Dispersive Membrane Microextraction of Substituted Phenols from Honey Samples and a Brief Outlook on Its Sustainability Using Analytical Eco-Scale and Analytical GREEnness Metric Approach
Abstract
:1. Introduction
2. Experimental Conditions
2.1. Reagent and Solution
2.2. Instrumentation
2.3. Honey Samples
2.4. Dispersive Membrane Microextraction alongside High-Performance Liquid Chromatography
2.5. Sustainability Assessment Using the Analytical Eco-Scale and the Analytical GREEnness Metric (AGREE) Approach
3. Results and Discussion
3.1. Honey Samples
Influence of the Phenol Substituent Group and the pKa Value
3.2. Green Analytical Chemistry Metric-Based DMME–HPLC Sustainability Assessment
3.2.1. Analytical Eco-Scale
3.2.2. Analytical GREEnness Metric (AGREE)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ghorbani, M.; Aghamohammadhassan, M.; Chamsaz, M.; Akhlaghi, H.; Pedramrad, T. Dispersive solid phase microextraction. TrAC Trends Anal. Chem. 2019, 118, 793–809. [Google Scholar] [CrossRef]
- Islas, G.; Ibarra, I.S.; Hernandez, P.; Miranda, J.M.; Cepeda, A. Dispersive Solid Phase Extraction for the Analysis of Veterinary Drugs Applied to Food Samples: A Review. Int. J. Anal. Chem. 2017, 2017, 8215271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dil, E.A.; Ghaedi, M.; Asfaram, A.; Zare, F.; Mehrabi, F.; Sadeghfar, F. Comparison between dispersive solid-phase and dispersive liquid–liquid microextraction combined with spectrophotometric determination of malachite green in water samples based on ultrasound-assisted and preconcentration under multi-variable experimental design optimization. Ultrason. Sonochem. 2017, 39, 374–383. [Google Scholar]
- Cruz-Vera, M.; Lucena, R.; Cárdenas, S.; Valcárcel, M. Sample treatments based on dispersive (micro)extraction. Anal. Methods 2011, 3, 1719–1728. [Google Scholar] [CrossRef]
- Chisvert, A.; Cárdenas, S.; Lucena, R. Dispersive micro-solid phase extraction. TrAC Trends Anal. Chem. 2019, 112, 226–233. [Google Scholar] [CrossRef]
- Tsai, W.H.; Huang, T.C.; Huang, J.J.; Hsue, Y.H.; Chuang, H.Y. Dispersive solid-phase microextraction method for sample extraction in the analysis of four tetracyclines in water and milk samples by high-performance liquid chromatography with diode-array detection. J. Chromatogr. A 2009, 1216, 2263–2269. [Google Scholar] [CrossRef]
- Kazemi, E.; Dadfarnia, S.; Haji Shabani, A.M. Dispersive solid phase microextraction with magnetic graphene oxide as the sorbent for separation and preconcentration of ultra-trace amounts of gold ions. Talanta 2015, 141, 273–278. [Google Scholar] [CrossRef]
- Asfaram, A.; Ghaedi, M.; Goudarzi, A. Optimization of ultrasound-assisted dispersive solid-phase microextraction based on nanoparticles followed by spectrophotometry for the simultaneous determination of dyes using experimental design. Ultrason. Sonochem. 2016, 32, 407–417. [Google Scholar] [CrossRef] [Green Version]
- Cheng, L.; Pan, S.; Ding, C.; He, J.; Wang, C. Dispersive solid-phase microextraction with graphene oxide based molecularly imprinted polymers for determining bis(2-ethylhexyl) phthalate in environmental water. J. Chromatogr. A 2017, 1511, 85–91. [Google Scholar] [CrossRef]
