Characterization and Interaction with Biomembrane Model of Benzo[k,l]xanthene Lignan Loaded Solid Lipid Nanoparticles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of BXL
2.3. Preparation of SLN
2.4. SLN Physicochemical Characterization
2.5. Determination of the Entrapment Efficiency
2.6. In Vitro Release Study of BXL from SLN
2.7. Antioxidant Activity Determination
2.7.1. DPPH• Scavenging Assay
2.7.2. Oxygen Radical Absorption Capacity (ORAC) Assay
2.8. Stability Studies
2.9. Preparation of MLV
2.10. Differential Scanning Calorimetry
2.10.1. Unloaded and BXL-Loaded-SLN Analysis
2.10.2. Unloaded and BXL-Loaded-MLV Analysis
2.10.3. MLV/SLN Interaction
3. Results and Discussion
3.1. Formulation and Characterization of SLN
3.2. Entrapment Efficiency (EE)
3.3. In Vitro Release
3.4. Antioxidant Activity Determination
3.5. Differential Scanning Calorimetry
3.5.1. Unloaded and BXL-Loaded-SLN Analysis
3.5.2. Unloaded and BXL-Loaded-MLV Analysis
3.5.3. MLV/SLN Interaction
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Da Silva, S.A.S.; Souto, A.L.; Agra, M.D.; da-Cunha, E.V.L.; Barbosa, J.M.; da Silva, M.S.; Braz Filho, R. A new arylnaphthalene type lignan from Cordia rufescens A. DC. (Boraginaceae). Arkivoc 2004, 6, 54–58. [Google Scholar] [CrossRef]
- Shi, S.; Zhang, Y.; Huang, K.; Liu, S.; Zhao, Y. Application of preparative high-speed counter-current chromatography for separation and purification of lignans from Taraxacum mongolicum. Food Chem. 2008, 108, 402–406. [Google Scholar] [CrossRef]
- Qu, Z.Y.; Zhang, Y.W.; Yao, C.L.; Jin, Y.P.; Zheng, P.H.; Sun, C.H.; Wang, Y.P. Chemical constituents from Orobanche cernua Loefling. Biochem. Syst. Ecol. 2015, 60, 199–203. [Google Scholar] [CrossRef]
- Tanaka, T.; Nishimura, A.; Kouno, I.; Nonaka, G.; Yang, C.R. Four new caffeic acid metabolites, yunnaneic acids E-H, from Salvia yunnanensis. Chem. Pharm. Bull. 1997, 45, 1596–1600. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Z.H.; Tanaka, T.; Kouno, I. Chilianthins A-F, six triterpene esters having dimeric structures from Rhioptelea chiliantha Diels et Hand-Mazz. Chem. Pharm. Bull. 1996, 44, 1669–1675. [Google Scholar] [CrossRef] [Green Version]
- Kumar, M.; Rawat, P.; Rahuja, N.; Srivastava, A.K.; Maurya, R. Antihyperglycemic activity of phenylpropanoyl esters of catechol glycoside and its dimers from Dodecadenia grandiflora. Phytochemistry 2009, 70, 1448–1455. [Google Scholar] [CrossRef]
- Daquino, C.; Rescifina, A.; Spatafora, C.; Tringali, C. Biomimetic synthesis of natural and "unnatural" lignans by oxidative coupling of caffeic esters. Eur. J. Org. Chem. 2009, 36, 6289–6300. [Google Scholar] [CrossRef]
- Spatafora, C.; Daquino, C.; Tringali, C.; Amorati, R. Reaction of benzoxanthene lignans with peroxyl radicals in polar and non-polar media: Cooperative behaviour of OH groups. Org. Biomol. Chem. 2013, 11, 4291–4294. [Google Scholar] [CrossRef]
- Gerstmeier, J.; Kretzer, C.; Di Micco, S.; Miek, L.; Butschek, H.; Cantone, V.; Pace, S. Novel benzoxanthene lignans that favorably modulate lipid mediator biosynthesis: A promising pharmacological strategy for anti-inflammatory therapy. Biochem. Pharmacol. 2019, 165, 263–274. [Google Scholar] [CrossRef]
