef]
- Barone, V.; Cimino, P.; Stendardo, E. Development and Validation of the B3LYP/N07D Computational Model for Structural Parameter and Magnetic Tensors of Large Free Radicals. J. Chem. Theory Comput. 2008, 4, 751–764. [Google Scholar] [CrossRef] [PubMed]
- Zhdanov, R.I. Bioactive spin labels. Gen. Pharmacol. Vasc. Syst. 1993, 24, 1293. [Google Scholar] [CrossRef]
- Erickson, K.; Erni, R.; Lee, Z.; Alem, N.; Gannett, W.; Zettl, A. Determination of the Local Chemical Structure of Graphene Oxide and Reduced Graphene Oxide. Adv. Mater. 2010, 22, 4467–4472. [Google Scholar] [CrossRef] [PubMed]
gxx | gyy | gzz | giso | Axx | Ayy | Azz | Aiso | |
---|---|---|---|---|---|---|---|---|
H1 toluene 298 K | 2.0062 | 14.07 | ||||||
H1 toluene 120 K | 2.0095 | 2.0066 | 2.0024 | 2.0062 | 5.3 | 4.3 | 32.56 | 14.05 |
H1 GO 120 K | 2.0092 | 2.0063 | 2.0024 | 2.0060 | 4.3 | 4.8 | 35.22 | 14.77 |
H2 toluene 298 K | 2.0062 | 13.93 | ||||||
H2 toluene 120 K | 2.0095 | 2.0068 | 2.0024 | 2.0062 | 5.4 | 4.0 | 32.34 | 13.91 |
H2 GO 120 K | 2.0092 | 2.0065 | 2.0024 | 2.0060 | 4.3 | 4.8 | 34.74 | 14.77 |
H3 toluene 298 K | 2.0061 | 14.02 | ||||||
H3 toluene 120 K | 2.0094 | 2.0068 | 2.0023 | 2.0062 | 5.3 | 4.1 | 32.66 | 14.02 |
H3 GO 120 K | 2.0092 | 2.0060 | 2.0024 | 2.0059 | 4.3 | 4.8 | 34.97 | 14.69 |
Spin Probe | P20 | P40 |
---|---|---|
A3 | 0.41 | 0.23 |
A5 | 0.42 | 0.14 |
TEMPO | 0.27 | 0.05 |
TEMPOL | 0.31 | 0.07 |
4-aminoTEMPO | 0.24 | - |
[Cu(NH3)4]2+ | 0.30 | 0.15 |
HR_2545 | 0.39 | 0.12 |
HR_4968 | 0.50 | 0.21 |
HR_4972 | 0.44 | 0.13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chumakova, N.A.; Kalai, T.; Rebrikova, A.T.; Sár, C.; Kokorin, A.I. Novel Orientation-Sensitive Spin Probes for Graphene Oxide Membranes Study. Membranes 2022, 12, 1241. https://doi.org/10.3390/membranes12121241
Chumakova NA, Kalai T, Rebrikova AT, Sár C, Kokorin AI. Novel Orientation-Sensitive Spin Probes for Graphene Oxide Membranes Study. Membranes. 2022; 12(12):1241. https://doi.org/10.3390/membranes12121241
Chicago/Turabian StyleChumakova, Natalia A., Tamas Kalai, Anastasiya T. Rebrikova, Cecília Sár, and Alexander I. Kokorin. 2022. "Novel Orientation-Sensitive Spin Probes for Graphene Oxide Membranes Study" Membranes 12, no. 12: 1241. https://doi.org/10.3390/membranes12121241
APA StyleChumakova, N. A., Kalai, T., Rebrikova, A. T., Sár, C., & Kokorin, A. I. (2022). Novel Orientation-Sensitive Spin Probes for Graphene Oxide Membranes Study. Membranes, 12(12), 1241. https://doi.org/10.3390/membranes12121241