- Anku, W.W.; Mamo, M.A.; Govender, P.P. Phenolic compounds in water: Sources, reactivity, toxicity and treatment methods. In Phenolic Compounds-Natural Sources, Importance and Applications; IntechOpen: London, UK, 2017; pp. 419–443. [Google Scholar]
- Hou, Y.; Ren, Y.; Peng, W.; Ren, S.; Wu, W. Separation of Phenols from Oil Using Imidazolium-Based Ionic Liquids. Ind. Eng. Chem. Res. 2013, 52, 18071–18075. [Google Scholar] [CrossRef]
- El-Nahhal, Y. Pesticide residues in honey and their potential reproductive toxicity. Sci. Total Environ. 2020, 741, 139953. [Google Scholar] [CrossRef]
- Campillo, N.; Peñalver, R.; Hernández-Córdoba, M. Evaluation of solid-phase microextraction conditions for the determination of chlorophenols in honey samples using gas chromatography. J. Chromatogr. A 2006, 1125, 31–37. [Google Scholar] [CrossRef]
- Fan, C.; Li, N.; Cao, X. Determination of chlorophenols in honey samples using in-situ ionic liquid-dispersive liquid–liquid microextraction as a pretreatment method followed by high-performance liquid chromatography. Food Chem. 2015, 174, 446–451. [Google Scholar] [CrossRef] [Green Version]
- Olaniran, A.O.; Igbinosa, E.O. Chlorophenols and other related derivatives of environmental concern: Properties, distribution and microbial degradation processes. Chemosphere 2011, 83, 1297–1306. [Google Scholar] [CrossRef]
- Olorundare, O.F.; Msagati, T.A.M.; Krause, R.W.M.; Okonkwo, J.O.; Mamba, B.B. Preparation and use of maize tassels’ activated carbon for the adsorption of phenolic compounds in environmental waste water samples. Environ. Sci. Pollut. Res. 2015, 22, 5780–5792. [Google Scholar] [CrossRef]
- Uberoi, V.; Bhattacharya, S.K. Toxicity and degradability of nitrophenols in anaerobic systems. Water Environ. Res. 1997, 69, 146–156. [Google Scholar] [CrossRef]
- Mulla, S.I.; Bharagava, R.N.; Belhaj, D.; Saratale, G.D.; Bagewadi, Z.K.; Saxena, G.; Kumar, A.; Mohan, H.; Yu, C.P.; Ninnekar, H.Z. An Overview of Nitro Group-Containing Compounds and Herbicides Degradation in Microorganisms. In Microbial Metabolism of Xenobiotic Compounds; Arora, P.K., Ed.; Springer: Singapore, 2019; pp. 319–335. [Google Scholar]
- Bagal, M.V.; Lele, B.J.; Gogate, P.R. Removal of 2,4-dinitrophenol using hybrid methods based on ultrasound at an operating capacity of 7 L. Ultrason. Sonochem. 2013, 20, 1217–1225. [Google Scholar] [CrossRef]
- Wang, N.; Lv, G.; He, L.; Sun, X. New insight into photodegradation mechanisms, kinetics and health effects of p-nitrophenol by ozonation in polluted water. J. Hazard. Mater. 2021, 403, 123805. [Google Scholar] [CrossRef]
- WHO. Guidelines for drinking-water quality. In WHO Chronicle; World Health Organization: Geneva, Switzerland, 2011; pp. 104–108. [Google Scholar]
- Chen, W.; Wu, S.; Zhang, J.; Yu, F.; Hou, J.; Miao, X.; Tu, X. Matrix-Induced Sugaring-Out: A Simple and Rapid Sample Preparation Method for the Determination of Neonicotinoid Pesticides in Honey. Molecules 2019, 24, 2761. [Google Scholar] [CrossRef] [Green Version]
- Chandrasekaram, K.; Alias, Y.; Mohamad, S. Sporopollenin supported methylimidazolium ionic liquids based mixed matrix membrane for dispersive membrane micro-extraction of nitro and chloro-substituted phenols from various matrices. Microchem. J. 2022, 172, 106936. [Google Scholar] [CrossRef]