- Floresta, G.; Cardullo, N.; Spatafora, C.; Rescifina, A.; Tringali, C. A rare natural benzo k,l xanthene as a turn-off fluorescent sensor for Cu2+ Ion. Int. J. Mol. Sci. 2020, 21, 6933. [Google Scholar] [CrossRef]
- Genovese, C.; Pulvirenti, L.; Cardullo, N.; Muccilli, V.; Tempera, G.; Nicolosi, D.; Tringali, C. Bioinspired benzoxanthene lignans as a new class of antimycotic agents: Synthesis and Candida spp. growth inhibition. Nat. Prod. Res. 2020, 34, 1653–1662. [Google Scholar] [CrossRef]
- Tumir, L.M.; Zonjic, I.; Zuna, K.; Brkanac, S.R.; Jukic, M.; Hudek, A.; Stojkovic, M.R. Synthesis, DNA/RNA-interaction and biological activity of benzo k,l xanthene lignans. Bioorg. Chem. 2010, 104, 104190. [Google Scholar] [CrossRef] [PubMed]
- Di Micco, S.; Mazue, F.; Daquino, C.; Spatafora, C.; Delmas, D.; Latruffe, N.; Bifulco, G. Structural basis for the potential antitumour activity of DNA-interacting benzo kl xanthene lignans. Org. Biomol. Chem. 2011, 9, 701–710. [Google Scholar] [CrossRef] [PubMed]
- Spatafora, C.; Barresi, V.; Bhusainahalli, V.M.; Di Micco, S.; Musso, N.; Riccio, R.; Tringali, C. Bio-inspired benzo k,l xanthene lignans: Synthesis, DNA-interaction and antiproliferative properties. Org. Biomol. Chem. 2014, 12, 2686–2701. [Google Scholar] [CrossRef] [PubMed]
- Vijayakurup, V.; Spatafora, C.; Tringali, C.; Jayakrishnan, P.C.; Srinivas, P.; Gopala, S. Phenethyl caffeate benzoxanthene lignan is a derivative of caffeic acid phenethyl ester that induces bystander autophagy in WiDr cells. Mol. Biol. Rep. 2014, 41, 85–94. [Google Scholar] [CrossRef]
- Basini, G.; Baioni, L.; Bussolati, S.; Grasselli, F.; Daquino, C.; Spatafora, C.; Tringali, C. Antiangiogenic properties of an unusual benzo k,l xanthene lignan derived from CAPE (Caffeic Acid Phenethyl Ester). Investig. New Drugs 2012, 30, 186–190. [Google Scholar] [CrossRef]
- Vijayakurup, V.; Spatafora, C.; Daquino, C.; Tringali, C.; Srinivas, P.; Gopala, S. Phenethyl caffeate benzo kl xanthene lignan with DNA interacting properties induces DNA damage and apoptosis in colon cancer cells. Life Sci. 2012, 91, 1336–1344. [Google Scholar] [CrossRef]
- Capolupo, A.; Tosco, A.; Mozzicafreddo, M.; Tringali, C.; Cardullo, N.; Monti, M.C.; Casapullo, A. proteasome as a new target for bio-inspired benzo k,l xanthene lignans. Chem. Eur. J. 2017, 23, 8371–8374. [Google Scholar] [CrossRef]
- Mehnert, W.; Mäder, K. Solid lipid nanoparticles production, characterization and applications. Adv. Drug Del. Rev. 2001, 47, 165–196. [Google Scholar] [CrossRef]
- Gordillo-Galeano, A.; Mora-Huertas, C.E. Solid lipid nanoparticles and nanostructured lipid carriers: A review emphasizing on particle structure and drug release. Eur. J. Pharm. Biopharm. 2018, 133, 285–308. [Google Scholar] [CrossRef]
- Ji, P.; Yu, T.; Liu, Y.; Jiang, J.; Xu, J.; Zhao, Y.; Wu, C. Naringenin-loaded solid lipid nanoparticles: Preparation, controlled delivery, cellular uptake, and pulmonary pharmacokinetics. Drug Des. Dev. Ther. 2016, 10, 911–925. [Google Scholar] [CrossRef] [Green Version]
- Goncalves, L.M.D.; Maestrelli, F.; Manelli, L.D.; Ghelardini, C.; Almeida, A.J.; Mura, P. Development of solid lipid nanoparticles as carriers for improving oral bioavailability of glibenclamide. Eur. J. Pharm. Biopharm. 2016, 102, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Cardullo, N.; Floresta, G.; Rescifina, A.; Muccilli, V.; Tringali, C. Synthesis and in vitro evaluation of chlorogenic acid amides as potential hypoglycemic agents and their synergistic effect with acarbose. Bioorg. Chem. 2021, 117, 105458. [Google Scholar] [CrossRef]
- Sarpietro, M.G.; Torrisi, C.; Di Sotto, A.; Castelli, F. Interaction of limonene, terpineol, and 1,8 cineol with a model of biomembrane: A DSC study. Thermochim. Acta 2021, 700, 178938. [Google Scholar] [CrossRef]
- Torrisi, C.; Malfa, G.A.; Acquaviva, R.; Castelli, F.; Sarpietro, M.G. Effect of protocatechuic acid ethyl ester on biomembrane models: Multilamellar vesicles and monolayers. Membranes 2022, 12, 283. [Google Scholar] [CrossRef]
- Andersen, F.A. Final Report on the Safety Assessment of Oleth-2, -3, -4, -5, -6, -7, -8, -9, -10, -11, -12, -15, -16, -20, -23, -25, -30, -40, -44, and -501. Int. J. Toxicol. 1999, 18 (Suppl. 2), 17–24. [Google Scholar] [CrossRef]
- Graverini, G.; Piazzini, V.; Landucci, E.; Pantano, D.; Nardiello, P.; Casamenti, F.; Pellegrini-Giampietro, D.E.; Bilia, A.R.; Bergonzi, M.C. Solid lipid nanoparticles for delivery of andrographolide across the blood-brain barrier: In vitro and in vivo evaluation. Coll. Surf. B Biointerfaces 2018, 161, 302–313. [Google Scholar] [CrossRef]
- Aditya, N.P.; Macedo, A.S.; Doktorovova, S.; Souto, E.B.; Kim, S.; Chang, P.-S.; Ko, S. Development and evaluation of lipid nanocarriers for quercetin delivery: A comparative study of solid lipid nanoparticles (SLN), nanostructured lipid carriers (NLC), and lipid nanoemulsions (LNE). LWT Food Sci. Technol. 2014, 59, 115–121. [Google Scholar] [CrossRef]
- Sharma, A.K.; Sahoo, P.K.; Majumdar, D.K.; Sharma, N.; Sharma, R.K.; Kumar, A. Fabrication and evaluation of lipid nanoparticulates for ocular delivery of a COX-2 inhibitor. Drug Deliv. 2016, 23, 3364–3373. [Google Scholar] [CrossRef] [Green Version]
- Samimi, S.; Maghsoudnia, N.; Eftekhari, R.B.; Dorkoosh, F. Lipid-Based Nanoparticles for Drug Delivery Systems. In Characterization and Biology of Nanomaterials for Drug Delivery; Elsevier: Amsterdam, The Netherlands, 2019; pp. 47–76. [Google Scholar]
- Pandita, D.; Kumar, S.; Poonia, N.; Lather, V. Solid lipid nanoparticles enhance oral bioavailability of resveratrol, a natural polyphenol. Food Res. Int. 2014, 62, 1165–1174. [Google Scholar] [CrossRef]
- Bose, S.; Du, Y.; Takhistov, P.; Michniak-Kohn, B. Formulation optimization and topical delivery of quercetin from solid lipid based nanosystems. Int. J. Pharm. 2013, 441, 56–66. [Google Scholar] [CrossRef] [PubMed]
- Vijayakumar, A.; Baskaran, R.; Jang, Y.S.; Oh, S.H.; Yoo, B.K. Quercetin-loaded solid lipid nanoparticle dispersion with improved physicochemical properties and cellular uptake. AAPS PharmSciTech. 2016, 18, 875–883. [Google Scholar] [CrossRef] [PubMed]
- Montenegro, L.; Modica, M.N.; Salerno, L.; Panico, A.M.; Crascì, L.; Puglisi, G.; Romeo, G. In vitro antioxidant activity of idebenone derivative-loaded solid lipid nanoparticles. Molecules 2017, 22, 887. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bunjes, H.; Unruh, T.S. Characterization of lipid nanoparticles by differential scanning calorimetry, X-ray and neutron scattering. Adv. Drug Deliv. Rev. 2007, 59, 379–402. [Google Scholar] [CrossRef]