- Gałuszka, A.; Migaszewski, Z.M.; Konieczka, P.; Namieśnik, J. Analytical Eco-Scale for assessing the greenness of analytical procedures. TrAC Trends Anal. Chem. 2012, 37, 61–72. [Google Scholar] [CrossRef]
- Pena-Pereira, F.; Wojnowski, W.; Tobiszewski, M. AGREE—Analytical GREEnness metric approach and software. Anal. Chem. 2020, 92, 10076–10082. [Google Scholar] [CrossRef]
- Chaara, D.; Pavlovic, I.; Bruna, F.; Ulibarri, M.A.; Draoui, K.; Barriga, C. Removal of nitrophenol pesticides from aqueous solutions by layered double hydroxides and their calcined products. Appl. Clay Sci. 2010, 50, 292–298. [Google Scholar] [CrossRef]
- Goldgof, M.; Xiao, C.; Chanturiya, T.; Jou, W.; Gavrilova, O.; Reitman, M.L. The Chemical Uncoupler 2,4-Dinitrophenol (DNP) Protects against Diet-induced Obesity and Improves Energy Homeostasis in Mice at Thermoneutrality. J. Biol. Chem. 2014, 289, 19341–19350. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.C.H.; Law, C.Y.; Chen, M.L.; Lam, Y.H.; Chan, A.Y.W.; Mak, T.W.L. 2,4-Dinitrophenol: A threat to Chinese body-conscious groups. J. Chin. Med. Assoc. 2014, 77, 443–445. [Google Scholar] [CrossRef] [Green Version]
- Grundlingh, J.; Dargan, P.I.; El-Zanfaly, M.; Wood, D.M. 2,4-dinitrophenol (DNP): A weight loss agent with significant acute toxicity and risk of death. J. Med. Toxicol. 2011, 7, 205–212. [Google Scholar] [CrossRef] [Green Version]
- Sousa, D.; Carmo, H.; Roque Bravo, R.; Carvalho, F.; Bastos, M.D.L.; Guedes de Pinho, P.; Dias da Silva, D. Diet aid or aid to die: An update on 2,4-dinitrophenol (2,4-DNP) use as a weight-loss product. Arch. Toxicol. 2020, 94, 1071–1083. [Google Scholar] [CrossRef]
- Chandrasekaram, K.; Alias, Y.; Fathullah, S.F.; Lee, V.S.; Haron, N.; Raoov, M.; Zakaria, N.; Mohamad, S. Sporopollenin supported ionic liquids biosorbent for enhanced selective adsorption of 2, 4-dinitrophenol from aqueous environment. Mater. Today Commun. 2021, 28, 102587. [Google Scholar] [CrossRef]
- Liu, Q.S.; Zheng, T.; Wang, P.; Jiang, J.P.; Li, N. Adsorption isotherm, kinetic and mechanism studies of some substituted phenols on activated carbon fibers. Chem. Eng. J. 2010, 157, 348–356. [Google Scholar] [CrossRef]
- Wang, Z.; Ge, H.; Wang, X.; Ye, C.; Fan, S. Mono and co-immobilization of imidazolium ionic liquids on silica: Effects of the substituted groups on the adsorption behavior of 2,4-dinitrophenol. RSC Adv. 2019, 9, 32425–32434. [Google Scholar] [CrossRef] [Green Version]
- Isosaari, P.; Srivastava, V.; Sillanpää, M. Ionic liquid-based water treatment technologies for organic pollutants: Current status and future prospects of ionic liquid mediated technologies. Sci. Total Environ. 2019, 690, 604–619. [Google Scholar] [CrossRef] [PubMed]
- González, E.J.; Díaz, I.; Gonzalez-Miquel, M.; Rodríguez, M.; Sueiras, A. On the behavior of imidazolium versus pyrrolidinium ionic liquids as extractants of phenolic compounds from water: Experimental and computational analysis. Sep. Purif. Technol. 2018, 201, 214–222. [Google Scholar] [CrossRef]
- Yang, K.U.N.; Wu, W.; Jing, Q.; Zhu, L. Aqueous Adsorption of Aniline, Phenol, and their Substitutes by Multi-Walled Carbon Nanotubes. Environ. Sci. Technol. 2008, 42, 7931–7936. [Google Scholar] [CrossRef] [PubMed]
- Zuin, V.G.; Segatto, M.L.; Ramin, L.Z. Green chemistry in analytical chemistry. J. Encycl. Sustain. Sci. Technol. 2018, 1–24. [Google Scholar]