- Barbosa, R.M.; Ribeiro, L.N.M.; Casadei, B.R.; da Silva, C.M.G.; Queiróz, V.A.; Duran, N.; de Araújo, D.R.; Severino, P.; de Paula, E. Solid lipid nanoparticles for dibucaine sustained release. Pharmaceutics 2018, 10, 231. [Google Scholar] [CrossRef] [Green Version]
- Walde, P. Preparation of vesicles (liposomes). In ASP Encyclopedia of Nanoscience and Nanotechnology; Nalwa, H.S., Ed.; American Scientific Publishers: Stevenson Ranch, CA, USA, 2004; Volume 9, pp. 43–79. [Google Scholar]
- Wisniewska-Becker, A.; Gruszecki, W.I. Biomembrane models. In Drug-Biomebrane Interaction Studies: The Application of Calorimetric Techniques; Pignatello, R., Ed.; Woodhead Publishing Limited: Cambridge, UK, 2013; pp. 46–95. [Google Scholar]
SLN | SLN 4 | SLN 8 | |
---|---|---|---|
BXL (mg) | - | 4 | 8 |
PrecirolATO 5 (mg) | 200 | 200 | 200 |
Tegin-O (mg) | 126 | 126 | 126 |
Oleth-20 (mg) | 246 | 246 | 246 |
H2O | up to 20 mL | up to 20 mL | up to 20 mL |
Z-Ave (nm ± SD) | PDI (-) ± SD | ZP (mV ± SD) | |
---|---|---|---|
Unloaded SLN | 305.4 ± 1.3 | 0.360 ± 0.04 | −24.9 ± 0.1 |
SLN 4 | 296.1 ± 10.3 | 0.395 ±0.07 | −25.6 ± 0.1 |
SLN 8 | 300.2 ± 6.9 | 0.368 ± 0.06 | −28.9 ± 0.1 |
Sample | Method | EE% * |
---|---|---|
SLN 4 | Sephadex-LH20 | 59.3 ± 2.0 a,b (Equation (1)) |
61.7 ± 1.8 a,c (Equation (2)) | ||
Centrifugation | 54.5 ± 2.7 b,c (Equation (1)) | |
58.7 ± 0.9 a,d (Equation (2)) | ||
SLN 8 | Sephadex-LH20 | 62.8 ± 4.1 b,d (Equation (1)) |
66.1 ± 2.7 c,d (Equation (2)) | ||
Centrifugation | 65.5 ± 1.4 a,e (Equation (1)) | |
68.7 ± 3.9 b,e (Equation (2)) |
Sample | DPPH (EC50) 1 | ORAC (TE) 2 |
---|---|---|
BXL | 68.7 ± 12.4 a,b | 6.2 ± 0.3 a,d |
SLN 8 | 83.1 ± 7.3 a,c | 4.4 ± 0.2 b,d |
Quercetin | 17.9 ± 4.3 b,c | 15.4 ± 2.3 c,d |
MeOH 3 | >350 | - |
Tris-HCl 3 | 0.05 ± 0.01 a,e |
Sample | Tm (°C) | ΔH (J/gr Precirol) | ΔT1/2 (°C) |
---|---|---|---|
Precirol | 55.06 | −125.00 | 3.65 |
SLN | 50.60 | −90.39 | 5.79 |
SLN 4 | 50.63 | −76.32 | 5.92 |
SLN 8 | 50.44 | −73.31 | 6.13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torrisi, C.; Cardullo, N.; Muccilli, V.; Tringali, C.; Castelli, F.; Sarpietro, M.G. Characterization and Interaction with Biomembrane Model of Benzo[k,l]xanthene Lignan Loaded Solid Lipid Nanoparticles. Membranes 2022, 12, 615. https://doi.org/10.3390/membranes12060615
Torrisi C, Cardullo N, Muccilli V, Tringali C, Castelli F, Sarpietro MG. Characterization and Interaction with Biomembrane Model of Benzo[k,l]xanthene Lignan Loaded Solid Lipid Nanoparticles. Membranes. 2022; 12(6):615. https://doi.org/10.3390/membranes12060615
Chicago/Turabian StyleTorrisi, Cristina, Nunzio Cardullo, Vera Muccilli, Corrado Tringali, Francesco Castelli, and Maria Grazia Sarpietro. 2022. "Characterization and Interaction with Biomembrane Model of Benzo[k,l]xanthene Lignan Loaded Solid Lipid Nanoparticles" Membranes 12, no. 6: 615. https://doi.org/10.3390/membranes12060615
APA StyleTorrisi, C., Cardullo, N., Muccilli, V., Tringali, C., Castelli, F., & Sarpietro, M. G. (2022). Characterization and Interaction with Biomembrane Model of Benzo[k,l]xanthene Lignan Loaded Solid Lipid Nanoparticles. Membranes, 12(6), 615. https://doi.org/10.3390/membranes12060615