- Gravelle, D.V.; Panayiotou, C. Temperature effect on phenol extraction from water using mixed solvents. J. Chem. Eng. Data 1980, 25, 23–26. [Google Scholar] [CrossRef]
- Hao, L.; Wang, C.; Ma, X.; Wu, Q.; Wang, C.; Wang, Z. Magnetic three-dimensional graphene solid-phase extraction coupled with high performance liquid chromatography for the determination of phthalate esters in fruit juice. Anal. Methods 2014, 6, 5659–5665. [Google Scholar] [CrossRef]
- Farhadi, K.; Matin, A.A.; Amanzadeh, H.; Biparva, P.; Tajik, H.; Farshid, A.A.; Pirkharrati, H. A novel dispersive micro solid phase extraction using zein nanoparticles as the sorbent combined with headspace solid phase micro-extraction to determine chlorophenols in water and honey samples by GC–ECD. Talanta 2014, 128, 493–499. [Google Scholar] [CrossRef]
- Li, M.; Wang, J.; Jiao, C.; Wang, C.; Wu, Q.; Wang, Z. Magnetic porous carbon derived from a Zn/Co bimetallic metal–organic framework as an adsorbent for the extraction of chlorophenols from water and honey tea samples. J. Sep. Sci. 2016, 39, 1884–1891. [Google Scholar] [CrossRef]
- Liu, W.; Wang, J.; Liu, J.; Hou, F.; Wu, Q.; Wang, C.; Wang, Z. Preparation of phenylboronic acid based hypercrosslinked polymers for effective adsorption of chlorophenols. J. Chromatogr. A 2020, 1628, 461470. [Google Scholar] [CrossRef]
- Xu, M.; Luo, X.; Zhang, G.; Zhao, B.; Li, S.; Xiao, Z.; Wu, Q.; Wang, Z.; Wang, C. Construction of imine-linked covalent organic framework as advanced adsorbent for the sensitive determination of chlorophenols. J. Chromatogr. A 2021, 1658, 462610. [Google Scholar] [CrossRef]
- Sazali, N.H.; Miskam, M.; Suah, F.B.M.; Rahim, N.Y. Analysis of herbicide mixtures in environmental samples with emulsification liquid-liquid microextraction using fatty acids deep eutectic solvents. Int. J. Environ. Anal. Chem. 2022, 1–20. [Google Scholar] [CrossRef]
- Panda, S.S.; Dutta, S.; Bera, R.K.V.V.; Jammula, S. Analytical eco-scale and quality by design-oriented liquid chromatography method for simultaneous quantification of metoprolol succinate, telmisartan, and cilnidipine in their fixed-dose combination. Sep. Sci. Plus 2021, 4, 128–136. [Google Scholar] [CrossRef]
- Gałuszka, A.; Migaszewski, Z.; Namieśnik, J. The 12 principles of green analytical chemistry and the SIGNIFICANCE mnemonic of green analytical practices. TrAC Trends Anal. Chem. 2013, 50, 78–84. [Google Scholar] [CrossRef]
- Tobiszewski, M. Metrics for green analytical chemistry. Anal. Methods 2016, 8, 2993–2999. [Google Scholar] [CrossRef] [Green Version]
Method Validation Parameters | Substituted Phenol Analytes | |||||
---|---|---|---|---|---|---|
2,4-DNP | 4NP | 2CP | 4CP | 2NP | 2,4-DCP | |
Linearity (ng/mL) | 50–500 | 50–500 | 50–500 | 50–500 | 50–500 | 50–500 |
R2 | 0.9994 | 0.9982 | 0.9976 | 0.9977 | 0.9976 | 0.9994 |
LOD (ng/mL) | 2.93 | 5.03 | 7.39 | 5.77 | 5.8 | 2.93 |
LOQ (ng/mL) | 7.34 | 12.57 | 18.49 | 14.43 | 14.49 | 7.34 |
Preconcentration factor | 135 | 121 | 168 | 121 | 111 | 135 |
Matrix effect (%) | 2.03 | 2.70 | 3.04 | 2.33 | 2.22 | 2.03 |
Spiked (50 ng/mL) | ||||||
Recovery (%) | 100.29 | 97.30 | 99.90 | 95.90 | 88.18 | 100.29 |
RSD (%) | 5.76 | 3.29 | 5.70 | 8.16 | 6.92 | 5.76 |
Spiked (100 ng/mL) | ||||||
Recovery (%) | 100.34 | 99.02 | 96.04 | 97.45 | 91.35 | 100.34 |
RSD (%) | 0.28 | 0.68 | 0.41 | 4.51 | 6.83 | 0.28 |
Honey Samples | Quantitative Concentration Detected (ng/mL) | |||||
---|---|---|---|---|---|---|
2,4-DNP | 4NP | 2CP | 4CP | 2NP | 2,4-DCP | |
HS1 | 7.8 | N.D. | N.D. | N.D. | N.D. | N.D. |
HS2 | N.D. | N.D. | N.D. | 154.7 | N.D. | 72.7 |
HS3 | 34.4 | 33.9 | N.D. | N.D. | N.D. | 17.4 |
HS4 | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. |
No | Method | Reagents | Instrument | Reference |
---|---|---|---|---|
1 | Solid phase microextraction (SPME) with in-situ derivatization | Sodium chloride; potassium carbonate; acetic anhydride | Homogenizer; GC | [13] |
2 | Magnetic three-dimensional graphene solid-phase extraction | Hydrochloric acid; alkaline methanol | Vortex; HPLC | [39] |
3 | Dispersive micro-solid-phase extraction (DMSPE) combined with headspace solid-phase micro-extraction (HS-SPME) | Ethanol; sodium chloride | Centrifuge; hotplate; GC | [40] |
4 | Zn/Co bimetallic metal–organicframework for magnetic solid-phase extraction | Alkaline methanol; hydrochloric acid | Shaker; centrifuge; HPLC | [41] |
5 | Phenylboronic acid-based hyper-crosslinked polymers solid-phase extraction | Methanol; sodium hydroxide; hydrochloric acid | HPLC-DAD | [42] |
6 | Imine-linked covalent organic framework for solid-phase extraction | Methanol; acetonitrile | Vacuum pump; HPLC | [43] |
7 | Mixed matrix membrane-based dispersive membrane microextraction (DMME) | Methanol | Sonicator; HPLC-DAD | This study |
Parameter | Amount Penalty Points (PPs) | Hazard Penalty Points (PPs) | Reagent Penalty Points (Amount PPs × Hazard PPs) |
---|---|---|---|
Reagent Methanol | 0.1 mL (1) | Flammable: danger, Category 2 (2) Toxic: warning, Category 3 (1) Health hazard: danger, Category 1 (2) | 5 |
Instrument | Energy consumption (PPs) | Energy penalty points | |
Sonicator HPLC | <0.1 kWh per sample (0) <1.5 kWh per sample (1) | 1 | |
Total penalty points | 6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chandrasekaram, K.; Alias, Y.; Mohamad, S. Dispersive Membrane Microextraction of Substituted Phenols from Honey Samples and a Brief Outlook on Its Sustainability Using Analytical Eco-Scale and Analytical GREEnness Metric Approach. Membranes 2022, 12, 649. https://doi.org/10.3390/membranes12070649
Chandrasekaram K, Alias Y, Mohamad S. Dispersive Membrane Microextraction of Substituted Phenols from Honey Samples and a Brief Outlook on Its Sustainability Using Analytical Eco-Scale and Analytical GREEnness Metric Approach. Membranes. 2022; 12(7):649. https://doi.org/10.3390/membranes12070649
Chicago/Turabian StyleChandrasekaram, Kumuthini, Yatimah Alias, and Sharifah Mohamad. 2022. "Dispersive Membrane Microextraction of Substituted Phenols from Honey Samples and a Brief Outlook on Its Sustainability Using Analytical Eco-Scale and Analytical GREEnness Metric Approach" Membranes 12, no. 7: 649. https://doi.org/10.3390/membranes12070649
APA StyleChandrasekaram, K., Alias, Y., & Mohamad, S. (2022). Dispersive Membrane Microextraction of Substituted Phenols from Honey Samples and a Brief Outlook on Its Sustainability Using Analytical Eco-Scale and Analytical GREEnness Metric Approach. Membranes, 12(7), 649. https://doi.org/10.3390/membranes12070649